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Abstract

Text data, including speeches, stories, and other document forms, are often connected to

sentimentvariables that are of interest for research in marketing, economics, and elsewhere. It

is also very high dimensional and difficult to incorporate into statistical analyses. This article

introduces a straightforward framework of sentiment-sufficient dimension reduction for text

data. Multinomial inverse regression is introduced as a general tool for simplifying predictor

sets that can be represented as draws from a multinomial distribution, and we show that logistic

regression of phrase counts onto document annotations can be used to obtain low dimension

document representations that are rich in sentiment information. To facilitate this modeling,

a novel estimation technique is developed for multinomial logistic regression with very high-

dimension response. In particular, independent Laplace priors with unknown variance are

assigned to each regression coefficient, and we detail an efficient routine for maximization of

the joint posterior over coefficients and their prior scale. This ‘gamma-lasso’ scheme yields

stable and effective estimation for general high-dimension logistic regression, and we argue

that it will be superior to current methods in many settings. Guidelines for prior specification

are provided, algorithm convergence is detailed, and estimator properties are outlined from the

perspective of the literature on non-concave likelihood penalization. Related work on senti-

ment analysis from statistics, econometrics, and machine learning is surveyed and connected.

Finally, the methods are applied in two detailed examples and we provide out-of-sample pre-

diction studies to illustrate their effectiveness.

Taddy is an Associate Professor of Econometrics and Statistics and Neubauer Family Faculty Fellow at the Uni-
versity of Chicago Booth School of Business, and this work was partially supported by the IBM Corporation Faculty
Research Fund at Chicago. The author thanks Jesse Shapiro, Matthew Gentzkow, David Blei, Che-Lin Su, Christian
Hansen, Robert Gramacy, Nicholas Polson, and anonymous reviewers for much helpful discussion.
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1 Introduction

This article investigates the relationship between text data – product reviews, political speech,

financial news, or a personal blog post – and variables that are believed to influence its composi-

tion – product quality ratings, political affiliation, stock price, or mood polarity. Such language-

motivating observable variables, generically termedsentimentin the context of this article, are

often the main object of interest for text mining applications. When, as is typical, large amounts of

text are available but only a small subset of documents are annotated with known sentiment, this

relationship yields the powerful potential for text to act as a stand-in for related quantities of pri-

mary interest. On the other hand, language data dimension (i.e., vocabulary size) is both very large

and tends to increase with the amount of observed text, making the data difficult to incorporate into

statistical analyses. Our goal is to introduce a straightforward framework of sentiment-preserving

dimension reduction for text data.

As detailed in Section 2.1, a common statistical treatment of text views each document as an

exchangeable collection of phrase tokens. In machine learning, these tokens are usually just words

(e.g., tax, pizza) obtained after stemming for related roots (e.g.,taxation, taxing, and taxesall

becometax), but richer tokenizations are also possible: for example, we find it useful to track

commonn-gram word combinations (e.g. bigramspay taxor cheese pizzaand trigrams such astoo

much tax). Under a given tokenization each document is represented asxi = [xi1, . . . , xip]′, a sparse

vector of counts for each ofp tokens in the vocabulary. These token counts, and the associated

frequenciesf i = xi/mi wheremi =
∑p

j=1 xi j , are then the basic data units for statistical text analysis.

In particular, the multinomial distribution forxi implied by an assumption of token-exchangeability

can serve as the basis for efficient dimension reduction.

Considern documents that are each annotated with a single sentiment variable,yi (e.g., restau-

rant reviews accompanied by a one to five star rating). A naive approach to text-sentiment pre-

diction would be to fit a generic regression foryi |xi. However, given the very high dimension of
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text-counts (withp in the thousands or tens of thousands), one cannot efficiently estimate this con-

ditional distribution without also taking steps to simplifyxi. We propose an inverse regression (IR)

approach, wherein theinverse conditional distributionfor text given sentiment is used to obtain

low dimensional document scores that preserve information relevant toyi.

As an introductory example, consider the text-sentiment contingency table built by collapsing

token counts asxy =
∑

i:yi=y xi for eachy ∈ Y, the support of an ordered discrete sentiment variable.

A basic multinomial inverse regression (MNIR) model is then

xy ∼ MN(qy,my) with qy j =
exp[α j + yϕ j]

∑p
l=1 exp[αl + yϕl]

, for j = 1, . . . , p, y ∈ Y (1)

where each MN is ap-dimensional multinomial distribution with sizemy =
∑

i:yi=y mi and proba-

bilities qy = [qy1, . . . , qyp]′ that are a linear function ofy through a logistic link. Under conditions

detailed in Section 3, thesufficient reduction(SR) score forf i = xi/mi is then

zi = ϕ
′f i ⇒ yi ⊥⊥ xi ,mi | zi . (2)

Hence, given this SR projection, fullxi is ignored and modeling the text-sentiment relationship

becomes a univariate regression problem. This article’s examples include linear,E[yi] = β0 + β1zi,

quadratic,E[yi] = β0 + β1zi + β2z2
i , and logistic, p(yi < a) =

(
1+ exp[β0 + β1zi]

)−1, forms for

this forward regression, and SR scores should be straightforward to incorporate into alternative

regression models or structural equation systems. The procedure rests upon assumptions that allow

for summary tables wherein the text-sentiment relationship of interest can be modeled as a logistic

multinomial, but when such assumptions are plausible, as we find common in text analysis, they

introduce information that should yield significant efficiency gains.

In estimating models of the type in (1), which involve many thousands of parameters, we

propose use of fat-tailed and sparsity-inducing independent Laplace priors for each coefficient

ϕ j. To account for uncertainty about the appropriate level of variable-specific regularization, each

Laplace rate parameterλ j is left unknown with a gamma hyperprior. Thus, for example,

π(ϕ j , λ j) =
λ j

2
e−λ j |ϕ j | r s

Γ(s)
λs−1

j e−rλ j , s, r, λ j > 0, (3)
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ACCEPTED MANUSCRIPT

independent for eachj under a Ga(s, r) hyperprior specification. This departure from the usual

shared-λ model is motivated in Section 3.3.

Fitting MNIR models is tough for reasons beyond the usual difficulties of high dimension re-

gression – simply evaluating the large-response likelihood is expensive due to the normalization in

calculating eachqi. As surveyed in Section 4, available cross-validation (e.g., via solution paths)

and fully Bayesian (i.e., through Monte-Carlo marginalization) methods for estimatingϕ j under

unknownλ j are prohibitively expensive. A novel algorithm is proposed for finding the joint poste-

rior maximum (MAP) estimate of both coefficients and their prior scale. The problem is reduced

to log likelihood maximization forϕ with a non-concave penalty, and it can be solved relatively

quickly through coordinate descent. For example, given the prior in (3), the log likelihood implied

by (1) is maximized subject to (i.e., minus) cost constraints

c(ϕ j) = slog(1+ |ϕ j |/r) (4)

for each coefficient. This provides a powerful new estimation framework, which we term the

gamma-lasso. The approach is very computationally efficient, yielding robust SR scores in less

than a second for documents with thousands of unique tokens. Indeed, although a full comparison

is beyond the scope of this paper, we find that the proposed algorithm can also be far superior to

current techniques for high-dimensional logistic regression in the more common large-predictor

(rather than large-response) setting.

This article thus includes two main methodological contributions. First, Section 3 introduces

multinomial inverse regression as an IR procedure for predictor sets that can be represented as

draws from a multinomial, and details its application to text-sentiment analysis. This includes full

model specification and general sufficiency results, guidelines on how text data should be handled

to satisfy the MNIR model assumptions, and our independent gamma-Laplace prior specification.

Second, Section 4 develops a novel approach to estimation in very high dimensional logistic re-

gression. This includes details of coordinate descent for joint MAP estimation of coefficients and
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their unknown variance, conditions for global convergence, and an outline of estimator proper-

ties from the perspective of the literature on non-concave likelihood penalization. As background,

Section 2 briefly surveys the literature on text mining and sentiment analysis, and on dimension

reduction and inverse regression.

The following section describes language pre-processing and introduces two datasets that are

used throughout to motivate and illustrate our methods. Performance comparison and detailed

results for these examples are then presented in Section 5. Both example datasets, along with all

implemented methodology, are available in thetextir package forR.

1.1 Data processing and examples

Text is usually initially cleaned according to some standard information retrieval criteria, and we

refer the reader to Jurafsky and Martin (2009) for an overview. In this article, we simply remove

a limited set of stop words (e.g.,and or but) and punctuation, convert to lowercase, and strip

suffixes from roots according to the Porter stemmer (Porter, 1980). The main data preparation

step is then to parse clean text into informative language tokens; as mentioned in the introduction,

counts for these tokens are the starting point for statistical analysis. Most commonly (see, e.g.,

Srivastava and Sahami, 2009) the tokens are just words, such that each document is treated as a

vector of word-counts. This is referred to as thebag-of-wordsrepresentation, since these counts

are summary statistics for language generated by exchangeable draws from a multinomial ‘bag’ of

word options.

Despite its apparent limitations, the token-count framework can be made quite flexible through

more sophisticated tokenization. For example, in theN-gram language model words are drawn

from a Markov chain of orderN (see, e.g., Jurafsky and Martin, 2009). A document is then

summarized by its length-N word sequences, orN-gram tokens, as these are sufficient for the

underlying Markov transition probabilities. Our general practice is to count common unigram,
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bigram, and trigram tokens (i.e., words and 2-3 word phrases). Another powerful technique is to

use domain-specific knowledge to parse for phrases that are meaningful in the context of a specific

field. Talley and O’Kane (2011) present one such approach for tokenization of legal agreements;

for example, they use any conjugation of the wordact in proximity of God to identify a common

Act of Godclass of carve-out provisions. Finally, work such as that of Poon and Domingos (2009)

seeks to parse language according to semantic equivalence.

Thus while we focus on token-count data, different language models are able to influence

analysis through tokenization rules. And although separation of parsing from statistical modeling

limits our ability to quantify uncertainty, it has the appealing effect of allowing text data from

various sources and formats to all be analyzed within a multinomial likelihood framework.

1.1.1 Ideology in political speeches

This example originally appears in Gentzkow and Shapiro (GS; 2010) and considers text of the

109th (2005-2006) Congressional Record. For each of the 529 members of the United States House

and Senate, GS record usage of phrases in a list of 1000 bigrams and trigrams. Each document

corresponds to a single person. The sentiment of interest is political partisanship, where party af-

filiation (Republican, Democrat, or Independent) provides a simple indicator and a higher-fidelity

measure is calculated as the two-party vote-share from each speaker’s constituency (congressional

district for representatives; state for senators) obtained by George W. Bush in the 2004 presidential

election. Note that token vocabulary in this example is influenced by sentiment: GS built contin-

gency tables for bigram and trigram usage by party, and kept the top 1000 ‘most partisan’ phrases

according to ranking of their Pearsonχ2-test statistic.

Define phrase frequencylift for a given group as̄f jG/ f̄ j, where f̄ jG is mean frequency for phrase

j in group G andf̄ j =
∑n

i=1 fi j/n is the average across all documents. The following tables show

top-five lift phrases used at least once by each party.
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Democratic Frequency Lift

congressional.hispanic.caucu 2.163
medicaid.cut 2.154

clean.drinking.water 2.154
earth.day 2.152

tax.cut.benefit 2.149

Republican Frequency Lift

ayman.al.zawahiri 1.850
america.blood.cent 1.849

million.budget.request 1.847
million.illegal.alien 1.846

temporary.worker.program 1.845

1.1.2 On-line restaurant reviews

This dataset, which originally appears in the topic analysis of Mauá and Cozman (2009), contains

6260 user-submitted restaurant reviews (90 word average) fromwww.we8there.com. The reviews

are accompanied by a five-star rating on four specific aspects of quality –food, service, value, and

atmosphere– as well as theoverall experience. After tokenizing the text into bigrams (based on a

belief that modifiers such asveryor smallwould be useful here), we discard phrases that appear in

less than ten reviews and documents which do not use any of the remaining phrases. This leaves

a dataset of 6147 review counts for a token vocabulary of 2978 bigrams. Top-five lift phrases that

occur at least once in both positive (overall experience> 3) and negative (overall experience< 3)

reviews are below.
Negative Frequency Lift

food poison 5.402
food terribl 5.354
one worst 5.339

spoke manag 5.318
after left 5.285

Positive Frequency Lift

worth trip 1.393
everi week 1.390
melt mouth 1.389

alway go 1.389
onc week 1.389

2 Background

This section briefly reviews the relevant literatures on sentiment analysis and inverse regression.

Additional background is in the appendices and material specific to estimation is in Section 4.

2.1 Analysis of sentiment in text

As already outlined, we usesentimentto refer to any variables related to document composition.

Although broader than its common ‘opinion polarity’ usage, this definition as ‘sensible quality’
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fits our need to refer to the variety of quantities that may be correlated with text.

Much of existing work on sentiment analysis uses word frequencies as predictors in generic

regression and classification algorithms, including support vector machines, principle components

(PC) regression, neural networks, and penalized least-squares. Examples from this machine learn-

ing literature can be found in the survey by Pang and Lee (2008) and in the collection from Srivas-

tava and Sahami (2009). In the social sciences, research on ideology in political text includes both

generic classifiers (e.g., Yu et al., 2008) and analysis of contingency tables for individual terms

(e.g., Laver et al., 2003) (machine learning researchers, such as Thomas et al., 2006, have also

made contributions in this area). In economics, particularly finance, it is more common to rely

on weighted counts for pre-defined lists of terms with positive or negativetone; examples of this

approach include Tetlock (2007) and Loughran and McDonald (2011) (again, machine learners

such as Bollen et al., 2011, have also studied prediction for finance).

These approaches all have drawbacks: generic regression does nothing to leverage the par-

ticulars of text data, independent analysis of many contingency tables leads to multiple-testing

issues, and pre-defined word lists are subjective and unreliable. A more promising strategy is

to use text-specific dimension reduction based upon the multinomial implied by exchangeabil-

ity of token-counts. For example, atopic modeltreats documents as drawn from a multino-

mial distribution with probabilities arising as a weighted combination of ‘topic’ factors. Thus

xi ∼ MN(ωi1θ1 + . . . + ωiKθK ,mi), where topicsθk = [θk1 ∙ ∙ ∙ θkp]′ and weightsωi are probability

vectors. This framework, also known aslatent Dirichlet allocation(LDA), has been widely used

in text analysis since its introduction by Blei et al. (2003).

The low dimensional topic-weight representation (i.e.,ωi) serves as a basis for sentiment anal-

ysis in the original Blei et al. article, and has been used in this way by many since. The approach

is especially popular in political science, where work such as that of Grimmer (2010) and Quinn

et al. (2010) investigates political interpretation of latent topics (these authors restrictωik ∈ {0,1}

such that each document is drawn from a single topic). Recently, Blei and McAuliffe (2007) have
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introduced supervised LDA (sLDA) for joint modeling of text and sentiment. In particular, they

augment topic model with a forward regressionyi = f (ωi), such that token counts and sentiment

are connected through shared topic-weight factors.

Finally, our investigation was originally motivated by a desire to build a model-based version

of the specificslantindices proposed by Gentzkow and Shapiro (2010), which are part of a general

political science literature on quantifying partisanship through weighted-term indices (e.g., Laver

et al., 2003). Appendix A.1 shows that the GS indices can be written as summation of phrase

frequencies loaded by their correlation with measured partisanship (e.g., vote-share), such that

slant is equivalent to first-order partial least-squares (PLS; Wold, 1975).

2.2 Inverse regression and sufficient reduction

This article is based on a notion that, given the high dimension of text data, it is not possible to

efficiently estimate conditional responsey|x without finding a way to simplifyx. The same idea

motivates many of the techniques surveyed above, including LDA and sLDA, PLS/slant, and PC

regression. A framework to unify techniques for dimension reduction in regression can be found in

Cook’s 2007 overview ofinverse regression, wherein inference about the multivariate conditional

distributionx|y is used to build low dimension summaries forx.

Suppose thatvi is a K-vector of response factorsthrough whichxi depends onyi (i.e., vi is

a possibly random function ofyi). Then Cook’s linear IR formulation hasxi = Φvi + ε i, where

Φ = [ϕ1 ∙ ∙ ∙ϕK] is a p×K matrix of inverse regression coefficients andε i is p-vector of error terms.

Under certain conditions on var(ε i), detailed by Cook, the projectionzi = Φ′xi provides asufficient

reduction(SR) such thatyi is independent ofxi givenzi. As this implies p(xi |Φ′xi , yi) = p(xi |Φ′xi),

SR corresponds to the classical definition of sufficiency for ‘data’xi and ‘parameter’yi, but is

conditional on unknownΦ that must be estimated in practice. When such estimation is feasible,

the reduction of dimension fromp to K should make these SRprojectionseasier to work with than

9
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

in
ne

so
ta

 L
ib

ra
ri

es
, T

w
in

 C
iti

es
] 

at
 1

4:
21

 0
8 

M
ay

 2
01

3 



ACCEPTED MANUSCRIPT

the original predictors.

Many approaches to dimension reduction can be understood in context of this linear IR model:

PC directions arise as SR projections for the maximum likelihood solution whenvi is unspecified

(see, e.g., Cook, 2007) and, following our discussion in A.1, the first PLS direction is the SR

projection for least-squares fit whenvi = yi. A closely related framework is that of factor analysis,

wherein one seeks to estimatevi directly rather than projectxi into its lower dimensional space.

By augmenting estimation with a forward model foryi |vi researchers are able to buildsupervised

factor models; see, e.g., West (2003).

The innovation of inverse regression, from Cook’s 2007 paper and in earlier work including

Li (1991) and Bura and Cook (2001), is to investigate the SR projections that result from explicit

specification forvi as a function ofyi. Cook’sprinciple fitted componentsare derived for a va-

riety of functional expansions ofyi, Li et al. (2007) interprets PLS within an IR framework, and

the sliced inverse regressionof Li (1991) definesvi as a step-function expansion ofyi. Since in

each case thevi are conditioned upon, these IR models are more restrictive than the random joint

forward-inverse specification of supervised factor models. But if the IR model assumptions are

satisfied then its parsimony should lead to more efficient inference.

Instead of a linear equation, dimension reduction for text data is based on multinomial models.

Following the topic model factor specification, LDA is akin to PC analysis for multinomials and

sLDA is the corresponding supervised factor model. However, existing work on non-Gaussian

inverse regression relies on conditional independence; for example, Cook and Li (2009) use single-

parameter exponential families to model eachxi j |vi. To our knowledge, no-one has investigated

SR projections based on the multinomial predictor distributions that arise naturally for text data.

Hence, we seek to build a multinomial inverse regression framework.
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3 Modeling

The subject-specific multinomial inverse regression model has, fori = 1, . . . , n:

xi ∼ MN(qi ,mi) with qi j =
eηi j

∑p
l=1 eηil

, j = 1, . . . , p, where ηi j = α j + ui j + v′iϕ j . (5)

This generalizes (1) with the introduction ofK-dimensional response factorsvi and subject effects

ui = [ui1 ∙ ∙ ∙ uip]′. Section 3.1 derives sufficient reduction results for projectionszimi = Φ′xi,

whereΦ′ = [ϕ1, ∙ ∙ ∙ϕp]. Section 3.2 then describes application of these results in text analysis and

outlines situations where (5) can be replaced with a collapsed model as in (1). Finally, 3.3 presents

prior specification for these very high dimensional regressions.

3.1 Sufficient reduction in multinomial inverse regression

This section establishes classical sufficiency-for-y (conditional on IR parameters) for projections

derived from the model in (5). The main result follows, due to use of a logit link onηi =

[ηi1 ∙ ∙ ∙ ηip]′, from factorization of the multinomial’s natural exponential family parametrization.

Proposition 3.1. Under the model in (5), conditional on mi andui

yi ⊥⊥ xi | vi ⇒ yi ⊥⊥ xi | Φ
′xi .

Proof. Settingαi j = α j+ui j and suppressingi, the likelihood is
(
m
x

)
exp

[
x′η − A(η)

]
=

(
m
x

)
ex′α exp

[
(x′Φ)v − A(η)

]
=

h(x)g(Φ′x, v), whereA(η) = mlog
[∑p

j=1 eη j
]
. Hence, the usual sufficiency factorization (e.g.,

Schervish, 1995, 2.21) implies p(x|Φ′x, v) = p(x|Φ′x), andv is independent ofx givenΦ′x. Fi-

nally, p(y|x,Φ′x) =
∫

v
p(y|v)dP(v|Φ′x) = p(y|Φ′x).

Second, it is standard in text analysis to control for document size by regressingyi onto fre-

quencies rather than counts. Fortunately, our sufficient reductions survive this transformation.

Proposition 3.2. If yi ⊥⊥ xi | Φ
′xi ,mi andp(y | xi) = p(yi | f i), then yi ⊥⊥ xi | zi = Φ′f i .

Proof. We have that each off and [Φ′f ,m] are sufficient fory in p(x|y) = MN(q,m)p(m|y). Under

conditions of Lehmann and Sheffé (1950, 6.3), there exists a minimal sufficient statisticT(x) and

11
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

in
ne

so
ta

 L
ib

ra
ri

es
, T

w
in

 C
iti

es
] 

at
 1

4:
21

 0
8 

M
ay

 2
01

3 



ACCEPTED MANUSCRIPT

functionsg andg̃ such thatg(f ) = T(x) = g̃(Φ′f ,m). Having g̃ vary with m, while g(f ) does not,

implies that the mapΦ′f has introduced such dependence. But sincem cannot be recovered from

f , this must be false. Thus ˜g = g̃(Φ′f ), andz = Φ′f is sufficient fory.

3.2 MNIR for sentiment in text: collapsibility and random effects

For text-sentiment response factor specification, we focus on untransformedvi = yi and discretized

vi = step(yi) along with their analogues for multivariate sentiment. The former is appropriate for

categorical sentiment (e.g., political party, or 1-5 star rating) and, for reasons discussed below, the

latter is used with continuous sentiment (e.g., vote-share is rounded to the nearest whole percent-

age, and in general one can bin and averagey by quantiles). Regardless, our methods apply under

genericv(yi) including, e.g., the expansions of Cook (2007).

Given this setting of discretevi, MNIR estimation can often be based on thecollapsedcounts

that arise by aggregating within factor level combinations. For example, since sums of multinomi-

als with equal probabilities are also multinomial, given shared intercepts (i.e.,ui j = 0) and writing

the support ofvi asV, the likelihood for the model in (5) is exactly the same as that from, for

v ∈ V with xv =
∑

i:vi=v xi andmv =
∑

i:vi=v mi,

xv ∼ MN(qv,mv), whereqv j =
eηv j

∑p
l=1 eηvl

and ηv j = α j + vϕ j . (6)

Since pooling documents in this way leaves only as many ‘observations’ as there are levels in the

support ofvi, it can lead to dramatically less expensive estimation.

Under the marginal model of (6),Φ is thepopulation averageeffect of v on x. One needs

to be careful in when and how estimates from this model are used in SR projection, since condi-

tional document-level validity of these results is subject to the usual collapsibility requirements for

analysis of categorical data (e.g., Bishop et al., 1975). In particular, omitted variables must be con-

ditionally independent ofxi givenvi; this can usually be assumed for sentiment-related variables

(e.g., a congress person’s voting record is ignored given their party and vote-share). Covariates that
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act onxi independent ofvi should be included in MNIR, as part of the equation for subject effects

ui (e.g., although it is not considered in this article, it might be best to condition on geography

when regressing political speech onto partisanship). The sufficient reduction result of (3.1) is then

conditional on these sentiment-independent variables, such that they (or their SR projection)may

need to be used as inputs in forward regression.

It is often unreasonable to assume that known factors account for all variation across docu-

ments, and treating theui of (5) as random effects independent ofvi provides a mechanism for

explaining such heterogeneity and understanding its effect on estimation. Omittingui ⊥⊥ vi tends

to yield estimatedΦ that is attenuated from its correct document-specific analogue (Gail et al.,

1984), although the population-average estimators can be reliable in some settings; for example,

Zeger et al. (1985) show consistency for the stationary distribution effect of covariates when theui

encode temporal dependence (such as that between consecutive tokens in anN-gram text model).

When their influence is considered negligible, it is common to simply ignore the random effects in

estimation. In this article we also consider modelingeui j as independent gamma random variables,

and use this to motivate a prior in 3.3 for the marginal random effects in a collapsed table. Another

option would be to incorporate latent topics into MNIR and parametrizeui through a linear factor

model; this is especially appealing since SR projections onto estimated factor scores could then be

used in forward regression.

This last point – on random effects and forward regression – is important: whenΦ is estimated

with random effects, Section 3.1 only establishes sufficiency of zi conditional onui. Marginal

sufficiency would follow from p(vi |ui ,Φ
′xi) = p(vi |Φ

′xi), which for ui ⊥⊥ vi requiresui ⊥⊥ Φ′xi.

Thus, information aboutvi from this marginal dependence is lost when (as is usually necessary)ui

is omitted in regression ofvi ontozi. Section 5 shows that random effects in MNIR can be beneficial

even if they are then ignored in forward regression. However, SR projection onto parametric

representations ofui is an open research interest.

It is clear that there are many relevant issues to consider when assessing an MNIR model, and
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it is helpful to have our sentiment regression problem placed within the well studied framework of

contingency table analysis (e.g., Agresti, 2002, is a general reference). Ongoing work centers on

inference according to specific dependence structures or random effect parametrizations. However,

as illustrated in Section 5, even very simple MNIR models – measuring population average effects

– allow SR projections that are powerful tools for forward prediction.

3.3 Prior specification

To complete the MNIR model, we provide prior distributions for the interceptsα, loadingsΦ, and

possible random effectsU = [uv1 ∙ ∙ ∙ uvd]
′, whered is the number of points inV.

First, each phrase intercept is assigned an independent standard normal prior,α j ∼ N(0,1).

This serves to identify the logistic multinomial model, such that there is no need to specify anull

category, and we have found it diffuse enough to accomodate category frequencies in a variety of

text and non-text examples. Second, we propose independent Laplace priors for eachϕ jk, with

coefficient-specific precision (or ‘penalty’) parametersλ jk, such thatπ(ϕ jk) = λ jk/2 exp(−λ jk|ϕ jk|)

for j = 1 . . . p andk = 1 . . .K. The implied prior standard deviation forϕ jk is
√

2/λ jk. Eachλ jk

is then assigned a conjugate gamma hyperprior Ga(λ jk; s, r) = r s/Γ(s)λs−1
jk e−rλ jk , yielding the joint

gamma-Laplace prior introduced in (3). Hyperprior shape,s, and rate,r, imply expectations/r

and variances/r2 for eachλ jk.

As an example specification, consider variation in empirical token probabilities by level of the

logical variables ‘party = republican’ for congressional speech and ‘rating > 3’ for we8there reviews.

Standard deviation of finite log(ˆqtrue,j/q̂false,j) across tokens is 1.9 and 1.4 respectively, and given

variables normalized to have var(v) = 1 these deviations in log-odds correspond to a jump of two

in v (from approximately -1 to 1). Hence, a coefficient standard deviation of around 0.7, implying

E[λ jk] = 2, is at the conservative (heavy penalization) end of the range indicated by informal data

exploration, recommending the exponential Ga(1,1/2) as a penalty prior specification. In Section
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5 we also consider shapes of 1/10 and 1/100, thus decreasingE[λ jk] by two orders of magnitude,

and find performance robust to these changes.

The above models have, withs ≤ 1, hyperprior densities forϕ jk that are increasing as the

penalty approaches zero (i.e., at MLE estimation). This strategy has performed well in many

applications, both for text analysis and otherwise, when dimension is not much larger than 103.

However, in examples with vocabulary sizes reaching 105 and higher, it is useful to increase both

shape and rate for fast convergence and to keep the number of non-zero term loadings manageably

small. As an informal practical recipe, if estimatedΦ is less sparse than desired and you suspect

overfit, increases. Following the discussion in 4.3 on hyperprior variance and algorithm conver-

gence, if the optimization is taking too long or getting stuck in a minor mode, multiply boths and

r by a constant to keepE[λ jk] unchanged while decreasing var[λ jk].

Finally, we use exp[ui j ] ∼ Ga(1,1) independent for eachi and j as an illustrative random effect

model. Consideringeui j as a multiplier on relative odds, its mode at zero assumes some tokens

are inappropriate for a given document, the mean of one centers the model on a shared intercept,

and the fat right tail allows for occasional large counts of otherwise rare tokens. Counts are not

immediately collapsable in the presence of random effects, but assumptions on the generating

process forxi unconditional onmi can be used to build a prior model for their effect on aggregated

counts: if eachxi j is drawn independent from a Poisson Po(eα j+ui j+viϕ j ) with exp[ui j ] ∼ Ga(1,1),

andnv =
∑

i 1[vi=v] , then xv j ∼ Po(eα j+uv j+vϕ j ) with exp[uv j]
ind∼ Ga(nv,1). For convenience, we

use a log-Normal approximation to the gamma and specifyuv, j ∼ N(log(nv) − 0.5σ2
v, σ

2
v) with

σ2
v = log(nv + 1) − log(nv). Note thatσ2

v → 0 asnv grows, leading to staticuv, j whose effect is

equivalent to multiplying both numerator and denominator of exp[ηv, j]/
∑

l exp[ηv,l] by a constant.

Thus modeling random effects is unnecessaryunder our assumed modelafter aggregating large

numbers of observations.
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3.3.1 Motivation for independent gamma-Laplace priors

One unique aspect of this article’s approach is the use of independent gamma-Laplace priors for

each regression coefficient ϕ jk. Part of the specification should not be surprising: the Laplace

provides, as a scale-mixture of normal densities, a widely used robust alternative to the conjugate

normal prior (e.g., Carlin et al., 1992). It also encourages sparsity inΦ through a sharp density

spike atϕ jk = 0, and MAP inference with fixedλ jk is equivalent to likelihood maximization under

anL1-penalty in thelassoestimation and selection procedure of Tibshrani (1996). Similarly, con-

jugate gamma hyperpriors are a common choice in Bayesian inference for lasso regression (e.g.,

Park and Casella, 2008).

However, our use of independent precision for each coefficient, rather than a single sharedλ, is

a departure from standard practice. We feel that this provides a better representation of prior utility,

and it avoids the overpenalization that can occur when inferring a single coefficient precision on

data with a large proportion of spurious regressors. In their recent work on the Horseshoe prior,

Carvalho et al. (2010) illustrate general practical and theoretical advantages of an independent

parameter variance specification. As detailed in Section 4, our model also yields an estimation

procedure, labeled thegamma-lasso, that corresponds to likelihood maximization under a specific

nonconcave penalty; the estimators thus inherit properties deemed desirable by authors in that

literature (beginning from Fan and Li, 2001).

Finally, given the common reliance on cross-validation (CV) for lasso penalty selection, it is

worth discussing why we choose to do otherwise. First, our independentλ jk penalties would re-

quire a CV search of impossibly massive dimension. Moreover, CV is just an estimation technique

and, like any other, is sensitive to the data sample on which it is applied. As an illustration, Section

5.1 contains an example of CV-selected penalty performing far worse in out-of-sample prediction

than those inferred under a wide range of gamma hyperpriors. CV is also not scaleable: repeated

training and validation is infeasible on truly large applications (i.e., when estimating the model

16
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

in
ne

so
ta

 L
ib

ra
ri

es
, T

w
in

 C
iti

es
] 

at
 1

4:
21

 0
8 

M
ay

 2
01

3 



ACCEPTED MANUSCRIPT

once is expensive). That said, one may wish to use CV to chooses or r in the hyperprior; since

results are less sensitive to these parameters than they are to a fixed penalty, a small grid of search

locations should suffice.

4 Estimation

Following our model specification in Section 3, the full posterior distribution of interest is

p(Φ,α, λ,U | X,V) ∝
n∏

i=1

p∏

j=0

q
xi j

i j π(ui j )N(α j; 0, σ2
α)

K∏

k=1

GL(ϕ jk, λ jk) (7)

whereqi j = exp[ηi j ]/
∑p

l=1 exp[ηil ] with ηi j = α j + ui j +
∑K

k=1 vikϕ jk and GL is our gamma-Laplace

joint coefficient-penalty prior Laplace(ϕ jk; λ jk)Ga(λ jk; r, s). We only consider hereui j = 0 orui j
ind∼

N(0, σ2
i ) for π(ui j ), although sentiment-independent covariates can also be included trivially as

additional dimensions ofvi. Note that ‘i’ denotes an observation, but that in MNIR this will often

be a combination of documents after the aggregation of Section 3.2.

Bayesian analysis of logistic regression typically involves posterior simulation, e.g. through

Gibbs sampling with latent variables (Holmes and Held, 2006) or Metropolis sampling with posterior-

approximating proposals (Rossi et al., 2005). Despite recent work on larger datasets and sparse

signals (e.g., Gramacy and Polson, 2012), our experience is that these methods are too slow for text

analysis applications. Even the more modest goal of posterior maximization presents considerable

difficulty: unlike the usual high-dimension logistic regression examples, whereK is big andp is

small, our large response leads to a likelihood that is expensive to evaluate (due to normalization

of eachqi) and has a dense information matrix (from 4.2,∂2 log LHD/∂ϕ jk =
∑n

i=1 miv2
ikqi j (1−qi j ),

which will not be zero unlessvik is). As a result, commonly used path algorithms that solve over a

grid of sharedλ values (e.g., Friedman et al., 2010, as implemented inglmnet for R) do not work

even for the small examples of this article.
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We are thus motivated to develop super efficient estimation for sparse logistic regression. The

independent gamma-Laplace priors of Section 3.3 are the first crucial aspect of our approach: it re-

mains necessary to choose hyperpriorsandr, but results are robust enough to misspecification that

basic defaults can be applied. Section 4.1 derives the gamma-lasso (GL) non-concave penalty that

results from MAP estimation under this prior. Second, Section 4.2 describes a coordinate descent

algorithm for fast negative log posterior minimization wherein the GL penalties are incorporated

at no extra cost over standard lasso regression. Lastly, 4.3 considers conditions for posterior log

concavity and provides a check forglobalconvergence.

4.1 Gamma-lasso penalized regression

Our estimation framework relies upon recognition that optimalλ jk can always be written as a

function ofϕ jk, and thus does not need to be explicitly solved for in the joint objective.

Proposition 4.1. MAP estimation forΦ andλ under the independent gamma-Laplace prior model

in (7) is equivalent to minimization of the negative log likelihood forΦ subject to costs

c(Φ) =
p∑

j=1

K∑

k=1

c(ϕ jk), where c(ϕ jk) = slog(1+ |ϕ jk|/r) (8)

Proof. Under conjugate gamma priors, the conditional posterior mode for eachλ jk given ϕ jk is

available asλ(ϕ jk) = s/(r + |ϕ jk|). Any joint maximizing solution [̂Φ, λ̂] for (7) will thus consist

of λ̂ jk = λ(ϕ̂ jk); otherwise, it is always possible to increase the posterior by replacingλ̂ jk. Taking

the negative log of (3) and removing constant terms, the influence of a GL(λ jk, ϕ jk) prior on the

negative log posterior is−slog(λ jk)+ (r+ |ϕ jk|)λ jk, which becomes−slog
[
(s/r)/(1+ |ϕ jk|/r)

]
+ s∝

slog(1+ |ϕ jk|/r) after replacingλ jk with λ(ϕ jk).

The implied penalty function is drawn in the left panel of Figure 2. Given its shape – every-

where concave with a sharp spike at zero – our gamma-lasso estimation fits within the general

framework of nonconcave penalized likelihood maximization as outlined in Fan and Li (2001) and
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studied in many papers since. In particular,c(ϕ jk) can be seen as a reparametrization of the ‘log-

penalty’ described in Mazunder et al. (2011, eq. 10), which is itself introduced in Friedman (2008)

as a generalization of the elastic net. Viewing estimation from the perspective of this literature is

informative. Like the standard lasso, singularity at zero inc(ϕ jk) causes some coefficients to be set

to zero. However, unlike the lasso, the gamma-lasso has gradientc′(ϕ jk) = sign(ϕ jk)s/(r + |ϕ jk|)

which disappears as|ϕ jk| → ∞, leading to the property ofunbiasedness for large coefficientslisted

by Fan and Li (2001) and referred to asBayesian robustnessby Carvalho et al. (2010). Other

results from this literature apply directly; for example, in most problems it should be possible

to chooses and r to satisfy requirements for the strong oracle property of Fan and Peng (2004)

conditional on their various likelihood conditions.

It is important to emphasize that, despite sharing properties with cost functions that are purpose-

built to satisfy particular notions of optimality,c(ϕ jk) occurs simply as a consequence of proper

priors in a principled Bayesian model specification. To illustrate the effect of this penalty, Figure

1 shows MAP coefficients for a simple logistic regression under changes to data and parameteriza-

tion. In each case, gamma-lasso estimates threshold to zero before jumping to solution paths that

converge to the MLE with increasing evidence. Figure 2 illustrates how these solution disconti-

nuities arise due to concavity in the minimization objective, an issue that is discussed in detail in

Section 4.3. Note that although the univariate lasso thresholds at larger values than the gamma-

lasso, in practice we often observe greater sparsity under GL penalties since large signals are less

biased and single coefficients are allowed to account for the effect of multiple correlated inputs. In

contrast, standard lasso estimates also fix some estimates at zero but lead to continuous solution

paths that never converge to the MLE.
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4.2 Negative log posterior minimization by coordinate descent

Taking negative log and removing constant factors, maximization equates with minimization of

l(Φ,α,U) +
∑p

j=1(α j/σα)2 − logπ(U) + c(Φ), wherel is the strictly convex

l(Φ,α,U) = −
n∑

i=1


x
′
i (α +Φ′vi + ui) −mi log




p∑

j=1

exp(α j + ϕ j
′vi + ui j )





 . (9)

Full parameter-set moves for this problem are prohibitively expensive in high-dimension due to

(typically dense) Hessian storage requirements. Hence, feasible algorithms make use of coordinate

descent (CD), wherein the optimization cycles through updates for each parameter conditional on

current estimates for all other parameters (e.g., Luenberger and Ye, 2008). Although conditional

minima for logistic regression are not available in closed-form, one can bound the CD objectives

with an easily solvable function and optimize that instead. In such bound-optimization (also known

as majorization; Lange et al., 2000) for, say,l(θ), each moveθt−1 → θt proceeds by setting newθt

as the minimizing argument to boundb(θ), whereb is such that previous estimateθt−1 minimizes

b(θ)− l(θ). Algorithm monotonicity is then guaranteed through the inequalityl(θt) = b(θt)+ l(θt)−

b(θt) ≤ b(θt−1) −
[
b(θt−1) − l(θt−1)

]
= l(θt−1).

Usingθ? to denote a new value for a parameter currently estimated atθ, a quadratic bound for

each element of (9) conditional on all others is available through Taylor expansion as

b(θ?) = l(Φ,α,U) + gl(θ)(θ
? − θ) +

1
2

(θ? − θ)2Hθ (10)

wheregl(θ) = ∂l/∂θ is the current coordinate gradient andHθ is an upper bound on curvature at the

updated estimate,hl(θ?) = ∂2l/∂θ?2. Quadratic bounding is also used in the logistic regression CD

algorithms of Krishnapuram et al. (2005) and Madigan et al. (2005): the former makes use of a

loose static bound onhl, while the latter updatesHθ after each iteration to obtain tighter bounding

in a constrainedtrust-region{θ? ∈ θ ± δ} for specifiedδ > 0. We have found that dynamic trust

region bounding can lead to an order-of-magnitude fewer iterations, and Appendix A.2 derivesHθ

as the least upper bound onhl(θ?) for θ? within δ of θ.
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In implementing this approach, coordinate-wise gradient and curvature forϕ jk are

gl(ϕ jk) =
∂l
∂ϕ jk

= −
n∑

i=1

vik(xi j −miqi j ) and hl(ϕ jk) =
∂2l

∂ϕ2
jk

=

n∑

i=1

miv
2
ikqi j (1− qi j ), (11)

and similar functions hold for random effects and intercepts but with covariates of one and without

summing overi for random effects. Then under normal, say N(μθ, σ2
θ), priors forθ = ui j or αi, the

negative log posterior bound isB(θ?) = b(θ?) + 0.5(θ − μθ)2/σ2
θ which is minimized in{θ ± δ} at

θ? = θ − sgn(Δθ)min{|Δθ|, δ} with Δθ =
[
gl(θ) + (θ − μθ)/σ2

θ

]
/
[
Hθ + 1/σ2

θ

]
.

Although the GL penalty onϕ jk is concave and lacks a derivative at zero, coordinate-wise

updates are still available in closed form. Suppressing thejk subscript, each coefficient update

under GL penalty requires minimization ofB(ϕ?) = gl(ϕ)(ϕ?−ϕ)+ 1
2(ϕ?−ϕ)2Hϕ+ slog(1+ |ϕ?|/r)

within the trust region
{
ϕ? ∈ ϕ ± δ : sgn(ϕ?) = sgn(ϕ)

}
. This is achieved by finding the roots of

B′(ϕ?) = 0 and, when necessary, comparing to the bound evaluated at zero whereB′ is undefined.

SettingB′(ϕ?) = 0 yields the quadratic equation

ϕ?2 +
(
sgn(ϕ)r − ϕ̃

)
ϕ? +

s
Hϕ
− sgn(ϕ)rϕ̃ = 0 (12)

with characteristic
(
sgn(ϕ)r + ϕ̃

)2−4s/Hϕ, whereϕ̃ = ϕ−gl(ϕ)/Hϕ would be the updated coordinate

for an MLE estimator. From standard techniques, for{ϕ? : sgn(ϕ) = sgn(ϕ?)} this function will

have at most one real minimizing root – that is, withHϕ > s/
(
r + |ϕ?|

)2. Hence, each coordinate

update is to find this root (if it exists) and compareB(ϕ?) to B(0). The minimizing value (0 or

possible rootϕ?) dictates our parameter moveΔϕ, and this move is truncated at sgn(Δϕ)δ if it

exceeds the trust region. Finally, whenϕ = 0, repeat this procedure for both sgn(ϕ) = ±1; at most

one direction will lead to a nonzero solution.

As it is inexpensive to characterize roots forB′(ϕ?), the gamma-lasso does not lead to any no-

ticeable increase in computation time over standard lasso algorithms (e.g., Madigan et al., 2005).

Crucially, tests for decreased objective can performed on the bound function, instead of the full

negative log posterior. Figure 3 shows objective and bound functions around the converged so-

lution for three phrase loadings from regression of we8there reviews onto overall rating. With
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δ = 0.1, B provides tight bounding throughout this neighborhood. Behavior around the origin is

most interesting: the solution forchicken wing, a low-loading negative term, is atB′(ϕ?) = 0 just

left of the singularity at zero, whileate herefalls in the sharp point at zero. The neighborhood

aroundfirst date, a high-loading term, is everywhere smooth.

4.3 Posterior log concavity and algorithm convergence

Since the gamma-lasso penalty is everywhere concave, our minimization objective is not guar-

anteed to be convex. This is illustrated by the right two plots of Figure 2, where a very low-

information likelihood (four observations) can be combined with a relatively diffuse prior onλ

(s = 1, r = 1/2) to yield concavity near zero. The effect of this is benign when the gradient is

the same direction on either side of the origin (as in the right panel of 2), but in other cases it

will lead to local minima at zero away from the true global solution (as in the center panel). Such

non-convexity is the cause of the discontinuities in the solution paths of Figure 1.

From the second derivative ofl(ϕ jk) + c(ϕ jk), the conditional objective forϕ jk will be concave

only if hl(ϕ jk = 0) < s/r2 – that is, if prior variance onλ jk is greater than the negative log likelihood

curvature atϕ jk = 0. In our experience, this problem is rare: the likelihood typically overwhelms

penalty concavity and real examples behave like those shown in Figure 3. Moreover, although it

is possible to show stationary limit points for CD on such nonconvex functions (e.g. Mazunder

et al., 2011), we advocate avoiding the issue through prior specification. In particular, hyperprior

shape and rate can be raised to decrease var(λ jk) while keepingE[λ jk] unchanged. Although this

may require more prior information than desired, it is the amount necessary to have both fast

MAP estimation and estimator stability. If you want to use more diffuse priors, you should pay

the computational price of marginalization and mean inference (as in, e.g., Gramacy and Polson,

2012).

Even convexity in the coordinate updates is no guarantee of full objective convexity. However,
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we close this section by showing that the joint problem of optimizing bothλ andΦ is convex and

has a single global minimum. Hence, we can derive gradient conditions on this expanded objective,

and one is always able to check the estimation for global convergence.

Proposition 4.2. [Φ,α,U] estimated following Section 4.2 will correspond to the global MAP of

(7) if and only if G(ϕ jk) = sgn(ϕ jk)s/(r + |ϕ jk|) −
∑n

i=1 vik(xi j − miqi j ) is zero forϕ jk , 0, and is

negative and positive in its left and right limits respectively aroundϕ jk = 0.

Proof. Since the objective for [α,U] givenΦ is strictly convex, these will always be global con-

ditional solutions. We can thus focus on the negative log conditional posterior for [Φ, λ], written

l(Φ) −
∑p

j=1

∑K
k=1 slog(λ jk) + (r + |ϕ jk|)λ jk. With λ jk > 0, the first two terms are convex inΦ and

λ, respectively, and the third term is jointly convex (but not strictly so) inΦ andλ, such that this

function has a single minimum with each component at either the origin or a point of zero gradient.

Taking derivatives and replacingλ jk = s/(r + |ϕ jk|) yieldsG(ϕ jk).

This simple result removes any uncertainty about global convergence, a standard issue with

nonconcave penalization routines. Our fitted examples of Section 5 all satisfy the test in (4.2).

5 Examples

We now apply our framework to the datasets of Section 1.1. The implemented software is available

as thetextir package forR, with these examples included as demos. Section 5.1 examines out-of-

sample predictive performance, and is followed by individual data analyses.

5.1 A comparison of text regression methods

Our prediction performance study considers three text analyses: both constituent percentage vote-

share for G.W. Bush (bushvote) and Republican party membership (gop) regressed onto speech

for a member of the 109th US congress, and a user’s overall rating (overall) regressed onto the
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content of their we8there restaurant review. In each case, we report root mean square error or

misclassification rate over 100 training and validation iterations. Full results and study details are

provided in Appendix A.3, and performance for a subset of models is plotted in Figure 4. Here,

we focus on some main comparisons that can be drawn from the study.

MNIR is considered under three different hyperprior specifications, with rater = 1/2 and

shapes ofs = 1/100, 1/10, and 1. Response factors arevi = yi for gop andoverall, andvi is set

asyi rounded by whole number forbushvote (note that instead settingvi = yi here leads to no

discernable improvement). In each case, MNIR is fit for observations binned by factor level. We

consider models both with and without independent random effects. As predicted, performance is

unaffected by random effects for discreteyi, where we are collapsing together hundreds of observa-

tions. However, they do improve out-of-sample performance by approximately 1.5% forbushvote,

where only a small number of speakers are binned at each whole percentage point. Hence, detailed

MNIR results are reported with random effects included only forbushvote. Finally, resulting SR

scoreszi = ϕ
′f i are incorporated into a variety of forward regression models: linearE[yi] = α+ βzi

and quadraticE[yi] = α + β1zi + β2z2
i for bushvote, logisticE[yi] = exp[α + βzi]/(1+ exp[α + βzi])

for gop, and linear and proportional-odds logistic p(yi ≤ c) = exp[αc − βzi]/(1 + exp[αc − βzi]),

c = 1 . . . 5, for overall.

Performance is very robust to changes in the MNIR hyperprior. Figure 4 shows little difference

between otherwise equivalent models using the conservative defaults= 1 and the lowest expected

penaltys = 1/100; results fors = 1/10 are squeezed in-between. In congressional speech ex-

ampless = 1/100 has a slight edge; phrases here have already been pre-selected for partisanship

and are thus largely relevant to the sentiment. On the other hand,s = 1 is the best performing

shape for the we8there example, where phrases were only filtered by a minimum document thresh-

old. Looking at forward regressions, the problem specific quadraticbushvote (see Section 5.2 for

justification) and proportional oddsoverall (accounting for ordinal response) forward regressions

provide lower average out-of-sample error rates at the price of slightly higher variability across
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iterations, when compared to simple linear forward regression.

As comparators, we consider text-specific LDA (both supervised and standard topic models) as

well as an assortment of generic regression techniques: lasso penalized linear (bushvote andoverall)

and binary logistic (gop) regression, with penalty either optimized under our gamma hyperpriors

(gop), marginalized in MCMC (bushvote), or tuned through CV (all examples); first-direction PLS

(bushvote and overall); and support vector machines (gop). In everycomparison, gamma-lasso

MNIR provides higher quality predictions with lower run-times. The only similar predictive per-

formance was for LDA with 25 and 50 topics in thebushvote example, at 15-50 times higher

computational cost. Note that, given the size of real text analysis applications, we view the speed

and scaleability of MNIR as a primary strength and only considered feasible alternatives, with

short Gibbs runs for 50 topic sLDA and the Bayesian lasso (7-9 min) at the very high end of

our runtimes. Moreover, both sLDA and CV lasso occasionally fail to converge (these runs were

excluded); this never happened for MNIR.

Among comparators, the multinomial topic models outperform generic alternatives. Inter-

estingly, LDA combined with simple regression outperforms sLDA in both congress examples.

Again, this is probably due to pre-selection of phrases: topics are relevant to ideology regardless

of supervision, and the extra parameters in sLDA are not worth their cost in degrees of freedom.

Moreover, the simpler LDA models can be fit with the MAP estimation of Taddy (2012b), whereas

sLDA is applied here through a slow-to-converge Gibbs sampler (we note that the original sLDA

paper uses a variational EM algorithm). However, in the we8there data, the extra machinery of

sLDA offers a clear improvement over unsupervised LDA, as should be the case in many text ap-

plications. Finally, in an important side comparison, binary logistic regressions were fit forgop

regressed onto phrase frequencies using both CV and independent gamma hyperpriors for the lasso

penalty. The scaleable, low-cost, gamma-lasso yields large performance improvements over a CV

optimized model, regardless of hyperprior specification.
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5.2 Application: partisanship and ideology in political speeches

For the data of Section 1.1.1, we have two sentiment metrics of interest: an indicator for party

membership, and each speaker’s constituent vote-share for Bush in 2004. Since the two inde-

pendents caucused with Democrats, the former metric can be summarized ingop as a two-party

partisanship. Following the political economy notion that there should be little discrepancy be-

tween voter and representative beliefs,bushvote provides a measure ofideologyas expressed in

support for G.W. Bush (and lack of support for John Kerry) in the context of that election.

Figure 5 shows MNIR fit in separate models for each ofgop andbushvote, as studied in Sec-

tion 5.1. For partisanship, fit withs = 1/100 andr = 1/2, a simple univariate logistic forward

regression yields clear discrimination between parties; 8.5% (45 speakers) are misclassified un-

der a maximum probability rule. In thebushvote MNIR, fit under the same hyperprior but with

inclusion of random effects, the resulting SR scoreszi = ϕ
′f i increase quickly with vote-share at

low (mostly Democrat) values and more slowly for high (mostly Republican) values. This moti-

vates our quadratic forward regression forbushvote onto SR score, the predictive mean of which

is plotted in Figure 5 (withR2 of 0.5). However, looking at the SR scores colored by party (red for

Republicans, blue Democrats, green independents) shows that this curvature could instead be ex-

plained through different forward regression slopes by level ofgop, implying that the relationship

between language and ideology is party-dependent.

Given the above, a more useful model might consider text reduction that allows interaction be-

tween party and ideology. For example, we can build orthogonal bivariate sentiment factors asgop

andbushvote minus thegop-level means, sayvotediff (again, rounded to the nearest whole percent-

age). Figure 6 shows fitted values for such a model, including random effects and with hyperprior

shape increased tos = 1/10 to reflect a preference for smaller conditional coefficients. In detail,

with zgop andzvotediff the two dimensions of SR scores from MNIRx ∼ MN(q(vgop, vvotediff),m),
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normalized for ease of interpretation, the fitted forward model is

E[bushvote] = 51.9+ 6.2zgop + 5.2zvotediff − 1.9zgopzvotediff. (13)

Thus a standard deviation increase in either SR direction implies a 5-6% increase in expected

vote-share, and each effect is dampened when the normalized SR scores have the same sign.

The right panel of Figure 6 shows fitted expected countsqjmagainst true nonzero counts in our

bivariate MNIR model fit; with random effects to account for model misspecification, there appears

to be no pattern of overdispersion. The only clear outlier in forward regression is Chaka Fattah

(D-PA) with a standardized residual of -5.2; he uttered a token in our sample only twice: once

each forrate.return andbillion.dollar. Finally, Figure 7 plots response factor loadings for a select

group of tokens. Among other lessons, we see that racial identity rhetoric (african.american.latino,

black.caucu) points towards the left wing of the Democratic party, while discussion of hate crimes

is indicative of a moderate Republican. A few large loadings are driven by single observations: for

example,violent.sexual.predator contributes more than 0.1% of speech for only Byron Dorgan, a

Democratic Senator in Bush-supporting North Dakota. However, this is not the rule and most term

loadings affect many speakers.

5.3 Application: on-line restaurant reviews

For the data of Section 1.1.2, our sentiment consists of five correlated restaurant ratings (each

on a five point scale) that accompany every review. The left panel of Figure 8 shows MNIR for

review content regressed onto the singleoverall response factor, as studied in Section 5.1. The true

overall rating has high correlation (0.7) with our SR scores, despite considerable overlap between

scores across rating levels. The right plot of Figure 8 shows probabilities for each increasingoverall

rating category, as estimated in the proportional-odds logistic forward regression, p(overall ≤ c) =

exp[αc − βzoverall]/(1+ exp[αc − βzoverall]). Again, zoverall is normalized here to have mean zero and

standard deviation of one in our sample. This model hasβ = 2.3, implying that the odds of being

27
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

in
ne

so
ta

 L
ib

ra
ri

es
, T

w
in

 C
iti

es
] 

at
 1

4:
21

 0
8 

M
ay

 2
01

3 



ACCEPTED MANUSCRIPT

at or above any given rating level are multiplied bye2.3 ≈ 10 for every standard deviation increase

in the SR score.

Looking to explore aspect-specific factors, Figure 9 shows top-30 absolute value loadings in

MNIR for review token-counts ontoall five dimensions of sentiment. Influential terms on ei-

ther side of the rating spectrum can be easily connected with elements of a good or bad meal:

plan.return, best.meal, andbig.portion are good, whilesent.back, servic.terribl, and food.bland are

bad. The largest loadings appear to be onto overall and food aspects, with service slightly less

important and loadings for value and atmosphere quickly decreasing in size. This would indicate

that the reviews focus on these elements in that order.

6 Discussion

The promising results of Section 5 reinforce a basic idea: a workable inverse specification can

introduce information that leads to more efficient estimation. Given the multinomial model as a

natural inverse distribution for token-counts, analysis of sentiment in text presents an ideal set-

ting for inverse regression. While the approach of notjointly modeling a corresponding forward

regression falls short of full Bayesian analysis, such inference would significantly complicate es-

timation and detract from our goal of providing a fast default method for supervised document

reduction. We are happy to take advantage of parametric hierarchical Bayesian inference for the

difficult MNIR estimation problem, and suggest that application appropriate techniques for low-

dimensional forward regression should be readily available.

Although the illustrative applications in this article are quite simple, the methods scale to far

larger datasets. Collapsing observations across sentiment factors for MNIR yields massive com-

putational gains: training data need only include token counts tabled by sentiment level, and as an

example, in Taddy (2012a) this allows MNIR runs of only a few seconds for 1.6 million twitter

posts scored as positive or negative. Moreover, we see no reason why gamma-lasso logistic re-
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gression, which was developed specifically for large response settings, should not be viewed as an

efficient option in generic penalized regression. Finally, current collaborations that use MNIR for

text analysis include study of partisanship in the US congressional record from 1873 to present,

and an attempt to quantify the economic content of news in 20 years of Wall Street Journal edi-

tions. In each case, we are considering a more rigorous treatment of the identification of single

sentiment dimensions and controlling for related endogenous variables; this work shows MNIR’s

promise as the basis for a variety of text related inference goals.

Appendix

A.1 Slant and Partial Least Squares

The GS slant index for documenti is zslant
i =

∑p
j=1 bj( fi j − aj)/

∑p
j=1 b2

j , with parameters obtained

through ordinary least-squares (OLS) as [aj ,bj] = arg mina,b
∑n

i=1[ fi j − (a + byi)]2 for j = 0 . . . p.

Sincebj = cov(f j , y)/var(y), slant is equivalent (up to a uniform shift and scale for all index

values) to a weighted sum of term frequencies loaded by their covariance withy. This is also the

first direction in partial least-squares; see Frank and Friedman (1993) for statistical properties of

PLS and its relationship to OLS, and Hastie et al. (2009) for a common version of the algorithm.

Using the usual normalization applied in PLS, an improved slant measure is given byzslant
i =

∑p
j=1 fi j cor(f j , yi). For vote-share regressed onto congressional speech in the data of Section 1.1.1,

this change increases within-sampleR2 from 0.37 to 0.57.

GivenF̂ = [ f̂1 ∙ ∙ ∙ f̂p] as a normalized covariate matrix with mean-zero and variance-one columns,

a PLS algorithm which highlights its inverse regression structure is as follows.

1. Set the initial response factorv0 = y = [y1 . . . yn]′, and fork = 1, . . . ,K:

- Loadings areϕk = cor(F̂, vk−1) = [cor(f̂1, vk−1) . . . cor(̂fp, vk−1)]′.

- Thekth PLS direction iszk = ϕ
′
kF̂.

- The new response factors arevk = vk−1 − [z′kvk−1/(z′kzk)]zk.
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2. Setŷ as OLS fitted values for regression ofy ontoZ, whereZ = [z1 ∙ ∙ ∙ zK].

Orthogonalization ofvk with respect tozk is algorithmically equivalent to predictor orthogonaliza-

tion in the usual PLS procedure of Hastie et al. (2009). Moreover, loading calculations replaced by

ϕk j = arg minϕ
∑n

i=1[ fi j − (a+ ϕvki)]2 will only scalezk by the variance ofvk and lead to the same

forward fit, such that PLS can be viewed as stagewise inverse regression.

A.2 Trust-region bound for logistic multinomial likelihood

The bounding used here is essentially the same as in Genkin et al. (2007) but for introduction of

dependence uponvik that is missing from their version. We describe the bound for updates toϕ jk,

but it applies directly toα j or ui j simply by replacing covariate values with one.

Given a trust region ofϕ jk ± δ, the upper bound onhl(ϕ jk) =
∑n

i=1 v2
ikmiqi j (1 − qi j ) is Hjk =

∑n
i=1 v2

ikmi/Fi j , where eachFi j is a lower bound on 1/(qi j −q2
i j ) = 2+eηi j+δvik/Ei j +Ei j/eηi j+δvik , with

Ei j =
∑p

l=1 eηil − eηi j . This target is convex inδ with minimum ateδvik = Ei j/eηi j , such that

Fi j =
ei j

Ei j
+

Ei j

ei j
+ 2 where ei j =





eηi j−|vik |δ if Ei j < eηi j−|vik |δ

eηi j+|vik |δ if Ei j > eηi j+|vik |δ

Ei j otherwise.

We use uniqueδ jk and updateδ?jk = max{δ jk/2,2|ϕ?jk − ϕ jk|} after each iteration.

A.3 Out-of-Sample Prediction Study Details

Each model was fit to 100 random data subsets and used to predict on the left-out sample. Tables

report average root mean square error (RMSE) or percent misclassified (MC%), the percentage

worse than best on this metric, and run-time in seconds (including count collapsing in MNIR).

We useR package implementations:lda for SLDA (Chang, 2011);glmnet for CV lasso regression

(Friedman et al., 2010);monomvn for Bayesian lasso (Gramacy, 2012);kernlab for SVM (Karat-

zoglou et al., 2004);textir for MNIR, LDA, PLS, and gamma-lasso regression; andarm (Gelman
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et al., 2012) for the forward regression models that accompany MNIR and LDA. Penalty prior

in MNIR is Ga(s,1/2), (s)LDA Dirichlet precisions are 1/K for topic weights and 1/p for token

probabilities, and sLDA assumes a forward error variance of 25% of marginal response variance.

Unless otherwise specified, we apply package defaults. (S)LDA and MNIR use token counts; all

others regress onto token frequencies.

Vote Share:Congressional speech with two-party vote share (%) as continuous response, training

on 200 and predicting on 329. Constant mean RMSE is 13.4. MNIR models were fitwith random

effects; models without random effects are an average of 1.5% worse on RMSE but 20% faster.

Bayes lasso uses a Ga(2,1/10) prior onλ and was run for 200 MCMC iterations after a burn-in of

100 (refer tomonomvn for details).

MNIR & Quadratic MNIR & Linear LDA & Linear Supervised LDA Lasso PLS

s= 10−2 10−1 1 s= 10−2 10−1 1 K = 2 5 10 25 50 K = 2 5 10 25 50 CV Bayes K=1

RMSE 10.7 10.7 10.8 10.9 10.9 10.9 11.7 11.3 11.1 10.9 10.9 12.9 12.1 11.7 12.3 15.1 13.7 15.7 15.9

% Worse 0 0 0 1 1 2 9 6 4 2 2 21 13 9 15 41 28 46 49

Run Time 2.2 2.3 2.1 2.2 2.3 2.1 1.2 2.4 6.2 29 112 43 75 128 288 508 0.9 4100.1

Party Classification:Congressional speech data with ‘Republican’ as binary response, training

on 200 and predicting on 329. Null model misclassification rate is 46%. MNIR models were fit

withoutrandom effects which lead to the same misclassification but 40% longer average run-times.

Lasso and gamma-lasso are applied in binary logistic regressions, with shape one and rater for the

latter, and SVM uses Gaussian kernels with misclassification costC (refer tokernlab for details).

LDA led to complete separation and SLDA failed to converge forK > 10.

MNIR & Logistic LDA & Logistic Supervised LDA Lasso Gamma-Lasso SVM

s= 10−2 10−1 1 K = 2 5 10 K = 2 5 10 CV r = 5 25 50 100C=1 100 1000

MC% 11 11 12 20 15 15 33 20 18 24 19 17 16 15 37 32 32

% Worse 0 0 2 76 36 30 188 75 54 115 68 49 42 35 224 182 180

Run Time 0.3 0.4 0.3 1.1 2.5 6.3 44 77 126 1.0 0.6 0.5 0.5 0.5 3.1 3.53.4
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Restaurant Rating:We8there reviews with ordinal rating response, training on 2000 and predicting

on 4166. Constant mean RMSE is 1.35. Reported MNIR models were fitwithout random effects

which lead to equivalent predictive performance but 15% longer average run-times.

MNIR & POLR MNIR & Linear LDA & POLR Supervised LDA Lasso PLS

s= 10−2 10−1 1 s= 10−2 10−1 1 K = 2 5 10 25 50 K = 2 5 10 25 50 CV K = 1

RMSE 1.08 1.08 1.07 1.09 1.09 1.10 1.19 1.17 1.20 1.23 1.23 1.15 1.13 1.14 1.15 1.16 1.24 1.25

% Worse 1 1 0 2 2 2 12 10 12 15 15 8 5 6 7 8 16 17

Run Time 0.6 0.6 0.5 0.3 0.4 0.3 2.5 13.4 28 61 167 53 90 154 341 651 542.2
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Figure 1: Maximizing solutions for univariate logistic regression log posteriorsL(ϕ) = x′vϕ −∑
i log[1+ eϕvi ] − pen(ϕ), given v = [−1,−1,1, 1]′. The dotted line is the MLE, with pen(ϕ) = 0, the

dashed line is lasso pen(ϕ) = s|ϕ|/r, and the solid line is gamma-lasso pen(ϕ) = slog(1+ |ϕ|/r).

Figure 2: The left panel shows gamma-lasso penaltyslog(1+|ϕ|/r) for [s, r] of [1, 1/2] (solid) and [3/2, 3/4]
(dashed). The right two plots show the corresponding minimization objectives, negative log likelihood plus
GL penalty, near a solution discontinuity in the simple logistic regression of Figure 1.

Figure 3: Coordinate objective functions at convergence in regression of we8there reviews onto overall
rating. Solid lines are the true negative log likelihood and dashed lines are bound functions withδ = 0.1.
Both are shown for newϕ?j as a difference over the minimum at estimatedϕ j (marked with a dot).
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Figure 4: Out-of-sample performance and run-times for select models. For MNIR, ‘Q’ indicates quadratic
and ‘po’ proportional-odds logistic forward regressions, whileλ j prior ‘1’ is Ga(0.01,0.5) and ‘3’ is
Ga(1,0.5). We annotate with the number of topics for (s)LDA, and for binary Lasso regressions with either
CV or the rate in an exponential penalty prior. Full details are in the appendix.
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Figure 5: Separate MNIR fits for congressional speech onto each of party and vote-share. The right shows
probabilities that each speaker is Republican and the left shows SR scores againstbushvote.

Figure 6: Bivariate ideology and partisanship MNIR. The left plot shows fitted values for a forward regres-
sion that interacts SR scores, and the right shows fitted vs observed token counts in MNIR.
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Figure 7: Select congressional speech term loadings in bivariate MNIR with party and vote-share.

Figure 8: Sufficient reduction and forward model fit for inverse regression of we8there reviews onto the
corresponding overall rating. The left plot shows SR score by true review rating, and the right shows
proportional-odds logistic regression probabilities for each rating-level as a function of these SR scores.
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Figure 9: High-loading phrases in each direction for regression of we8there reviews onto aspect ratings.
Green tokens are positive, black are negative, and size is proportional to the absolute value of the loading.
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