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1 introduction

Each day humans generate massive volumes of data in a variety of different
forms (Lazer et al., 2009). For example, digitized texts provide a rich source of
political content through standard media sources such as newspapers, as well
as newer forms of political discourse such as tweets and blog posts. In this
chapter we analyze a corpus of 13,246 posts that were written for six political
blogs during the course of the 2008 U.S. presidential election. But this is just
one small example. An aggregator of nearly every document produced by the
U.S. federal government, voxgov.com, has collected more than eight million
documents from 2010–2014, including over a million tweets from members of
Congress. These data open new possibilities for studies of all aspect of political
life from public opinion (Hopkins and King, 2010) to political control (King,
Pan, and Roberts, 2013) to political representation (Grimmer, 2013).

The explosion of new sources of political data has been met by the rapid
development of new statistical tools for meeting the challenges of analyzing
“big data.” (National Research Council, 2013; Grimmer and Stewart, 2013;
Fan, Han, and Liu, 2014). A prominent example in the field of text analysis
is latent Dirichlet allocation (LDA) (Blei, Ng, and Jordan, 2003; Blei, 2012),
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52 Computational Social Science

a topic model that uses patterns of word co-occurrences to discover latent
themes across documents. Topic models can help us deal with the reality that
large data sets of text are also typically unstructured. In this chapter we focus
on a particular variant of LDA, the structural topic model (STM) (Roberts
et al., 2014), which provides a framework to relate the corpus structure we
do have (in the form of document-level metadata) with the inferred topical
structure of the model.

Techniques for automated text analysis have been thoroughly reviewed else-
where (Grimmer and Stewart, 2013). We instead focus on a less often discussed
feature of topic models and of latent variable models more broadly: multi-
modality. That is, the models discussed here give rise to optimization problems
that are nonconvex. Thus, unlike workhorse tools such as linear regression, the
solution we find can be sensitive to our starting values (in technical parlance, the
function we are optimizing has multiple modes). We engage directly with this
issue of multimodality, helping the reader understand why it arises and what
can be done about it. We provide concrete ways to think about multimodality
in topic models, as well as tools for dealing and engaging with it. For example,
we enable researchers to ask these questions. How substantively different are
the results of different model solutions? Is a “topic,” which heuristically can be
thought of as a collection of commonly co-occurring words, likely to appear
across many solutions of the model? Furthermore, is our key finding between
a variable (such as partisan affiliation) and the prevalence of topic usage stable
over multiple solutions to the model?

We also discuss initialization strategies for choosing the starting values in
a model with multiple modes. Although seldom discussed, these initialization
strategies become increasingly important as the size of the data grows and the
computational cost of running the model even a single time rises. Starting the
algorithm at better starting values not only leads to improved solutions but can
also result in dramatically faster convergence.

The outline of this chapter is as follows. In Section 2 we introduce the
problem of multimodality and provide several examples of models with mul-
tiple modes. In Section 3 we focus on the particular case of topic models and
highlight some of the practical problems that can arise in applied research.
In Section 4 we introduce a set of tools that allow users to explore the con-
sequences of multimodality in topic models by assessing the stability of find-
ings across multiple runs of the model. In Sections 5 and 6 we discuss proce-
dures for carefully initializing models that may produce better solutions. Finally
Section 7 concludes by returning to the constraints and opportunities afforded
by big data in light of the statistical tools we have to analyze it.

2 introduction to multimodality

Multimodality occurs when the function we are trying to optimize is not glob-
ally concave.1 Thus, when we converge to a solution, we are unsure whether
we have converged to a point that is the global maximum or simply a local
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Navigating the Local Modes of Big Data 53

maximum. In statistical models, the function we are typically trying to max-
imize is the likelihood function, and when this function is not concave the
solution we arrive at can be dependent on our starting values. This issue occurs
in many classes of statistical models, but is particularly relevant in those where
(1) the data-generating process of the data comes from a mixture of distribu-
tions or contains latent variables, which the likelihood then reflects; (2) ridges
(essentially flat regions) in the likelihood function appear due to constraints
applied to the statistical model; or (3) some parameters are unidentified and
therefore multiple solutions exist for the same model. The ability to diagnose
and navigate multimodality decreases with the dimension of the parameter
space, as visualizing and estimating the likelihood become more difficult in
higher dimensions and more complicated models.

Multimodality is particularly prevalent in the context of big data because
the same latent variable models that are useful for analyzing largely unstruc-
tured data also lead to challenging optimization problems. The models we
employ in this setting often involve mixtures of distributions, complicated con-
straints, and likelihoods that are difficult to visualize because the models con-
tain hundreds, sometimes thousands of parameters. Although simple models
from the exponential family with concave likelihoods like regression or lasso
(Tibshirani, 1996) still play an important role in big-data applications (Mul-
lainathan, 2014; Belloni, Chernozhukov, and Hansen, 2014), there is an
increasing interest in the use of more complex models for discovering latent
patterns and structure (National Research Council, 2013). While the latent
variable models can bring new insights, they also introduce a complex opti-
mization problem with many modes.

In this section we build up for the reader intuitions about what can lead
to multimodality. We first discuss a convex, univariate Gaussian maximum
likelihood model that is easily optimized to provide contrast for the nonconvex
models we describe later in the section. Then, we extend the univariate Gaussian
to a simple mixture of Gaussians and provide an intuition for why mixture
models can be multimodal. Last, we connect the simple mixture of Gaussians
to topic models and describe how these models, and generally models for big
data, contain latent variables (variables in the data-generating process that are
not observed), which will mean they are more likely to be multimodal.

2.1 Convex Models

To start, we present an example of a convex model in which multimodality is
not a problem. A strictly concave function only has (at most) one maximum
and has no local maxima. This is convenient for optimization because when
the optimization procedure2 has found a maximum of a concave likelihood
function, it has clearly reached the global maximum if only one exists. The
natural parameter space for regression models with a stochastic component in
the exponential family are convex and therefore are easily optimized (Efron
et al., 1978).
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54 Computational Social Science

We begin with a simple Gaussian (normal) model with mean μ and variance
σ.2,3 In the next section we show how we can generalize this basic setup to a
more flexible Gaussian mixture model.

Y ∼ N(μ, σ 2)

The normal distribution is from the exponential family, and therefore the
likelihood is concave. This is easy to see by deriving the log-likelihood:

L(μ|y) ∝ N(y|μ, σ 2)

= (2πσ 2)−1/2 exp
(−(yi − μ)2

2σ 2

)
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2
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If we take the second derivative of the log-likelihood, we get −n
σ 2 . Since n

and σ 2 are always positive, the second derivative is always negative.4 For a
fixed σ 2, in a function with only one parameter such as this one, a negative
second derivative is sufficient for the likelihood to be convex.5 As a result, this
model is not multimodal. When estimated, the same parameter estimates will
be returned regardless of the starting values.6

2.2 Mixture Models

Now consider a model where the stochastic component is a combination of
Gaussians, instead of one Gaussian with a mean and standard deviation. Imag-
ine a case where the dependent variable could be drawn from one of two
different normal distributions. In this data-generating process the Gaussian
distribution that the observation is drawn from is first chosen with a particular
probability. Then, the value of the dependent variable is drawn from the chosen
Gaussian with a particular mean and variance.

For example, say you were trying to model the height of people within
a population. Further, you only observed the heights of the people in the
population, not any other information about them. You might assume a model
where first you draw with 0.5 probability whether the person is male or female.
Based on their gender, you would draw the height either from a distribution
with a “taller” mean (if the person were male) or from a normal distribution
with a “shorter” mean (if the person were female). This is a simple mixture
model, because as the data (the heights) would be drawn from a mixture
of distributions.

Formally, the data-generating process for this model, a simple Gaussian
mixture model, is as follows:

1. Randomly select a distribution di with probability P(di ) = wi , where∑
wi = 1.
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2. From the selected distribution, draw y ∼ N(μi , σ 2
i ).

The log-likelihood for this model becomes

lnL
(
y|μ1, μ2, σ 2

1 , σ 2
2

) =
N∑

n=1

ln

(
K∑

k=1

wkN
(
yn|μk, σ 2

k

))

This model has more parameters to maximize than the normal regression
model described in the previous section because (1) the probability of each dis-
tribution must be estimated and (2) the mean and variance of each distribution
must be estimated. Further, the model is considered a latent variable model
because the latent distribution variables di are not observed, but are rather
generated as an intermediate step within the data-generating process. Because
it is unknown from which distribution each data point comes (the data do not
tell us which data points are men and which are women), we cannot solve
this problem using the familiar tools of regression. In practice, the maximum
likelihood estimate is typically solved using heuristics such as the expectation
maximization algorithm (Dempster, Laird, and Rubin, 1977), which alternates
between estimating the latent membership variable di (the unknown gender
in our case) and the parameters of the distribution (the expected height and
variance for each gender).7

It is easy to see that the estimates of each distribution’s parameters will
depend on the data points assigned to it and that the estimates of the latent
variables will depend on distribution parameters. Because we need one to easily
estimate the other, we choose a starting value to initialize our estimator. Unfor-
tunately, different starting values can lead to different final solutions when the
optimization method gets stuck in a local maximum. Despite the problems
with multimodality, mixture models are often more accurate descriptions for
data-generating processes than more traditional regression models, particularly
for data that may have quite complicated underlying data-generating processes
(e.g., Deb and Trivedi, 2002; DuMouchel, 1999; Fan, Han, and Liu, 2014;
Grimmer and Stewart, 2013).

2.3 Latent Dirichlet Allocation

Later in the core sections of this chapter, we address approaches to dealing
with multimodality in models of text data. In anticipation of this discussion,
we now introduce the latent Dirichlet allocation (LDA) (Blei, Ng, and Jordan,
2003), one of the most popular statistical models of text. We use the intuition
from the simple mixture model described in the previous section to provide an
intuition for why LDA and similar models are multimodal.

LDA is a mixed membership topic model, meaning that each document is
assumed to be a “mixture” of topics. Topics are mathematically described as a
probability vector over all V words within a corpus. For example, a topic about
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56 Computational Social Science

summer might place higher probabilities on the words “sun,” “vacation,” and
“summer,” and lower probabilities on words such as “cold” or “snow.” Each
topical vector has a probability assigned to each word within the corpus and
therefore is a vector of length V. Topics are typically described by the most
probable words for that corpus. The “topic matrix” β contains K (the number
of topics estimated from the data) rows of topical vectors, each of length V.

For each document, the data-generating process first decides the number of
words within the document N. Then, it draws how much of the document will
be in each topic (out of K topics), assigning a probability to each of K topics
in the vector θ (

∑
K θ = 1). It then assigns each word within the document to

a topic, with probabilities θ . Last, it draws each word for the document from
each of the topic probability distributions in β.

More formally, the data-generating process for each document in LDA is as
follows:

1. First, the length of the document is chosen from a Poisson, with prior η:
N ∼Poisson(η).

2. Next, the proportion of the document in each topic is drawn, with prior
α: θ ∼Dir(α)

3. Last, for each of the N words,
� A topic for the word is chosen: zn ∼Multinomial(θ ).
� The word is chosen from the topic matrix β, selecting the topic that

was chosen zn: wn ∼ Multinomial(βzn).

The reader should already be able to note that LDA is a more complicated
version of the mixture of Gaussians described previously in this section. First,
we draw from a distribution that determines the proportion of a document
within each topic and the topic assignment for each word. Then, given the
topic assignment for each word, we draw the words that we observed within the
documents. Although the process is much more complicated, it closely follows
the previous section where first we drew a “latent” variable (the distribution
(male or female) of the height) and then drew the data (height itself).

Similar to the mixture of Gaussians, optimization of LDA is difficult because
of the “latent” parameters that must be drawn before the data is finally drawn.
In LDA, these parameters are the proportion of a document in each topic (θ )
and the topic assignment for each word (zn) and are not observed. Similar to
the mixture model case, we can optimize the model using a variant of the EM
algorithm called variational EM.8 In the expectation step, we first make a best
guess as to the θ and zn for each individual document, and in the maximization
step, we optimize the remaining parameters (in this case β) assuming θ and zn.
We iterate between the expectation and maximization steps until convergence
is reached.9

This approach maximizes the marginal likelihood (the probability of the
data given β and α), which we can use as the objective function for maximizing
the model. To get an intuition for the marginal likelihood, first we find the joint
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distribution of parameters and data:

p(θ , z, w|α, β) = p(θ |α)
N∏

n=1

p(zn|θ )p(wn|zn, β)

To find the probability of the words marginalized over the latent parameters,
we integrate over zn and θ :

p(w|α, β) =
∫

p(θ |α)
N∏

n=1

∑
zn

p(zn|θ )p(wn|zn, β)dθ

The marginal likelihood itself is intractable in the case of LDA because of
the coupling of β and θ , which leads to a an intractable integration problem.
The variational EM approach uses Jensen’s inequality to create a lower bound
on the marginal likelihood, which we can maximize via coordinate ascent. That
is, the algorithm is alternating between updating the content of the topics (β)
and the topical makeup of a document (θ ). It is this alternating maximization
strategy that leads to multiple local optima. If we we could jointly optimize β

and θ , we would likely have fewer issues of local modes, but the coupling in
the marginal likelihood makes this unfeasible.

3 the case of topic models

Multimodality occurs in a huge number of statistical models.10 In the rest of
this chapter we focus on unsupervised latent variable models. In practice we
use latent variable models to discover low-dimensional latent structure that
can explain high-dimensional data. These models have been broadly applied
throughout the social sciences to analyze large bodies of texts (Grimmer and
Stewart, 2013), discover categories of diseases (Doshi-Velez, Ge, and Kohane,
2014; Ruiz et al., 2014), study human cognition (Tenenbaum et al., 2011),
develop ontologies of political events (O’Connor, Stewart and Smith, 2013),
build recommendation systems (Lim and Teh, 2007) and reveal the structure
of biological and social networks (Airoldi et al., 2009; Hoff, Raftery, and
Handcock, 2002). As we have suggested, the flexibility of latent variable models
often leads to difficult statistical inference problems, and standard approaches
often suffer from highly multimodal solutions.

Statistical topic models are rapidly growing in prominence within political
science (Grimmer, 2010a; Quinn et al., 2010; Lauderdale and Clark, 2014;
Roberts et al., 2014) as well as in other fields (Goldstone et al., 2014; Reich
et al., 2015). Here we focus on latent Dirichlet allocation (LDA), which, as dis-
cussed in the previous section, models each document as a mixture over topics
(Blei, Ng, and Jordan, 2003; Blei, 2012). The mixed membership form provides
a more flexible representation than the single membership mixture model, but
at the cost of an optimization problem with many more local optima.11
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58 Computational Social Science

The posterior of the LDA model cannot be computed in closed form.
Two popular approximate inference algorithms are collapsed Gibbs sampling
(Griffiths and Steyvers, 2004) and variational inference (Blei, Ng, and Jordan,
2003). In this context, both methods can be seen as a form of alternating
maximization; in Gibbs sampling we randomly draw from a single parame-
ter conditional on the others, and in variational inference we update a single
parameter averaging over the other parameters with respect to the approxi-
mating distribution (Grimmer, 2010b). This process of alternating conditional
updates, necessitated by the inability to directly integrate over the posterior,
leads to a sensitivity to the starting values of the parameters. The myriad
solutions that can result from different starting points are well known among
computer scientists, but are infrequently discussed.12

In fact, we can be more precise about the difficulty of the LDA inference
problem by introducing some terminology from theoretical computer science.
Nondeterministic polynomial-time-hard (NP-hard) problems are a class of
problems that it is strongly suspected cannot be solved in polynomial time.13

A more complete definition is beyond the scope of this chapter, but the clas-
sification conveys a sense of the difficulty of a problem. Maximum likelihood
estimation can be shown to be NP-hard even for LDA models with only two
topics (Sontag and Roy, 2011; Arora, Ge, and Moitra, 2012). These hard-
ness results suggest not only why local optima are a characteristic of the LDA
problem but also why they cannot be easily addressed by changes in the infer-
ence algorithm. That is, we can reasonably conjecture from these results that,
without additional assumptions to make the problem tractable, it would be
impossible to develop a computationally practical, globally optimal inference
algorithm for LDA.14

How then do we address the practical problem of multimodality in topic
models? In this section, we advocate selecting a solution using a broader set
of criteria than just the value of the objective function. In the next section
we make the argument for looking beyond the objective function when eval-
uating local modes. We then discuss some specific methods for choosing a
single model for analysis. Finally we consider how to assess the stability of
the chosen result across many different runs. Throughout we use LDA as a
running example, but the arguments are more broadly applicable. In particular
we see how they play out in an applied example using the related STM in
subsequent sections.

3.1 Evaluating Local Modes

There is a disconnect between the way we evaluate topic models and the way
we use them (Blei, 2012). The likelihood function and common evaluation
metrics reward models that are predictive of unseen words, but our interest
is rarely in predicting the words in a document; instead we want a model
that provides a semantically coherent, substantively interesting summary of
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the documents (Grimmer and Stewart, 2013). This disconnect is not easily
remedied; our models and evaluation metrics focus on prediction because it is
the most tractable approximation to a human judgment of utility that ultimately
must be made on a case-by-case basis. This perspective informs an approach
to dealing with multimodality that emphasizes selecting a particular run not
solely on the basis of which model yields the highest value of the objective
function, but also includes other external assessments of model quality.

If our sole criterion of success were the ability to maximize the objective
function, our path would be clear. We would simply generate a large number
of candidate solutions by running the model repeatedly with different starting
values and then select the one with the highest value. In variational approxi-
mations this metric is neatly defined in a single value: the lower bound on the
marginal likelihood. We could simply calculate the bound for each model and
choose the largest value.

In a general sense, this procedure is both intuitive and well supported theo-
retically. Not only is the lower bound the objective function we are optimizing
but also, as a lower bound on the marginal evidence, it is precisely the quantity
commonly used in approaches to Bayesian model selection (Kass and Raftery,
1995; Bishop et al., 2006; Grimmer, 2010b). These methods will pick the best
model, given the assumptions of the data-generating process, but that may not
be the one that is most interesting (Grimmer and Stewart, 2013). While for the
purposes of estimating the model we need to rely on our assumptions about
the data-generating process, we need not maintain these commitments when
making our final selection. This allows us to access a richer set of tools for
evaluating model quality.

The implication of this argument is that if we found the global optimum
we might not choose to use it. This seems counterintuitive at first, but various
forms of the argument have a long tradition in statistics. Consider the argument
that we should choose a model on the basis of cross-validation or other forms
of held-out prediction. This is the most commonly used evaluation metric for
topic models (Wallach et al., 2009; Foulds and Smyth, 2014) and also has a
strong tradition in political science (Beck, King, and Zeng, 2000; De Marchi,
Gelpi, and Grynaviski, 2004; Ward, Greenhill, and Bakke, 2010). Selecting a
model that maximizes a held-out predictive measure implies that we may not
choose the model that maximizes the in-sample objective function. In settings
where forecasting is the primary goal, the ability to predict a held-out sample
is the clear gold standard; however, in the case of topic models, prediction is
not the only relevant standard.

Implicit in this argument is the claim that the objective function need
not directly correspond with human judgment. In human evaluations of
topic coherence, selecting model parameters to maximize predictive log-
likelihood can actually lead to a mild decrease in assessment of human inter-
pretability (Chang et al., 2009; Lau, Newman, and Baldwin, 2014). Domain
expert assessment (Mimno et al., 2011) and alignment to reference concepts
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60 Computational Social Science

(Chuang et al., 2013) have consistently shown that selecting on the objective
function alone does not necessarily yield the same model as human selection.

This is not to say that the objective function is completely useless; we have
after all chosen to optimize it. Rather our claim is that among locally optimal
solutions, model fit statistics provide a weak signal of model quality as judged
by human analysts. Due to the nature of the optimization problem we find
ourselves having fit a number of candidate models and given that we already
have them, it would be wasteful to evaluate them only on the basis of the
objective function.

One reaction to this situation would be to improve the objective of the
model until it matched a human perception of quality. Unfortunately, this is
theoretically impossible across all possible tasks (Grimmer and King, 2011;
Wolpert and Macready, 1997). Moreover, the inference problem is already
particularly complex, and modifications tend to result in even more intractable
models (Mimno et al., 2011).

At the end of the day we trust the objective function enough to optimize it
when fitting the model, but not enough to let it be the surrogate for the selection
process. Instead, we want to explore the model and its implications, a process
that is closely related to the literature on posterior predictive checks (Mimno
and Blei, 2011; Blei, 2014; Gelman et al., 2013). In the next section we treat
the question of how to choose a particular model for analysis, which we call
the reference model. In Section 3.3 we explain how to assess the stability of
results across multiple models.

3.2 Finding a Reference Model

Choosing a single reference model for analysis is challenging. The ideal selection
criterion is the utility of the model for the analyst, which is an inherently sub-
jective and application-specific assessment (Grimmer and King, 2011; Grimmer
and Stewart, 2013). There is an inherent tradeoff in selection criteria between
how time intensive the criterion is for the analyst and how closely it approx-
imates the theoretical ideal. In this section we outline methods that span the
range of high quality to highly automated.

Manual Review
The most thorough and time-intensive process is a manual review and vali-
dation of the model. This entails reading several example documents for each
topic and carefully examine the topic-word distributions to verify that the top-
ics are capturing a single well-defined concept. Depending on the number of
topics and the length of the documents, this may be a daunting task in itself.

We may also want to consider information beyond the content of the docu-
ments themselves. In the social sciences we often have a rich source of additional
information in document metadata. Mapping the relations between topics and
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a document’s author (Grimmer, 2010a) or date (Quinn et al., 2010) is an
important part of understanding if the model is functioning. When an existing
typology of the documents is available, we can evaluate how well it corre-
sponds to the inferred topics (Chuang et al., 2013). Ideally we hope that the
model will convey some things we already know, allowing us to validate it,
while also providing us with some novel insights. The different types of val-
idation criteria have been well developed in the literature for measurement
models and content analysis (Quinn et al. 2010; Grimmer and Stewart 2013;
Krippendorff 2012).15

Manual evaluations of this sort are essentially custom procedures designed
specifically for a particular analysis, and they require a large amount of an
analyst’s time. They are an important and necessary tool for validation of the
final model, but are too expensive for evaluation of each candidate model.

Semi-Automated Analysis
A less labor-intensive approach is the human analysis of automated model
summaries. The idea is to develop some generic tools for quickly evaluating a
model, even if some human intervention is required to make a decision. For
topic models we can summarize a topic by looking at the most probable or
distinctive words. These word lists can be supplemented by focused reading of
documents highly associated with a particular topic. These types of summaries
arise naturally from the parameters of the model in the case of LDA, and most
latent variable models have some approximate equivalents.

Recent work in information visualization has moved toward the develop-
ment of automatically generated topic model browsers (Chuang, Manning, and
Heer, 2012; Gardner et al., 2010; Chaney and Blei, 2012). Similar approaches
have been used to provide browsers that focus on the exploration of covari-
ate effects on word use (O’Connor, 2014). The best of these approaches
embody the information visualization mantra of “overview first, zoom and
filter, details on demand” (Shneiderman, 1996), which encapsulates the goal
of a system that can seamlessly move from high-level model summaries such as
word lists all the way down to the document reading experience. Some systems
can even incorporate user feedback to allow for an interactive topic model-
ing experience (Hu et al., 2014). Visualization of topic models is an active
area of research that promises to vastly improve the analyst’s interaction with
the model.

Complete Automated Approaches
The fastest evaluation metrics are those that are completely automated. The
most natural metric is the objective function, which is generally either a bound
or an approximation to the marginal likelihood (Grimmer, 2010b). The default
standard within the computer science literature is held-out likelihood, which
provides a measure of how predictive the model is for unseen documents
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(Wallach et al., 2009; Foulds and Smyth, 2014). Evaluating how well the
model predicts new data is appealing in its simplicity, but a predictive model
need not be the most semantically interpretable.

Automated metrics can also be useful for narrowing the selection of can-
didate models that are then evaluated using more labor-intensive approaches.
In Roberts et al. (2014) we consider two summary measures: semantic coher-
ence (Mimno et al., 2011), which captures the tendency of a topic’s high-
probability words to co-occur in the same document, and exclusivity, which
captures whether those high-probability words are specific to a single topic.
We use these summaries as a coarse filter to focus our attention on a subset of
promising candidate models.

Choosing a Balance
This provides only a coarse overview of some of the strategies for choosing a
model. Necessarily, model choice is dictated by the particular problem at hand.
Once a model is chosen there is always a subjective process of assigning a label
to the topic, which implicitly involves arguing that the model representation (a
distribution over words) is a good proxy for some theoretical concept repre-
sented by the label. Regardless of how the model is chosen, careful validation
of the topic to ensure it fits with the theoretical concept is key (Grimmer and
Stewart, 2013).

3.3 Assessing Stability

Once we have committed to a particular model and unpacked the publishable
findings, we may want to know how stable the finding is across different
initializations (i.e., starting values of the optimization algorithm). This serves
two distinct purposes: first, we get a sense of how improbable it is that we
found the particular local mode we are analyzing, and second, we learn how
sensitive the finding is to other arrangements of the parameters.

The first purpose is the most straightforward. We want to build confidence
in our readers and in ourselves that we did not stumble across the result
completely by chance. The instability across individual runs of LDA has been
criticized as unsettling by applied users across fields (Koltcov, Koltsova, and
Nikolenko, 2014; Lancichinetti et al., 2014). Understanding how topics map
on to the results across runs builds trust in the results (Chuang et al., 2013).

We can also use stability to assess how sensitive our finding is to other con-
figurations of the topics. If a researcher identifies a topic as about “economics,”
is there some other version of that topic that looks substantially similar but
yields contradictory results? These situations can arise when a particular topic
or group of topics is of interest, but the model is sensitive to the way the remain-
der of the topics are allocated. Careful examination of the topic may confirm
that it is about “economics,” but that it fails to reveal similar content outside
the topic that might reasonably be included. Examining the “economics” topic
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across a large set of models provides a sense of the different representations of
the topic supported by the data.

4 similarity between topics across modes

In this section we develop tools for assessing the stability of findings of interest
across local modes. We start by setting up a running example that uses STM
to analyze a corpus of political blogs. We then illustrate several approaches
to assessing how similar a pair of topics is to each other. We then show
how these metrics can be aggregated to the topic level, to the model level, or
across covariates.

The methods we present here serve two related purposes. First, we provide
some intuition for the variety of solutions that arise from local modes. Espe-
cially for those primarily familiar with globally convex models, this provides
a sense of what to expect when using or reading about latent variable models.
The methods themselves can also be useful as diagnostics for practictioners.
Indeed we show through examples how examination of stability can lead to
useful insights about the data and model.

4.1 Political Blogs

To make our discussion concrete we turn to a specific data set: a collection of
13,246 blog posts from American political blogs written during the 2008 pres-
idential election (Eisenstein and Xing, 2010).16 Six blogs – American Thinker,
Digby, Hot Air, Michelle Malkin, Think Progress, and Talking Points Memo –
were used to construct the corpus. Each blog is given a rating: liberal or con-
servative. For each blog post the day of the post is recorded. After stemming
and removing a standard list of stopwords and words that appeared in fewer
than 1% of the documents, there is left a vocabulary of 2,653 words.

To analyze these texts we use STM (Roberts et al., 2014). STM is a mixed
membership topic model in the style of LDA that allows for the inclusion of
document-level covariates, in this case rating (liberal/conservative) and time
(day of the post). We use the stm package in R that uses a fast variational EM
algorithm. We specify topic prevalence as a function of the partisan rating and
a smooth function of time. We estimated the model 685 times, initializing with
a short run of LDA (we return to this in Section 5).17 We note that this set
of runs holds a number of things constant, including choices in preprocessing
(e.g., stopword removal, stemming) and specification of the model (e.g., the
STM prevalence formula, number of topics) that could also lead to differences
in model fit.

We briefly define a minimal amount of notation for use in later sections. Let
K = 100 be the user-selected number of topics, V = 2,653 be the size of the
vocabulary, and D = 13,246 be the number of documents. Mixed membership
topic models, including LDA and STM, can be summarized by two matrices
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Topic 18: 
 law, court, rule, constitut, right, judg, decis, suprem, legal, justic, case,

feder, requir, amend, protect, gun, govern, allow, appeal, citizen

Topic 30: 
 presid, vice, cheney, offic, presidenti, first, execut, dick, decis, leader,

role, histori, nation, branch, power, part, govern, order, idea, washington

Topic 48: 
 global, warm, research, climat, studi, chang, scienc, scientist, gore, caus,

human, scientif, earth, emiss, planet, cell, environment, report, water, green

Topic 60: 
 iran, nuclear, threat, weapon, iranian, program, missil, north, bomb, defens,

korea, strike, sanction, intern, build, militari, intellig, capabl, pose,
develop

Topic 71: 
 black, wright, white, race, church, racial, racist, pastor, jeremiah,

africanamerican, racism, african, comment, reverend, king, controversi, rev,
view, communiti, south

figure 2.1. Five example topics from the reference model. These are given the labels
Supreme Court, Cheney, global warming, Iran/N.K. nukes, and Wright, respectively.

of parameters. β is a row-normalized K-by-V matrix of topic-word distribu-
tions. The entry βk,v can be interpreted as the probability of observing the v-th
word in topic k. θ is a row-normalized D-by-K matrix of the document-topic
distributions. The entry θd,k can be interpreted as the proportion of words in
document d that arise from topic k. Both LDA and STM can be framed as a
factorization of the row-normalized D-by-V empirical word count matrix W,
such that W ≈ θβ. We use the θ and β matrices to compare the models.

To simplify the resulting discussion, we choose as our reference model the
sample maximum of the variational bound. We do not recommend using the
sample maximum in general as the selection criteria (for reasons discussed in
previous section), but it allows us to proceed more quickly to the comparison
of results.

The hundred topics estimated in the model cover a huge range of issues span-
ning the political dimensions of the 2008 presidential election. We select five
topics that illustrate different properties of stability to use as running examples.

Figure 2.1 shows the top 20 most probable words for each of the exam-
ple topics: Supreme Court rulings, Vice President Cheney, global warming
research, nuclear weapons issues in Iran and North Korea, and the controversy
surrounding Barack Obama’s former pastor, Jeremiah Wright.

4.2 Comparing Topics

Our first step is to ask whether there are any differences between the different
runs of the model at all. If each run is equivalent up to numerical precision, the
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question of multimodality would be moot. To answer this question we need
a way to measure whether two topics generated across different runs are in
fact comparable.

We can compare the similarity of two models by comparing the topic-word
distribution β or the document-topic distribution θ . Using β implies that two
topics are considered similar if they generate similar observed words. Using
θ assesses two topics as similar if they load in the same patterns across the
corpus. Although both approaches are useful, β will tend to contract on the true
posterior faster than θ , resulting in a less noisy measure. This is because the
number of documents will tend to grow faster than the number of unique words
in the vocabulary. Before proceeding to pairwise similarity metrics, we need to
align topics across runs.

Alignment
Consider a simple case where we have two runs of the model. We first need
to establish which two topics from each run to compare. The topic numbers
are arbitrary across each run, which on its own is unproblematic, but means
that we need to do something additional in order to compare topics to each
other across runs. We call the process of deciding which topics to compare
the “process of alignment.” The alignment itself is determined by some metric
of similarity typically on the topic-word distribution. Here we use the inner
product between the rows of β.

Given the similarity metric there are at least two reasonable approaches
to aligning topics, both of which will yield the same result when the topics
are in fact identical up to permutation of the topic numbers. First, we can
let each topic in one run of the model choose its favorite in another run of
the model, even if that involves a topic being chosen multiple times. We call
this process “local alignment” because each topic in the reference model is
making a local choice that is independent of the choices of all other topics. A
second approach is to choose a one-to-one matching that maximizes the sum
of similarities across all the topic pairs. We call this the “global alignment”
because each topic’s match is contingent on the selection of all other topics.
Although this formulation results in a combinatorial optimization problem, it
can be solved efficiently using the Hungarian algorithm (Kuhn, 1955).18 We
use global alignment here. The local alignment produced essentially the same
relative trends.

Pairwise Similarity
Once we have a candidate alignment we can calculate distance metrics between
two topics across model runs. An intuitive measure of distance is the L1 norm,
which is the sum of the absolute value of the difference. It is defined as

L1 =
∑

v

∣∣βref
k,v − βcand

k,v

∣∣
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figure 2.2. Relation between three measures of topic similarity across all topics and modes. Plotted surface is a kernel smoothed
density estimate.
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and has a range: [0,2]. We discuss alternate metrics, but we use L1 because
the result is easy to conceptualize. We discuss the implications of alternative
distance metrics in Section 4.5.

We need not constrain ourselves to distance metrics on the parameter space.
As an alternative, we compare the number of the top 10 most probable words
shared by the reference topic and its match. The result ranges from {0, . . . , 10},
indicating the number of words matched.

We can establish the comparable metric for documents. Ranking documents
by their use of a particular topic, we can count the overlap in the number of the
10 documents most strongly associated with a topic. This metric ranges from
{0, . . . , 10} with 10 indicating complete agreement in the two sets.

Figure 2.2 plots the relations between each of these three metrics across the
aligned topics. Each pair of metrics is strongly correlated in the theoretically
anticipated direction. Also as expected, the measure based on the documents is
somewhat noisier than the corresponding measure based on the words.

This figure also provides us with some insight on the similarities across
solutions. Topics range from nearly perfectly aligned to having almost no
correspondence. This suggests that there are substantial semantic differences
across local modes that could lead to significant differences in interpretation.

4.3 Aggregations

The pairwise similarities shown in Figure 2.2 are useful for contextualizing the
full range of topic pairs; however, to make these metrics more interpretable it is
helpful to aggregate up to either the model level or the topic level. Aggregation
at the model level gives us a sense of how well the local modes approximate
the reference model by taking the average over each topic. Aggregation to the
topic level gives us information about how stable a given topic in the reference
model is across runs.

Model-Level Aggregations
We start with aggregations to the model level. In this case we have a natural
summary metric of the complete model: the approximation to the bound on
the marginal likelihood.

In Figure 2.3 we plot each of the three similarity metrics on the Y-axis
against the approximate bound on the X-axis. The outlier (upper right corner
of the first two plots, and lower right of the third) is the reference model, which
is, by definition, an exact match for itself. The dashed line marks a natural
reference point (5 of 10 words or documents in the left two plots, and an L1

distance in the middle of the range for the third). The solid line shows the simple
linear trend.

The trend between the lower bound and the other three similarity met-
rics suggests that the objective function can be useful as a coarse measure of
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figure 2.3. Comparison between the approximation to the bound on the marginal likelihood (the objective function) with
similarity metrics aggregated to the model level.
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similarity. That is, as the bound of each of the runs approaches the reference
model, all three metrics reveal similarity increasing on average. However, it is
only a coarse metric because of the large variance relative to the size of the trend.
The high variance around the trend reinforces the observation that, among can-
didate models with comparable levels of model fit (as measured by the objective
function), there is considerable semantic variety in the discovered topics.

Topic-Level Aggregations
Aggregation to the topic level provides us with a measure of how stable a
topic within the reference model is across different runs. This helps address
the applied situation where a researcher has identified a topic of interest, but
wants some understanding of how frequently it occurs across multiple runs of
the model.

The distribution over topics is plotted in Figure 2.4 where each topic is
represented by the average value of the statistic over the different model runs.
The five example topics are each denoted by the dashed lines and a label. In
each plot the distribution varies over essentially the full range of the metric,
indicating that some topics are extremely stable across all of the runs whereas
others are essentially unique to the reference model.

The example topics help explain where some of this variance is coming from.
The climate change topic is one of the most stable across all three of the metrics.
This reflects the rather specialized language in these blog posts. In a political
context, words such as “climate” are very exclusive to a particular topic. These
specialized words help pin down the topic, resulting in fewer distinct locally
optimal solutions.

One of the least stable topics across runs is the Cheney topic. In the reference
model the topic is primarily about Vice President Cheney, whereas other models
include broader coverage of the Bush presidency. As an example we chose the
local model that is farthest away from the reference model in L1 distance. In
Table 2.1 we compare the two versions of the topic by comparing the topic-
specific probabilities of observing 18 terms. These terms define the set of words
that have probability of at least 0.01 in one of the two models. We can see
that, although both topics discuss Cheney, the local model discusses President
Bush using words such as Bush, Bush’s, and George, which have negligible
probability under the reference model version of the topic.

Topic-level stability analysis focuses the analyst’s attention on the semantic
content covered by a topic. As an analyst, our responsibility is to choose a label
for a topic that clearly communicates to the reader what semantic content is
included in a topic. We emphasize that an unstable topic is not inferior or less
substantively interesting. Depending on the question, a topic that combines
discussion of Cheney and the Bush presidency may be more interesting than
a topic that just covers the vice president. However, the instability in the
topic alerts us that the topic in the reference model is specific to Cheney, with
discussion of the Bush presidency being included in a separate topic.
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figure 2.4. Aggregation of similarity metrics to the topic level.
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table 2.1. Topic-Specific Probabilities of Observing
18 Words in the Cheney Topic in Both the Reference
Model and a Local Solution Far Away from It

Term Ref. Model Local Model

administr <.0005 0.104
bush <.0005 0.275
bush’ <.0005 0.0191
cheney 0.0464 0.0279
decis 0.0178 0.0060
dick 0.0195 0.0109
execut 0.0226 0.0022
first 0.0253 0.0001
georg <.0005 0.0480
histori 0.0104 0.0099
leader 0.0134 <.0005
nation 0.0102 <.0005
offic 0.0414 0.0209
presid 0.5302 0.2868
presidenti 0.0254 0.0003
role 0.0129 0.0001
term 0.0025 0.0130
vice 0.0512 0.0251

Note: Included words have a probability of at least 0.01 under
one of the two versions of the topics. The reference model topic
is focused primarily on Vice President Cheney, whereas the local
mode includes broader coverage of the Bush presidency.

4.4 Covariate Effect Stability

In applied use of STM, we are often interested in the role played by covariates
in driving topical prevalence. Indeed this is a principal advantage of the STM
framework: it allows for the inclusion of covariate information in the estimation
process and facilitates the estimation of covariate effects on the resulting model.
In the Poliblog corpus, we can examine the role of partisanship in topical
coverage. We start by unpacking the partisanship effects for our example topics
in the reference model. We then show how to assess the stability of these
findings across other local modes.

Unpacking Covariate Effects
Figure 2.5 plots the expected proportion of topic use in conservative blogs
minus the expected proportion of topic use in liberal blogs under the reference
model. Thus topics more associated with the conservative blogs appear to the
right of zero.

We briefly contextualize the partisan effects in this set of topics. Conservative
attention to the Supreme Court topic is primarily driven by the June 2008
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figure 2.5. Differences in topical coverage by rating (controlling for time). Effects to
the right of 0 indicate a topic more heavily used by conservatives. Lines indicate 95%
confidence intervals using the “global” approximation to measurement uncertainty
(Roberts et al., 2014).

Heller v. District of Columbia case that Struck down parts of the Firearms
Control Regulations Act of 1975 on Second Amendment grounds. As discussed
in the previous section the Cheney topic is primarily about Dick Cheney’s
legacy on the vice presidency. The coverage is mainly from liberal blogs and is
predominantly critical in tone.

The greater conservative attention to global warming is initially surprising
given that it is typically a more liberal issue, but it should be remembered that
these blogs were posted in 2008, which was before the more recent trend (at
time of writing) in liberal assertiveness. We explore this further by examining
the posts most associated with this topic. Figure 2.6 shows the first 300 char-
acters of the three posts most associated with the topic. The first and third
posts are critical of global warming, whereas the second post describes a report
warning against climate change. The first and third are as expected from a
conservative blog, and the second is from a Liberal blog.

The Iran and North Korea nuclear weapons topic shows a conservative
effect consistent with increased attention to security topics and consistent
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Deathly news for the religion of Global Warming. Looks like at least one
prominent scientific group has changed its mind about the irrefutability

of evidence regarding man made climate change. The American Physical Society
representing nearly 50,000 physicists "has reversed its stance on climate

Climate change report forecasts global sea levels to rise up to 4 feet by 2100.
According to a new report led by the U.S. Geological Survey, the U.S. faces the

possibility of much more rapid climate change by the end of the century than
previous studies have suggested. The report,

NASA has confirmed that a developing natural climate pattern will likely result
in much colder temperatures. Of course, the climate alarmists' favorite dubious

data source was also quick to point out that such natural phenomena should not
confuse the issue of manmade greenhouse gas induced global

figure 2.6. The first 300 characters of the three posts most associated with the global
warming topic. Posts 1 and 3 come from American Thinker and post 2 comes from
Think Progress.

with conventional views that issue ownership of security is much greater for
Republicans. Finally the scandal involving Reverend Jeremeiah Wright, which
is critical of then Democratic primary candidate Barack Obama, is more preva-
lent on conservative blogs.

Stability across Models
How stable are these effects are across other plausible local modes? A sim-
ple way to evaluate this stability is to align the topics to the reference model
and then calculate the effect for each topic.19 Although this process produces
a distribution over effect sizes, it is important to emphasize the conceptual
challenges in interpreting the results. Each model is estimating the effect of
the partisan rating, but on a slightly different version of the topic. Thus dif-
ferences arise for two reasons: the document-topic assignments may be differ-
ent, but also the topics themselves capture different concepts. The alignment
ensures that this concept is the most similar to our reference model (given
the alignment method and the similarity metric), but they are not necessarily
conceptually identical.

Figure 2.7 plots the distribution of effect sizes. Beginning with the first plot
on the top left, we see that the partisan effect for the Supreme Court topic
in the reference model has one of the largest observed values across all of the
local modes. Not only is the reference model effect out in the tail but also
the distribution over effect sizes includes negative as well as positive values.
What accounts for this difference? Comparing the most probable words in the
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figure 2.7. Distribution of the partisan rating effect across modes for the five example topics. The black solid line shows the effect
at the reference mode, and the black dashed line marks an effect size of 0.
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reference model with those in an aligned topic for one of the models with a
strong liberal effect provides an indication of the differences:

Reference Model: law, court, rule, constitut, right, judg, decis, suprem, legal,
justic, case, feder, requir, amend, protect, gun, govern, allow, appeal,
citizen

Local Mode: court, tortur, law, justic, legal, rule, judg, suprem, case, inter-
rog, detaine, lawyer, cia, constitut, guantanamo, decis, prison, violat,
prosecut, administr

The local mode includes significant discussion of the legal issues surrounding
the use of torture and the operation of Guantanamo Bay. By contrast, our
reference has a completely separate topic that captures this discussion (top
words: tortur, prison, cia, interrog, detaine, use, guantanamo). Thus the fact
that the effect size we found is considerably out in the tail of the histogram does
not mean that the finding is not valid, but it does suggest that it is very sensitive
to the content of the legal cases and the way in which relevant information
about legal issues is spread across the other topics.

The second plot in Figure 2.7 shows the Cheney topic. Here we see a distribu-
tion with three modes where the reference model sits directly on top of the most
typical point. Following the discussion in the previous section, this reflects the
difference between having the topic focus exclusively on Vice President Cheney
as opposed to including the broader Bush presidency.

The global warming case (third plot) is the most clear-cut, with most of the
solutions producing extremely similar effect sizes. This reflects the relatively
specialized vocabulary in discussing climate change, which allows the allocation
of topics to be less ambiguous across solutions.

The Iran and North Korea topic is a case where, like the Supreme Court
topic there is substantial spread across the models. However, in contrast to the
Supreme Court topic, the reference model is quite close to the majority of the
solutions. Here the largest source of variation is primarily in whether both Iran
and North Korea are grouped within the same topic.

Finally, the topic on Reverend Wright shows another case where the refer-
ence model is largely consistent with the local modes. There is some distinction
between topics that contain coverage of the scandal and those that also contain
elements of the positive liberal coverage that followed Barack Obama’s speech
on the matter (“A More Perfect Union”).

These examples highlight the value of local modes for contextualizing the
finding in our reference model. By seeing alternative models, such as a Supreme
Court topic that focuses on either gun control or the use of torture, we become
more attuned to exactly what concepts are included within the model. This
in turn allows us to choose labels that more precisely represent the topic’s
semantic content.
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Differences from Alignment
While most of these analyses are insensitive to the method of aligning topics,
we do observe significant differences in the covariate effects. Global align-
ments tend to result in more cases where there are several clusters of effect
sizes. Consider for example, the Cheney topic (top-center of Figure 2.7).
In the example discussed in Section 4.3 we saw that the matching topic in
another model included both discussion of the Bush presidency and Cheney.
If the global alignment had assigned that topic to the Bush reference model
topic, that would leave it unavailable for the Cheney reference model topic.
This tends to manifest in the covariate effect distributions as clusters of cer-
tain covariate effect sizes. We still find the global alignment the most useful,
however, because it ensures that we are not omitting any topics from the
comparison models.

4.5 Additional Comparisons and Related Work

The examples provided here focused on a particular data set with a specific
number of topics. Here we briefly discuss findings from additional settings and
related work in the literature.

Different Number of Topics
We ran the set of experiments discussed earlier under the same data set with
K = 50 topics and observed essentially the same patterns and trends reported.
Smaller experiments at K = 20 revealed higher levels of instability across runs
with increased instances of topics that are very poorly aligned. We conjecture
that this is primarily a matter of how well the number of topics fit the specific
data set, rather than a statement about small numbers of topics in general.20

If instability was solely a function of the number of topics, we would expect
substantially poorer performance in this extreme case. That the instability
would be connected to selecting too few topics for a given data set certainly
makes intuitive sense, but additional investigation would be necessary to make
conclusive statements.

Alternative Distance Measures
In the results discussed earlier, we used two basic measures of distance between
the topic-word distributions. We aligned the topics using a dot product mea-
sure, and we presented calculations based on L1 distance. We also performed
experiments using a cosine similarity metric (essentially the dot product rescaled
by the L2 norm of the vectors).

The results, depicted in Figure 2.8, show slightly less clear correlations
between the similarity metric and the top words and top documents measure.
Specifically there are many cases where high cosine similarity topic appears with
a comparatively low number of top words or documents in common. Manual
examination of topics in these settings demonstrated that this was primarily
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figure 2.8. Comparison of metric based on cosine similarity.
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connected with topics where the majority of the probability mass loaded onto
fewer than 10 words.21

Koltcov, Koltsova, and Nikolenko (2014), in a similar investigation of sta-
bility in LDA, guard against the possibility of L1-style calculations being dom-
inated by the long tail of infrequently occurring words. To guard against this
we tested a version where we only calculated the distance over the minimal set
of words accounting for 75% of a topic’s probability mass within the refer-
ence model. The results are substantially the same, but with slightly less noise.
We opted to maintain the versions we presented earlier to allow for simpler
interpretation.

Alternative Approaches
The similarity metrics described here are automated approximations to seman-
tic similarity. All of the metrics equally penalize deviations from the reference
model, regardless of whether they are in the direction of a semantically related
word or not. One solution would be to embed words within a vector space
such that semantically related words are close together and then calculate dif-
ferences relative to this space (Mikolov et al., 2013). This has the advantage
of more sharply penalizing differences between topics that involve words that
are semantically unrelated. However, to perform the word embeddings, we
need an extremely large text corpus, which limits the applicability to smaller
document settings.22

Finally, our focus here has primarily been on estimating similarity across
a large number of models. Chuang et al. (2013) focus on comparing two
topic models and introduce a rich typology of correspondence between them,
including topics that are fused, repeated, junk (unmatched), or resolved (well
matched) relative to the reference model. These comparisons require a bit more
technical machinery, but can elegantly handle comparisons between a reference
and candidate model with different numbers of topics.

This section has presented several approaches to comparing topics across
different runs of a model. These methods provide not only a measure of the
reference model’s stability but also can often give the analyst useful diagnostic
information about the contents of the topics. The discussion, however, leaves
open the important question of whether there are ways to increase the quality
of model runs at the estimation stage. In the next section we discuss approaches
to initialization that maximize the quality of the initial runs.

5 initialization

When the function we are optimizing is well behaved and globally concave,
any starting point will result in the same global solution. Thus initialization of
the parameters becomes a trivial detail, possibly chosen to save on computa-
tional costs.23 In the multimodal setting, our initialization influences our final
solution. When the computational cost of inference in the model is extremely
low, we can simply randomly initialize the parameters and repeat until we have
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identified the same maximum several times. However, in latent variable models
not only may we never encounter a repeat solution but also each solution to
the model may be very computationally expensive, a problem that is exacer-
bated in big-data settings. If fitting a topic model on a million documents takes
a week of computational time, rerunning it a thousand different times is not
a reasonable strategy. A well-known but little-discussed aspect of statistical
optimization is that careful initialization can be an incredibly powerful tool
(McLachlan and Peel, 2004; Murphy, 2012).

Before returning to the case of topic models, we consider the simpler case
of k-means, a central algorithm in the clustering literature closely related to
the normal mixture model discussed in Section 2.2. The k-means example
helps provide some intuition about the role of “smart” initialization. In Sec-
tion 5.2, we return to the case of topic models and discuss how simpler models
such as LDA can be used to initialize more complex models such as STM. In
Section 5.3, we provide a simulation study that shows that the LDA-based ini-
tialization yields higher values of the approximate evidence lower bound than
random initialization.

The initialization approaches we consider in this section are stochastic, and
so each time the procedure is repeated we may obtain a different solution. Thus
our goal is to initialize such that we produce better solutions in expectation.
In special cases such as k-means, we may even be able to obtain provable
guarantees on the number of trials necessary to come within a certain tolerance
of the global solution.

An alternative approach is to explore deterministic approaches to initial-
ization. In Section 6 we outline very recent research that yields deterministic
initializations with excellent performance.

5.1 k-Means

The k-Means algorithm is arguably the central algorithm of the clustering
literature. Not only is it important in its own right as a problem in clustering and
computational geometry but it is also a common component of larger systems.
Because algorithms for k-means are extremely fast and easily parallelized, it
has widespread applications in big-data settings (Bishop et al., 2006).24

k-Means algorithms use an alternating optimization strategy to find a par-
tition of units into k distinct clusters such that Euclidean distance between
the units and their nearest center is minimized. Finding the optimal partition
of units under the k-means objective function is a combinatorial optimization
problem that is known to be NP-hard (Mahajan, Nimbhorkar, and Varadara-
jan, 2009). This manifests itself in a tendency of k-means algorithms to get stuck
in local optima. Nevertheless, it is the most widely used clustering algorithm
in practice.

Under the most popular heuristic, cluster centers are chosen randomly from
the data points (Lloyd, 1982). Estimation then proceeds by iterating between
assigning data points to their closest center and recomputing the location of the
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cluster center given those points. The result is an incredibly fast procedure, but
one that can produce arbitrarily bad partitions relative to the global optimum
(Arthur and Vassilvitskii, 2007).

A substantial advance in the literature on the problem came with the devel-
opment of the k-means++ algorithm (Arthur and Vassilvitskii, 2007). The idea
is extremely simple: by using a careful seeding of the initial centers we can make
probabilistic guarantees on recovery relative to the optimal solution. The seed-
ing strategy is based on selecting the first center uniformly at random from the
data points and then choosing subsequent centers at random, but reweighting
to prioritize data points that are not near a previously chosen center.

The k-means++ algorithm highlights an important general point: carefully
considering the initialization procedure can be an important tool for dealing
with multimodality in practice. This is an important difference from prob-
lems that are globally convex, where starting values are important only for
increasing speed or avoiding numerical instability. It is interesting to note that,
despite being both simple conceptually and incredibly effective in practice, the
k-means++ heuristic was not discovered until 25 years after Lloyd’s algorithm.
Heuristics for solving this problem continue to be an active area of research
(Bahmani et al., 2012; Nielsen and Nock, 2014).

5.2 What Makes a Good Initialization?

A good initialization strategy needs to balance the cost of solving for the initial
state with the expected improvement in the objective. If the cost of finding the
initial values of the parameters is high relative to the model-fitting process, then
you might as well use that computational time to randomly restart the original
algorithm. Thus the art to initializing a model is finding a procedure that places
the model in the right region of the parameter space with as few calculations
as possible. The k-means++ algorithm is an excellent example of an incredibly
low-cost initialization.

In cases where the the model itself is straightforward and the cost of inference
rises rapidly with the number of units, a simple but powerful strategy is to run
the model on a small subsample of the data. This is generally a good default,
particularly in the big-data regime where the computation is costly solely due
to scale.

Another steadfast default approach is to initialize a complicated model with
a simpler model or algorithm for which inference is easy. The simpler algorithm
can often put you into a good region of the parameter space without expending
the higher costs of the more complex method. Indeed, this is why the k-means
algorithm is often used to initialize more complex mixture models (McLachlan
and Peel, 2004; Bishop et al., 2006).

In the case of STM, there is a natural simpler model, LDA. Due to the
Dirichlet-multinomial conjugacy in LDA we can perform inference using a
fast collapsed Gibbs sampler (Griffiths and Steyvers, 2004). They key here is
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Comparing Initialization Strategies
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figure 2.9. A comparison of initialization strategies for the K = 100 STM models.

that the conjugacy of the model allows for all parameters except the token-
level topic latent variables to be integrated out. The result is a very fast sam-
pler that has been heavily optimized (Yao, Mimno, and McCallum, 2009).
The cost of inference is linear in the number of individual words (tokens) in
the text.25

Because LDA is itself multimodal, the result is an initialization that is dif-
ferent each time. Thus like the k-means++ algorithm, this approach places
STM in a good region of the parameter space, but still allows for variation
across runs. The initialization for the LDA algorithm itself is just a random
assignment of the tokens, so we do not have a problem of infinite regress.

5.3 The Effects of Initialization

Unlike the case of the k-means++ algorithm, we cannot make theoretical
guarantees on the quality of LDA as a method for initializing STM.26 This
naturally leads us to ask about how it performs as an initialization in practice.
To investigate this issue we compared the objective function values in the 685
model runs initialized with LDA to a set of 50 runs initialized from random
starting values.27 Figure 2.9 plots the resulting distributions over the final level
of the objective function.
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82 Computational Social Science

These substantial gains come at a very low computational cost courtesy of
the efficient Gibbs sampler in the lda package (Chang, 2012). The initialization
process takes only a few seconds to complete 50 iterations of the 2.6 million
tokens in the Poliblog data. Indeed this is why initializing with LDA is the
current default method in the stm package in R. Furthermore, not only do the
LDA initialized models performed uniformly better but they also converged
significantly more quickly. Most of the LDA models took between 60 to 120
iterations to converge, whereas the randomly initialized versions took close to
200 iterations. Interestingly, we were not able to increase the average quality
by running the sampler longer, suggesting that without considerable further
effort this may be close to the optimal strategy for this type of initialization.

6 global solutions

In the previous sections we discussed how nonconvex models can lead to
inference algorithms that exhibit multimodality. For the important case of
topic models we provided a series of tools both for exploring a set of local
modes and for improving the average quality of our solutions through careful
initialization. These approaches work well in settings where it is feasible to
run the model many times. However, in the truly big-data setting, every single
optimization of the model may be so costly that we want to strictly limit the
number of times we run the model.

In this section we introduce recent innovations in theoretical computer sci-
ence that allow for global optimization of nonconvex models using spectral
learning. As we show, these algorithms introduce additional assumptions into
the model to achieve tractable inference with provable guarantees of recovering
the globally optimal parameters. Following the logic of Section 5, we use an
algorithm for LDA as an initialization to the STM. Our results suggest that this
hybrid strategy can be a useful technique for tackling big-data problems.

We remind the reader that these techniques are very much “on the frontier,”
and so the substantive implications for applied projects have not been charted
out, something that is beyond the scope of this chapter. Furthermore, we
emphasize that these initialization strategies do not “solve” the multimodality
problem. These techniques do not yield a correct answer, and even though they
do very well at maximizing the approximate evidence lower bound, this does
not mean that the solution is optimal with respect to other criteria (as discussed
earlier). The types of robustness exercises discussed earlier should continue to
be an important part of the research process. Nevertheless, we find that these
deterministic initialization procedures are a promising contribution to the topic
modeling toolkit.

6.1 Introduction to Spectral Learning

When we define an inference procedure we would like to be able to prove that
the algorithm will converge to the global optimum. For the types of problems
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that we discuss here, we generally settle for heuristics, such as expectation-
maximization, which has provable convergence to a local optimum (Dempster,
Laird, and Rubin, 1977), or MCMC algorithms, which have no finite sample
guarantees but will asymptotically recover the posterior (Robert and Casella,
2004). In practice both approaches get stuck in local optima.

Here we describe a class of spectral learning algorithms for estimating the
parameters of latent variable models while retaining guarantees of globally opti-
mal convergence.28 The key insight is that by using matrix (or array) decom-
position techniques we can recover the parameters from low-order moments
of the data. This approach relies on a method of moments inferential frame-
work, as opposed to the likelihood-based framework we have adopted thus far
(Pearson, 1894; King, 1989; Anandkumar, Ge, Hsu, Kakade and Telgarsky,
2014). In models with certain structures this can lead to procedures with prov-
able theoretical guarantees of recovering the true parameters, as well as algo-
rithms that are naturally scalable.

Spectral algorithms have been applied to a wide array of models: Gaussian
mixture models (Hsu and Kakade, 2013), hidden Markov models (Anandku-
mar, Hsu, and Kakade, 2012), latent tree models (Song, Xing, and Parikh,
2011), community detection on a graph (Anandkumar, Ge, Hsu and Kakade,
2014), dictionary learning (Arora, Ge, and Moitra, 2014), and many others
(Anandkumar, Ge, Hsu, Kakade and Telgarsky, 2014). Of particular interest
for our purposes is the development of spectral approaches to estimating topic
models (Arora, Ge, and Moitra, 2012; Anandkumar, Liu, Hsu, Foster, and
Kakade, 2012). There are two basic approaches to spectral learning in LDA
that differ in their assumptions and methods. For clarity we focus on a simple
and scalable algorithm developed in Arora, Ge, Halpern, et al. (2013).

The discussion of these methods is unavoidably more technical than the
previous material. However, the common theme is straightforward: we are
making stronger assumptions about the model in order to obtain an algorithm
that does not suffer from problems of local modes. Importantly for our case
we use the spectral algorithm as an initialization, rather than as a procedure
to fit the model. In doing so we weaken our reliance on the assumptions
in the spectral algorithm while still achieving its desirable properties. In this
sense the spectral learning algorithms are complementary to the likelihood-
based approach we have considered here (Anandkumar, Ge, Hsu, Kakade and
Telgarsky, 2014).

6.2 An Algorithm for LDA

Here we briefly describe the intuition behind the inference algorithm of Arora,
Ge, Halpern, et al. (2013) that uses a non-negative matrix factorization
(NMF)29 to recover the model parameters from the word co-occurrence matrix,
as we show later, to separate the β parameter (the topic distributions) from the
data. The main input to the algorithm is a matrix of word-word co-occurrences
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that is of size V-by-V where V is the number of the words in the vocabulary.
Normalizing this matrix so all entries sum to 1, we get the matrix Q. If we
assume that Q is constructed from an infinite number of documents, then it is
the second-order moment matrix, and the element Qi, j has the interpretation
as the probability of observing word i and word j in the same document. We
can write the Q matrix in terms of the model parameters as

Q = E
[
βTθTθβ

]
(1)

= βT
E

[
θTθ

]
β, (2)

where the second line follows by treating the parameters as fixed but unknown.
Arora, Ge, Halpern, et al. (2013) show that we can recover βT from the rest of
the parameters using a non-negative matrix factorization.

The NMF problem is also NP-hard in general (Vavasis, 2009) and suffers
from the same local mode problems as LDA in practice (Gillis, 2014). However
recent work by Arora, Ge, Kannan, and Moitra (2012) showed that we can
provably compute the NMF for the class of matrices that satisfy the separability
condition (Donoho and Stodden, 2003). In this context, separability assumes
that for each topic there is at least one word, called an anchor word, that is
assigned only to that topic. The anchor word for topic k does not need to be in
every document about topic k, but if a document contains the anchor word, we
know that it is at least partially about topic k. Separability implies that all non-
anchor word rows of the Q matrix can be recovered as a convex combination
of the anchor rows (Arora, Ge, Halpern, et al., 2013). Thus if we can identify
the anchors, we can solve for β using convex optimization methods.

Thus the algorithm of Arora, Ge, Halpern, et al. (2013) proceeds in two
parts. First we identify the anchors, and then given the anchors we uncover the
model parameters β. Crucially these steps do not need to be iterated and are
not sensitive to the starting values of the algorithm. There are many different
approaches to these two steps that differ in computational complexity and
robustness to noise (Kumar, Sindhwani, and Kambadur, 2012; Recht et al.,
2012; Gillis and Luce, 2014; Ding, Rohban, Ishwar, and Saligrama, 2013).30

Advantages
The main advantage of the Arora, Ge, Halpern, et al. (2013) algorithm is that
we can give theoretical guarantees that it will recover the optimal parameters
(given the model and separability assumption). In practice this means that we
completely sidestep the multimodality concerns described in this chapter. The
second crucial advantage is that the method is extremely scalable. Note that
Q is V-by-V, and thus the algorithm does not increase in complexity with the
number of documents. This means that, for a fixed vocabulary size, the cost of
doing inference on a million documents is essentially the same as inference for
a hundred. This is an incredibly useful property for the big-data setting. Many
of the algorithms cited earlier for other models are similarly scalable.31
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Disadvantages
Naturally there are practical drawbacks to spectral algorithms. Because we
are substituting the observed sample moments for the population moments,
spectral methods require a lot of data to perform well. In experiments on syn-
thetic data reported in Arora, Ge, Halpern, et al. (2013), spectral methods
only approach the accuracy of Gibbs sampling at around 40,000 documents.
This is particularly troubling because as the power-law distribution of natu-
ral language ensures that we will need an incredibly large number of docu-
ments to estimate co-occurrences of highly infrequent words. In practice this
is addressed by filtering out low-frequency words before performing anchor
selection.

The second major concern is that spectral methods lean more heavily on the
model assumptions, which can lead to somewhat less interpretable models in
real data (Nguyen, Hu, and Boyd-Graber, 2014). Finally, as a practical matter
the spectral method only recovers the topic word distributions β so additional
methods are still required to infer the document-topic proportions. These can
be obtained by a single pass of Gibbs sampling or variational inference (Roberts
et al., 2014).

6.3 Spectral Learning as Initialization

Here we apply the Arora, Ge, Halpern, et al. (2013) algorithm as an initializa-
tion for the structural topic model. Using the spectral method as an initialization
weakens our reliance on the assumptions of the methods. For example, our ini-
tialization will have anchor words, but once we begin variational inference of
STM, those anchor words are free to move some of their probability mass onto
other topics. Thus we simply use the spectral algorithm to place us into an
optimal region of the space. Because the spectral method is deterministic, we
also only need to run the model once.

We apply the algorithm as an initialization for the same 100-topic model
of the Poliblog corpus used previously. Note that the approximately 13,000-
document corpus is smaller than previous findings would suggest are necessary
to match the quality of Gibbs sampling.

Figure 2.10 shows the results of the model with the spectral initialization.
Not only is the result dramatically better with respect to the lower bound than
the random and LDA initializations but also the model converged considerably
faster as well.32 Because our focus here is on introducing this class of algorithms,
we do not go through the process of reinterpreting the 100-topic model.

6.4 Future Directions

Spectral algorithms are a very active area of current research. Here we
focused on a particular algorithm that leverages non-negative matrix factor-
ization under a separability assumption. There have been several algorithmic
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Comparing Initialization Strategies

Lower Bound at Convergence
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figure 2.10. A comparison of the spectral initialization strategy to random and LDA
for the K = 100 STM models. The dashed line denotes the result of the spectral initial-
ized solution.

improvements since Arora, Ge, Kannan, and Moitra (2012) introduced the
anchor-based method (Recht et al., 2012; Kumar, Sindhwani, and Kambadur,
2012; Ding, Rohban, Ishwar, and Saligrama, 2013; Gillis and Luce, 2014;
Gillis, 2014; Zhou, Bilmes, and Guestrin, 2014). There has also been substan-
tial work applying the approach to other problem domains (Arora, Ge, Moitra,
and Sachdeva, 2012; Arora, Ge, and Moitra, 2014; Arora, Bhaskara, Ge, and
Ma, 2014; Zhou, Bilmes, and Guestrin, 2014).

A separate line of work uses higher order moments of the data along with
tools for array (tensor) decomposition (Anandkumar, Ge, Hsu, Kakade and
Telgarsky, 2014). These methods have also resulted in algorithms for an incred-
ibly rich set of applications and models. Importantly we can also use this
framework to develop algorithms for LDA with provable global convergence
guarantees (Anandkumar, Liu, Hsu, Foster, and Kakade, 2012; Anandkumar,
Hsu, Javanmard, and Kakade, 2013).33 This work differs in both the assump-
tions and methods used. Crucially the tensor method of moments approach
uses the third moments of the data, which may require an even higher sample
size to accurately estimate.34

7 conclusion

Alongside rapid increases in data and processing power have come the devel-
opment and deployment of a range of new data analysis tools. All of these tools
enable new insights and new ways of looking at data that even a decade ago
would have been difficult. In this chapter, we focus on the problem of mul-
timodality that affects many of these tools, with specific attention to topic
models for textual data. The purpose of this chapter has been to convey
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an understanding of where this multimodality comes from and then engage in
a sustained discussion about what to do about multimodality from an applied
perspective when analyzing text data.

Any modeling approach requires transparency about both process and
guiding principles. The topic models we focus on in this chapter are no dif-
ferent in this respect from more traditional statistical tools. Even in traditional
general linear models, there is always the choice of model specification in both
variables and functional form. Although multimodality brings new issues to
the table, the responsibility of the researcher to carefully validate the chosen
model is fundamentally the same. This is true regardless of whether the
choice between competing models arises due to a nonconvex latent variable
model or due to the selection of an important model-tuning parameter in a
globally convex problem. Thus even if multimodality is an unfamiliar problem,
social scientists can draw on the same set of best practices that they employ
throughout their research.

An important practical contribution of this chapter is that it extends the set
of tools available to scholars using topic models in applied research. While we
have focused on STM, many of the procedures we use are helpful for a broader
class of latent variable models. For instance, the approaches to aligning topics
and calculating stability across runs can all be applied directly to the broader
class of statistical topic models and with minor modifications to most latent
variable models.

We see great potential for the analysis of “big” data in the social sciences,
but rather than focus on the data we have taken a more methodological focus.
We think this has important implications not only for methodological devel-
opment but also could structure the types of questions we ask and the types
of data sets we seek to build. Methodologically, we think that there will be
important advances in areas such as optimal initialization strategies, which
will be especially important as our data sets grow in size. From an applied
perspective, users will be unlikely to want to wait for extended periods of time
to get even a single set of results. Advances in computational power need to
be matched with smart ways to leverage that power. From a research design
perspective, we think more focus should be put on bringing greater structure to
so-called unstructured data. In the STM we focus on the inclusion of metadata
for modeling and hypothesis testing, but this is only one possible use. Can more
direct supervision help us with issues of multimodality? Of course, in the end,
big data will be at its best when there is active dialogue between those who
pose the big question and those who might provide the big answers.

Notes

1. In this chapter, we refer to convex optimization problems and convex models as
those where the likelihood is globally concave and therefore has one maximum,
instead of a globally convex likelihood with one minimum. Our main interest,
however, is in the number of modes the likelihood has.
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2. There exist a large number of optimization procedures for finding optima of a
particular function; see Boyd and Vandenberghe (2009) for a review.

3. This model is equivalent to a normal linear regression that only models the intercept;
that is, without regressors.

4. See King (1989) for a more in-depth discussion of this example.
5. For multidimensional likelihoods, if the Hessian is positive definite, the model will

be strictly convex (only has one optimum); if it is positive semi-definite, it will be
convex (two points may share a optimum on the same plane.)

6. Other normal linear regression models that are sometimes used in big data appli-
cations include lasso (Tibshirani, 1996).

7. Although see additional strategies for the lower dimensional case in Kalai, Moitra,
and Valiant (2012).

8. Variational inference provides an approximation to the posterior distribution that
falls within a tractable parametric family, unlike EM, which provides a point
estimate of the model parameters. Here we simplify some of the differences between
these approaches by referring to variational inference as optimizing the “model
parameters” rather than the parameters of the approximating posterior. For more
information, see Jordan et al. (1998); Grimmer (2010b); and Bishop et al. (2006).

9. The posterior distribution of LDA can also be estimated using Gibbs sampling; see
Griffiths and Steyvers (2004) for more information.

10. For example, neural network models (Cochocki and Unbehauen, 1993), which
allow for layered combinations of the model matrix, are extremely useful for
modeling more complex data-generating processes (Beck, King, and Zeng, 2000).
However, they too often suffer from extremely multimodal likelihoods, and rarely
is the global maximum found (Bishop et al., 2006; De Marchi, Gelpi, and Gry-
naviski, 2004). Additional examples include Bayesian nonparametric processes
(Teh et al., 2006; Griffiths and Tenenbaum, 2004), hidden Markov models (Rabiner
and Juang, 1986; Park, 2012), switching time series models (Hamilton, 1989), and
seemingly unrelated regression models (Srivastava and Giles, 1987; Drton and
Richardson, 2004), to name a few. The item response (IRT) model (Hambleton,
1991), popular in political science (Poole and Rosenthal, 1997), is unidentified
because solutions that are rotations of each other can exist for the same set of data
(Poole and Rosenthal, 1997; Rivers, 2003). To estimate the model, a few param-
eters must first be pinned down before the rest of the parameters can be known.
In essence, there are multiple and sometimes equally likely solutions to the same
problem. While different from multimodality in the previous examples, “multiple
solutions” of an unidentified likelihood can also be classified under models with
likelihoods that have multiple modes.

11. LDA, and mixture models more generally, have K! substantively identical modes
arising from posterior invariance to label switching (i.e., permutation of the order
of the topics). This type of multimodality is only a nuisance because each of the
modes will yield the same inferences in an applied setting.

12. For example, Blei (2012) provides an excellent overview of LDA and related models,
but does not mention the issue of local optima at all. The original paper introducing
LDA mentions local optima only in passing to warn against degenerate initializa-
tions (Blei, Ng, and Jordan, 2003). Notable exceptions to this trend are Koltcov,
Koltsova, and Nikolenko (2014) and Lancichinetti et al. (2014), which investigate
the stability more directly, as do our the efforts in this chapter.
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13. That is, if P �= NP then this is the case. However, there is no formal proof that
P �= NP.

14. The exact connection between NP-hard complexity and local modes is difficult to
concisely state. Not all convex problems can be provably solved in polynomial time
(de Klerk and Pasechnik, 2002). However it is sufficient for the argument here to
establish that the hardness results imply that there is something inherently difficult
about the nature of the problem, which makes it unlikely that a computation-
ally practical algorithm with global convergence properties exists without adding
assumptions.

15. Quinn et al. (2010) present five types of validity for topic models: external, seman-
tic, discriminant, predictive, and hypothesis.

16. The CMU Poliblog corpus is available at http://sailing.cs.cmu.edu/socialmedia/
blog2008.html, and documentation on the blogs is available at http://www.sailing
.cs.cmu.edu/socialmedia/blog2008.pdf. A sample of 5,000 posts is also available in
the stm package.

17. Each model is run to convergence (a relative change of less than 10−5 in the
objective).

18. The Hungarian algorithm is a polynomial time algorithm for solving the linear
sum assignment problem. Given a K by K matrix, where entry i, j gives the
cost of matching row i to columns j , the Hungarian algorithm finds the opti-
mal assignment of rows to columns such that the cost is minimized. The Hun-
garian algorithm guarantees that this can be solved in O(K3) time (Papadim-
itriou and Steiglitz, 1998). We use the implementation in the clue package in R

(Hornik, 2005).
19. This is similar to the permutation test methodology developed in Roberts et al.

(2014). In Roberts et al. (2014) we are interested in testing whether our finding
on the effect of the binary treatment indicator is driven by including it as a topic
prevalence covariate (that is, are we at risk of baking in our conclusion?). We ran-
domly permute the treatment indicator across documents and rerun the model. In
each case we calculate the largest treatment effect observed within the data across
all topics and compare this distribution to the observed level. If we were baking in
the conclusion, the model would discover large treatment effects even though the
treatment indicator had been randomly assigned. In practice the observed effect
is substantially larger than the randomly permuted data sets, suggesting that the
model is working as expected. Here we are aligning the topics first and then com-
paring effect sizes across model runs.

20. In Roberts et al. (2014) we examined a small open-ended survey response data set
with K = 3 and found results to be extremely stable even under a more demanding
permutation test.

21. Chuang et al. (2013) presented a number of different distance metrics (e.g., testing
KL divergence, cosine metric, and Spearman rank coefficient) against human judg-
ments of similarity. They find that the cosine metric most directly matches human
judgment and that it could even be further improved using a rescaled dot product
measure that they introduced. The strong findings for the cosine metric provide an
interesting contrast to Figure 2.8 and suggest that it may perform better in other
circumstances.

22. An alternate strategy is to cast the notion of distance between topics entirely in
the realm of human judgments. This is essentially the approach of Grimmer and
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King (2011), which offers experimental protocols for evaluating similarity between
topics.

23. We mean well behaved because in practice even globally convex problems can be
sensitive to starting values due to practical issues in numerical optimization.

24. By easily parallelized, we mean that it can be easily fit into the Map-Reduce
paradigm (Dean and Ghemawat, 2008). The algorithm is still serial in the iter-
ations, but the expensive calculations within each iteration can be performed in
parallel.

25. Also crucially the collapsed sampler mixes dramatically faster than an uncollapsed
version (Carpenter, 2010; Asuncion Jr., 2011). By integrating out the topic-word
distribution β we are implicitly updating the global parameters every time we take
a new sample at the document level. As a result we only need a few passes through
the data to reach a good region of the parameter space.

26. Such a theoretical analysis is likely possible under a certain set of assumptions, but
would lead to a lengthy and technical digression here.

27. Specifically we initialize topic-word distributions with random draws from a Dirich-
let distribution and set the document-topic proportion prior mean to zero. This is
the commonly used initialization procedure in many variational algorithms for
LDA.

28. Spectral methods derive their name from the use of tools from linear algebra that are
connected to the spectral theorem. Here we use an inclusive definition of spectral
learning that includes methods using a variety of matrix and array decomposition
techniques beyond the canonical singular value decomposition.

29. NMF is similar to a singular value decomposition except that all elements of the
decomposition are constrained to be non-negative.

30. Anchor selection methods use either a sparse regression framework (Recht et al.,
2012) or appeal to geometric properties of the anchors (Kumar, Sindhwani, and
Kambadur, 2012). See Gillis (2014) for a summary of these approaches. For our
experiments here, we focus the approach defined in Arora, Ge, Halpern, et al.
(2013), which falls into the geometric properties camp. They use a combinato-
rial search based on a modified Gram Schmidt orthogonalization process for the
anchor selection. Parameter recovery then uses an exponentiated gradient descent
algorithm (Kivinen and Warmuth, 1997) with an L2 norm loss.

31. A good example is the mixed membership stochastic blockmodel, which is, loosely
speaking, LDA for community detection on a network (Airoldi et al., 2009). Huang
et al. (Forthcoming) give a spectral algorithm that learns hundreds of communities
in a network of millions of nodes in under 10 minutes.

32. It took 25 iterations to converge after the spectral initialization, compared to 60
iterations for LDA initialization and close to 200 iterations for random initializa-
tion.

33. Technically the work in Anandkumar, Liu, Hsu, Foster, and Kakade (2012) uses
an approach called excess correlation analysis, which involves two singular value
decompositions on the second and third moments of the data. The approach based
on the tensor method of moments strategy is described in Anandkumar, Ge, Hsu,
Kakade and Telgarsky (2014) and applies to a wider class of models. We group
them together here because they emerged from the same research group and use
similar techniques.

34. An excellent discussion of differing assumptions of spectral methods is given in
Ding, Ishwar, Rohban, and Saligrama (2013).
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