Social Network Analysis

Day 1

Graph theory, Centrality, Clustering,
Transitivity



SO0 8 st

Graph Theoretic
Concepts

In this section we will cover: Reachability/Connectednes

— Definitions S
— Terminology * Connectivity, flows
— Adjacency — lIsolates, Pendants, Centers
— Density concepts — Components, bi-components
* Eg — Walk Lengths, distance
Completeness * Geodesic distance
— Walks, trails, paths — Independent paths

— Cycles, Trees — Cutpoints, bridges



What is a Graph?

* G=(V,E)
— A graph is a set of vertices and edges

* Vertices, sometimes called nodes, are the actors
or entities between which relationships exist
— People
— Organizations

* Edges, sometimes called relations or lines, are
the behavior/interaction/relationship of interest
— Communicates with
— Trusts
— Uses



Kinds of Network Data
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2-mode Complete Network
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Bipartite graphs
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Complete Network Data vs.
Complete Graph

* The term “Complete Network Data” refers to
collecting data for/from all actors (vertices)
on the graph

— The opposite if Ego-Network or Ego-Centric
Network data, in which data is collected only
from the perspective an individual (the ego)

* The term “Complete Graph” refers to a
graph where every edge that could exist in
the graph, does:

— For all i, j (j>i), v(i,j) = 1



Complete Complete
Network Graph

Data




Ego Network Analysis

Network
" Analysis

Mainstream
Social Science

Ego

data perspective

 Combine the perspective of network
analysis with the data of mainstream social
science



1-mode Ego Network

Carter Administration
meetings




2-mode Ego Network

UTEP




Undirected Graphs

An undirected graph G(V,E) (often referred to simply
as a graph or a simple graph) consists of ...

— Set of nodes|vertices
V representing actors
— Set of lines|links | edges E

representing ties among pairs of actors

e An edge is an unordered
pair of nodes (u,v)

* Nodes u and v adjacent if (u,v) € E
* So E is subset of set of all pairs of nodes

Drawn without arrow heads
— Sometimes with dual arrow heads

Used to represent logically symmetric social relations
— In communication with; attending same meeting as




Directed vs. Undirected Ties

* Undirected relations
— Attended meeting with
— Communicates daily with

* Directed relations
— Lent money to

* Logically vs empirically directed
ties

Bonnie
— Empirically, even un- Bob -,

directed relations can ( Biff

be non-symmetric due

Bett
to measurement error ety

\J Betsy



Directed Graphs (Digraphs)

* Digraph G(V,E) consists of ... MC
— Set of nodes V \BD
— Set of directed arcs E
* Anarcis an ordered pair
of nodes (u,v)
* (u,v) € Eindicates u PW JF

sends arctov

* (u,v) € E does not imply
that (v,u) € E SM

e Ties drawn with arrow heads, which can be in
both directions

* Represent logically non-symmetric or anti-
symmetric social relations

— Lends money to



Transpose Adjacency matrix

* |n directed graphs, interchanging
rows/columns of adjacency matrix
effectively reverses the direction &

meaning of ties

Mary Bill John Larry

Mary | 0 |1/ 0] 1
Bl 1 To[ o] 2
John 0 1 0 0
Larry 1 0l 1 0
Gives money to
> bill |«
mary |
N
\\\\\w ‘ /////>john
larry

Mary
Bill
John
Larry

Mary Bill John lLarry

O |[1]0 1
1 (01 0
O |00 1
1 11]0 0

Gets money from

mary

4

| bill

:

larry

john




Valued Digraphs (vigraphs)

A valued digraph G(V,E,W) consists of ...
— Set of nodes V
— Set of directed arcs E

* An arcis an ordered pair of
nodes (u,v)

* (u,v) € E indicates u sends
arctov

* (u,v) € E does not imply that
(v,u)EE

— Mapping W of arcs to real values

Values can represent such things as
— Strength of relationship
— Information capacity of tie
— Rates of flow or traffic across tie
— Distances between nodes
— Probabilities of passing on information
— Frequency of interaction




Dichotomized

Jim
Jill
Jen
Joe

Valued Adjacency Matrix

Jm Jill Jen Joe
- 1 0] 1
1 - 1 0]
0] 1 - 1
1 1 -

Distances btw offices

Jim
Jill

Jen
Joe

Jm Jill Jen Joe
- 3| 9 2
3 - 1 15
9 1 - 3
2 |15 3 -

The diagram below uses solid lines to
represent the adjacency matrix, while
the numbers along the solid line (and
dotted lines where necessary)
represent the proximity matrix.

In this particular case, one can derive
the adjacency matrix by dichotomizing
the proximity matrix on a condition of
p; <= 3.

Jill

Jen




Node-related concepts

* Degree

— The number of ties incident
upon anode

— In a digraph, we have indegree
EVANDER (number of arcs to a node) and
» outdegree (number of arcs from
a node)

Pendant

— A node connected to a
component through only
one edge orarc

* Anode with degree 1
* Example:John

Isolate

4 Ay — A node which is a component
\/ on itsown
JENNIE

* E.g., Evander



Graph traversals

BRAZEY
LEE
Walk
— Any unrestricted traversing of vertices STEVE
across edges (Russ-Steve-Bert-Lee-Steve)
Trail -
— A walk restricted by not repeating an edge
or arc, although vertices can be revisited RUSS GERY
(Steve-Bert-Lee-Steve-Russ) MICHAEL
HARRY
Path N
DON

— A trail restricted by not revisiting any vertex (Steve-
Lee-Bert-Russ)

Geodesic Path foLLy

— The shortest path(s) between two vertices (Steve-
Russ-John is shortest path from Steve to John)

JOHN

PAULINE
Cycle ~, -
— Acycleis in all ways just like a path except that it
ends where it begins
— Aside from endpoints, cycles do not repeat nodes AN CARO

— E.g. Brazey-Lee-Bert-Steve-Brazey JENNIE



Length & Distance

* Length of a path (or
any walk) is the
number of links it has

* The Geodesic Distance
(aka graph-theoretic
distance) between two
nodes is the length of
the shortest path

— Distance from 5 to 8 is 2,
because the shortest
path (5-1-8) has two links




Geodesic Distance Matrix
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Subgraphs

* Set of nodes
— lIsjust a set of nodes
e Asubgraph

— Is set of nodes together
with ties among them

* An induced subgraph
— Subgraph defined by a set

of nodes D ¢
— Like pulling the nodes and
ties out of the original a
graph
f e

Subgraph induced by considering
the set {a,b,c,f,e}



Components

* Maximal sets of nodes in which every
node can reach every other by some path
(no matter how long)

* A graph is connected if it has just
one component

It is relations (types of tie) that define
different networks, not components. A network
that has two components remains one

(disconnected) network.




Components in Directed Graphs

* Strong component

— There is a directed path from each member of
the component to every other

 Weak component

— There is an undirected path (a weak path)
from every member of the component to
every other

— Is like ignoring the direction of ties — driving
the wrong way if you have to



A graph with 1 Weak Component
& 4 Strong
components




Cutpoints and Bridges

* Cutpoint
— A node which,
if deleted,
would
increase the

number of
components

* Bridge
— A tie that, if
removed, would
Increase
the number

of
components

If a tie is a bridge, at least one of
its endpoints must be a
cutpoint




Data Representation

« Adjacency matrix
» Edgelist
« Adjacency/node list



data representation — adjacency matrix

Representing edges (who is adjacent to
whom) as a matrix

A; = 1if node i has an edge to node j
=0 if node i does not have an edge to |

A

A. = 0 unless the network has self-loops

A; = A; if the network is undirected, >
or if i and j share a reciprocated edge



data representation — adjacency matrix

\)/S\/

Issues:

_ O = O O

o O o +~» O
©c O +» = O

1. Your dataset will likely contain network data in a non-matrix
format;

2. Large, sparse networks take way too much space if kept in a
matrix format



data representation — adjacency matrix

Which adjacency matrix represents this network?

A) 0O 1 1

(0 0 1 Q
B) 0 0 1
1 00 e




data representation — edgelist

Edge list

2,3 )

2,4 . R
5 U\
e \ o/
4,5 5 4
5, 2

5,1



data representation — edgelist with weights

Source Destination Weight

B A 1
B E 1
G C A 1
C E 1
C D 1

Note: Weights are optional.



data representation — nodelist

Adjacency list
is easier to work with if

network is 3
large 1 '®)
sparse

quickly retrieve all neighbors 0Oy

for a node 5
1:
2:34
3:24
4:5
5:12



Ego
Networks

Complete
Networks

Cognitive

Social
Structures

Snowball
Sampling

Secondary
Data

Network Data Collection

Can use standard sampling techniques (e.g. random sample)
Each respondent describes their own relationships (name generators).

Boundary specification?
Each respondent reports their own relationships within the network.
Could use a roster that people use to identify contacts.

AN

e Ask not only for a person’s own relationships, but also for perceived
relationships between other people in your population.

AN

AN

¢ Individuals included in the sample identify contacts (friends, sexual
partners, etc.) who are added to the study at the next step.

e Often used in preventive medicine.

e Digital traces, social media, hyperlink networks and many more.

AN




Centrality, Clustering &Transitivity



networks are complex

Can we understand them better without a “ridiculogram”?




simplifying networks — undirected graph

Consider a classroom with 30 students. How many different possible networks
could exist to represent the friendships in that classroom?



simplifying networks — undirected graph

Consider a classroom with 30 students. How many different possible networks could exist to
represent the friendships in that classroom?
n!

(1) How many possible ties (N = 30)? nCl — n—k)!
@i 870 o
v ) —2)!
3092 = “]2—'2 =5 = 435 possible dyads/edges
) - n! n(n—1) f
Equivalent to binomial coefficient: = ork=2
kEl(n — k)! 2

(2) How many possible graphs (not digraphs)?

n
Therefore, a set with \ , / pairs of distinct points, if loops/multiple edges are not allowed, each pair
determines one possible edge (2 for directed graphs).

mn
This set has 2(2) possible graphs.
n(n—1) 435 158
That'’s equivalent to: 2 2 = 2 > [2 Y eeny 2



simplifying networks — undirected graph

Consider a classroom with 30 students. How many different possible networks could exist to
represent the friendships in that classroom?

(1) How many possible ties (N = 30)?

30!
Bo-2)i 87

2! /2

Equivalent to: n! _ n(n - 1) fork=2
H(n—k) 2
(2) How many possible graphs (not digraphs)?

3092 =

0
= 43 possible dyads/edges

zn(n— 1) _ 2870

For undirected networks: combinatorics;
For directed networks: permutations;




How do we determine who is
“Important” in a Network?

How to describe an individual position in the network?
- Degree (number of connections)

- Clustering

- Distance to other nodes

- Centrality, influence, power



describing networks

degree:
3 number of connections k
P e — Agj
2 Z g
j
2 |
number of edges Zk = ZZAU — ;

1 2m
ieaideoree. (k) = — Dk ==
el



describing networks

degree:
3 number of connections k

2 ; ki :;Azj

degree sequence {1,2,2,2,3,4}

degree distribution  Pr(k) = [(17 6) ) (27 g) ’ (3’ 6) : (4’ 6)]
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describing networks

10

31

28

32

29

25 —(26
24 30
27
34 15
16
19
33
21
23

0.35

0.3r

0.251

0.2r

Pr(k)

0.151

0.1r

0.051

-

h MO [T

0123456 7 8 91011121314151617 18

degree, k



describing networks

degree:
number of connections k

o P
J

when does node
degree matter?



describing networks

spreading processes on networks

biological (diseases)
* SIS and SIR models

social (information)
SIS, SIR models
e threshold models

threshold

X

susceptible-infected-susceptible

=@

susceptible-infected-recovered




describing networks

cascade

epidemic
branching process
spreading process

Ro = net reproductive rate
= average degree (k)

RO — 0.923 5 6 0 Caveat:
R, is the basic reproduction ignores network structure,
number: the number of dynamics, etc.

infected people an infected
person can reproduce.



describing networks

A
A

Ry <1 el Roo il

“sub-critical” “critical” “super-critical”
small outbreaks outbreaks of all sizes global epidemics




describing networks

vaccination
disease RO minimum

Measles 5-18 90-95%
Chicken pox  7-12 85-90%

Polio 5=/ 82-87%
Smallpox |.5-20+ /0-80%
HIN | 0540

influenza

all super-critical



describing networks

how could we halt the spread?
* break network into disconnected pieces

/.

e o
@




describing networks

what promotes spreading?
* high-degree vertices*
* centrally-located vertices

homogeneous in degree

heterogeneous in degree
s ®

L
Sy e B E00E












Centrality (node-level)

A measure of how network structure and
position contributes to a node’s
Importance

Value associated with every node

Many different measures which capture
different aspects

Can be characterized by the nature of the
flow



describing networks

position = centrality:
measure of positional
“iImportance”

harmonic centrality

closeness centrality

geometric

betweenness centrality

degree centrality
eigenvector centrality

PageRank

connectivity

Katz centrality

many many more. ..



Centrality measures

Degree
— how well connected; direct influence

Closeness
— how far from all others
— how long information takes to arrive

Betweenness
— brokerage, gatekeeping, control of info

Eigenvector

— being connected to the well connected (a
popularity & power measure)



Who's Important in this network?







Degree Centrality

 Index of exposure to what is flowing
through the network

* Interpreted as opportunity to influence &
be influenced directly

* Predicts variety of outcomes from virus
resistance to power & leadership to job
satisfaction to knowledge



Degree

Bob Con Joe Kim LinPam PatPete Red Rick RgrSally Sam Sue Tim Tylr Will

Bob
Con

Joe

Kim

Lin

Pam
Pat

1

Pete

Red

0

Rick
Rgr

0

1

Sally

Sam

Sue

Tim

0
0

Tylr

1

Will




Degree Centrality with Directed Data

* Indegree- The number of ties directed to the
node

 Qutdegree- The number of ties that the node
directs to others



Degree Centrality with Valued
Data

OUTDEGREE

MT6 MT71 MT72 MT83 MT93 MT210 MT215 MT272
MT6

0 100 500 1600 1100 300 2450 1500 7550

MT71
0 0 0 0 0 0 0 0 0

MT72
0 0 0 0 0 0 0 0 0

MTS83
0 0 0 0 0 0 0 0 0

MT93
0 0 0 0 0 0 0 0 0

MT210
0 0 0 0 0 0 0 0

MT215
0 0 0 0 0 0 0 0

MT272
0 0 0 0 0 0 0 0
INDEGREE mmm) O 100 500 1600 1100 300 2450 1500 0

NOTE: some software may binarize networks before calculating degree with valued data.



indegree outdegree

Best measure if importance means:
—> how popular you are

—> how many people you know

It is a local measure!



formula for degree (normalized)

k.
D/ ?
C (z)—N_1
® ®
®
® & @ ® @
®
039 @



degree is not everything...
@ ©® © e o
X Y

We want to capture:

—> Being close to all nodes



Closeness




Closeness Centrality

* |s an inverse measure of centrality

 The extent to which a node is close from
all other nodes

 Index of expected time until arrival for a
given node of whatever is flowing through
the network

—Gossip network: central player hears things
first, on average



describing networks

position = centrality:
harmonic, closeness
centrality

importance = being In
“center” of the network

1 1

sl B 1)

J71
!5 iéhgth of éhortéstrpath !

distance: dij = {

harmonic C; =

E;j if 7 reachable from ¢

Boldi & Vigna, arxiv:1 308.2140 (2013) o0~ otherwise

Borgatti, Social Networks 27, 55—71 (2005)



closeness centrality formula
4 —1

C i) = > d (i)

Normalized
L CY®)
CC (i) =
/'é

All other nodes in the network

What happens to isolates?



GEODESIC DISTANCE MATRIX used to Calculate Closeness

Bob Con Joe Kim Lin Pam PatPete Red Rick Rgr Sally Sam Sue Tim Tylr Will

36

40

46

36
47

41

35
47

39

30
45

49

44
39

49

31

2

4

3

Bob

Con

2

2

Joe

Kim

Lin

Pam
Pat

1

Pete

Red

3

Rick
Rgr

2

1

Sally

Sam

Sue

Tim

4
2

Tylr

Will

NOTE: if data is directed, you can calculate in-closeness and out-closeness centrality



closeness centrality example

) e o 9 @

A B C D E

Edm,j)

C.(A) = | —

_[1+2+ 3+4]1_lg

-1
] _04
4 4




Closeness in directed networks

choose a direction
in-closeness (e.g. prestige in citation networks)
out-closeness

usually consider only vertices from which the
node / in question can be reached

@)
Oo—0

Our® o)
oQ\o
o



Closeness in directed networks

In-Closeness centrality measures the degree to which a node can be
easily reached *from* other nodes (i.e. using edges coming in
towards the node) where easily means shortest distance.

Out-Closeness centrality measures the degree to which a node can
easily reach other nodes (i.e. using edges out from the node), and
easily again means shortest distance.

If there is no (directed) path between vertex v and i then the total
number of vertices is used in the formula instead of the path length.



Eigenvector
00000000




Eigenvector Centrality

Node has high score if connected to many

nodes that are themselves well connected
(you are important to the extent your friends are important)

Indicator of popularity,
— Google Page Rank

Like degree, is index of exposure, risk

However, tends to identify centers of large
cliques



eigenvector centrality

position = centrality:
PageRank; Katz, eigenvector
centrality

importance = sum of
importances of nodes that
point at you

or, the left eigenvector of

AX — N



A node is important if it is connected
to important nodes

= > X; X, = ZAUX AX = AX
JEA(7)

The solution (when exists) gives the node
centrality. We take the highest A

Note: Bonacich eigenvector centrality includes a parameter 3
which allows one to adjust how important are neighbours in different
path lengths to a node’s centrality versus how important is the
number of neighbours in path length = 1; high 3 leads to low
attenuation and the global network structure matters; low 3 yields
high attenuation and only the immediate friends matter. When 3 = 0,
equivalent to degree centrality.



Bonacich eigenvector centrality

c,(p)= E(a + /))Cj)Aji

c(B)=a(l - BA) ' Al

* A is a normalization constant

* 3 determines how important the centrality of your neighbors
is

* A is the adjacency matrix (can be weighted)

I is the identity matrix (1s down the diagonal, 0 off-diagonal)

*1 is a matrix of all ones.



Bonacich Power Centrality: attenuation factor §

small 3 =» high attenuation
only your immediate friends matter, and their
importance is factored in only a bit

high p =» low attenuation

global network structure matters (your friends,
your friends' of friends etc.)

B = o yields simple degree centrality

a(B)= @ A,



Bonacich Power Centrality: examples

B=.25 @@@
B=-.25 @@@

Why does the middle node have lower centrality than its
neighbors when § is negative?



NOTE: Node with highest eigenvector
centrality is not always node with highest
degree centrality

Highest eigenvector
centrality Highest degree

centrality



Who is more important in the networks below? X or Y

¥ O O
O——0L—0—0)
Y
% > > o @&
Y X

O O
We want to capture:

—— Ability to broker between groups

—— Likelihood that information originating
anywhere in the network reaches you



ability to broker between groups

Hey | O
( 0) bw‘,\,bss ONLY
A YOU.



ability to broker between groups




Betweenness




Betweenness Centrality

« How often a node lies along the shortest path between
two other nodes

* Index of potential for gatekeeping, brokering, controlling
the flow, and also of liaising otherwise separate parts of
the network

 Interpreted as indicating power and access to diversity of
what flows; potential for synthesizing



formula

i<k
djr # of shortest paths between j and k

d;r (i) # of shortest paths between j and k that go
through i

Normalized

~

CP (i) = ¢

AR

Number of pairs of vertices excluding i

For directed graphs: when normalizing, we have (N-1)*(N-2) instead of
(N-1)*(N-2)/2, because we have twice as many ordered pairs as
unordered pairs.



Betweenness in directed networks

A node does not necessarily lie on a
geodesic (shortest path) from j to k if it lies
on a geodesic from kto

j

o—



Betweenness in directed networks




Betweenness in directed networks

@ For example: for node 2, the (n —1)(n —2)/2=5(5—-1)/2=10
terms in the summation in the order of 13, 14, 15, 16, 34, 35, 36, 45,
46, 56 are

1+9+9+9+9+1+9+9+9+Q_15

1 1 1 1 1 2 1 1 1 1
@ Here the denominators are the number of shortest paths between pair of
edges in the above order and the numerators are the number of shortest

paths passing through edge 2 between pair of edges in the above order.



[':i{_'u'l'l‘\, cClol

Betweenness

Closeness




Centrality indices are
answers to the question
"What characterizes an
important node?”

The word "importance”
has a wide number of
meanings, leading to
many different definitions
of centrality.

C Eigenvector



Which nodes are most “central”?

Definition of ‘central’ varies by context/
purpose.

L ocal measure:
—— degree

Relative to the rest of network:
— betweenness

— closeness

—— eigenvector (Bonacich power
centrality)



Data Types:
Centrality

Disconnected or Binary or Valued Directed or
Connected Undirected
Degree Both Both Both
Closeness Strongly Binary Both
Connected
Betweenness Both Binary Both
Eigenvector Connected Both Undirected




check your understanding

« generally different centrality metrics will be positively correlated
* when they are not, there is likely something interesting about the network
* suggest possible topologies and node positions to fit each square

Low Low Low
Degree Closeness Betweenness

High Degree

High Closeness

High
Betweenness



» generally different centrality metrics will be positively correlated
* when they are not, there is likely something interesting about the network
* suggest possible topologies and node positions to fit each square

Low
Degree

High Degree

High Closeness Key player tied to

important/active
players
High Ego's few ties are
Betweenness crucial for network
flow

Low
Closeness

Embedded in cluster
that is far from the
rest of the network

Very rare cell.
Would mean that
ego monopolizes
the ties from a small
number of people to
many others.

Low
Betweenness

Ego's connections
are redundant -
communication
bypasses him/her

Probably multiple
paths in the
network, ego is near
many people, but so
are many others



Fun Applications of
Centrality

« Oracleofkevinbacon.org

— 6 degrees of Kevin Bacon
— Can you find anyone with a Bacon score > 47

* Theyrule.net
— Board overlaps of top corporations

« Oilmoney.priceofoil.org

— Tracking petroleum industry campaign
contributions



Global Properties/Graph-level approach:
Centralization

To measure the degree to which the graph as a whole is
centralized, we look at dispersion of centrality

How much variation is there in the centrality scores among
the nodes?

Freeman’ s general formula for centralization (can use other
metrics, e.g. gini coefficient or standard deviation):

maximum value in the network

2, [Con’]-Co(0)]
(N-D(N-2)]

C, =



MOost
decentralized

vast wilderness

of iIn-between

MOSt
centralized



degree centralization examples

C, = 0.167



real-world networks

example financial trading networks

high in-centralization: low in-centralization:
one node buying from buying is more evenly
many others distributed



“model in which opinion flows only from the media to influentials, and then only
from influentials to the larger populace is deprecated”

Influentials, Networks, and Public Opinion
Formation |

i
DUNCAN J. WATTS
PETER SHERIDAN DODDS* 2007

o0 * classic information marketing

O o)
x / O _
O e i\i;')o * message saturation

O 1 / /0 * degree is most important

ﬁ @
R
O//'f? ; \O
OO/ '/é\o

broadcast influence



“large cascades of influence are driven not by influentials, but by a critical
mass of easily influenced individuals.”

Influentials, Networks, and Public Opinion
Formation

DUNCAN J. WATTS
PETER SHERIDAN DODDS* 2007

* “network’ (decentralized) marketing
S AR
(I) -\.Q\<’}) * high-degree = “opinion leader”
Q+———
3 j ﬁ O"‘/o * high-degree alone = irrelevant

* a cascade requires a legion of
susceptibles (a system-level property)

network influence






what have we learnt from it...
Baker & Faulkner (1993): Social Organization of conspiracy

(reconstructs communication networks in three well-known price-fixing
conspiracies in the heavy electrical equipment industry to study social
organization)

Questions: How are relations organized to facilitate illegal behavior?

Pattern of communication maximizes concealment, and predicts the criminal
verdict.

Inter-organizational cooperation is common, but too much ‘cooperation’ can thwart
market competition, leading to (illegal) market failure.

lllegal networks differ from legal networks, in that they must conceal their activity
from outside agents. A “Secret society” should be organized to (a) remain
concealed and (b) if discovered make it difficult to identify who is involved in the
activity

The need for secrecy should lead conspirators to conceal their activities by creating
sparse and decentralized networks.



Decentralized Networks

OO~ C——E—C

Centra]lznd Metworks
Hub-and-Spoke

2 (@




- reconstructs communication networks in three well-known price-fixing conspiracies in

the heavy electrical equipment industry to study social organization;
- findings:

structure of illegal networks is driven by need to maximize concealment, rather
than efficiency;

structure also contingent on information-processing requirements;

person centrality in networks predicts verdict, sentence and fine.

l Information-Processing
Requirement

| Organization |
Oa::ﬂn
Concealment Centralized Decentralized

networks

Coordination Decentralized Centralized
| networks networks

Figure 1. Concealment Versus Coordination: Theoretical
Expectations and experimental results




Clustering

A feature of interest when studying a network is its transitivity, i.e., if
¢t~ 7 and j ~ k then ¢ ~ k.

If node i is connected to nodes j and k, how often is it the case that j
and k are also connected?

When i, 7, and k are all connected to each other they form a triangle.




Clustering

What fraction of my friends are friends of each other?
(1)Calculate clustering for a particular node;

(1)Average individual clustering coefficients across the network (it weights
clustering node by node)

(2)Overall clustering: out of all possible triplets i |n the network, what the
frequency with which it i

Average tends to 1

Overall tends to O



local clustering coefficient

If ¢ is a node with k; > 2 then its local clustering coefficient is defined
as:

Number of triangles containing ¢

C’L' — . . AE)
Number of pairs of neighbours of
t
- Ski(ks — 1)

where tz = [AS]“

Possible triangles including node 1:
{1-2-3),(1-3-5),(1 —2-25),
/\ (1-5—-4),(1-2—-4),(1-3—-4)}.
Actual triangles:
\/ {(1-2-3),(1-3-5)}

C, =

1
3



global clustering coefficient

There are two alternative definitions of the global clustering

coefficient:
Version 1: Average Clustering
Coefficient . N
C = <Cz> — NZC}
1=1
Version 2: Overall Clustering
Coefficient 3
X
C =

number of connected triples

where t is the total number of triangles. If there are no
self-loops then ¢ = strace(A?).



In adjacency matrix notation,

D wey v, lu,w

2w wev Gu,ou,

Cv) =

The (average) clustering coefficient is defined as

Note that

is the number of triangles involving v in the graph. Similarly,

5 Qo0 A v

u,weV

is the number of 2-stars centred around v in the graph. The
clustering coefficient is thus the ratio between the number of
triangles and the number of 2-stars. The clustering coefficient
describes how "locally dense” a graph is. Sometimes the clustering

coeflicient is also called the transitivity.



Soclal balance theories

Central question in modeling social networks from structural individualism:

how can the global properties of the network be understood from
local properties?

E.g. theory of clusterability of balanced signed graphs:

(1) Harary’s theorem says that a complete signed graph is
balanced iff the nodes can be partitioned into two sets, so that all ties
within sets are positive, and all ties between sets are negative;

(2) Heider’s work on cognition of social situations (Person-
Object-Other), interested in correspondence between P and O, given their
beliefs (like/dislike) about Object X [dyads PO, PX, OX];

(3) David & Leinhardt generalized conditions for clusterability of
signed graphs and structures of ranked clusters;

These theories pose the problem: how can triadic properties of signed
graphs (aggregate properties of all subgraphs of 3 nodes) determine
global properties of signed graphs.



argument that unbalanced triads tended towards balance, which implied
all intransitive triads would disappear from the network. not what we find

empirically...

+ +

+ +

ol b

(F)(+)(+) = (+)

()-)) = ()

(F)C)(+) = ()

“A friend of a

Balanced friend is a friend”

Balanced “An enemy of my
enemy is a friend”

Unbalanced "An enemy of my
enemy is an

enemy”

“A Friend of a
Friend is an
enemy”

Unbalanced



Transitivity

The tendency for a tie from i to k to occur at greater than chance
frequencies if there are ties from i to j and from j to k — the i to j tie
completes “transitively” the triple consisting of the tie from i to j and the tie
from j to k.

Transitivity depends on triads, subgraphs formed by 3 nodes

Potentially Intransitive Transitive
transitive



Simmelian Ties

* These are the ties that make up transitivity

« Simmelian ties are [reciprocated] transitive
triples

CD,DE,EC is one set of simmelian ties
CT,TE,EC is another set

All other sets are not simmelian
C

B




measuring transitivity — clustering index

A measure for transitivity is the (global) transitivity index,
defined as the ratio

B t Transitive triads
~ t Potentially transitive triads

Transitivity Index

(Note that “4A” means the number of elements in the set A.)
This also is sometimes called a clustering index.

This is between 0 and 1; it is 1 for a transitive graph.

For random graphs, the expected value of the transitivity index
is close to the density of the graph ( );

for actual social networks,

values between 0.3 and 0.6 are quite usual.



local structure and triad counts

The studies about transitivity in social networks

led Holland and Leinhardt (1975) to propose that

the local structure in social networks can be expressed

by the triad census or triad count, the numbers of triads of any kinds.

For (nondirected) graphs, there are four triad types:

© © o @
© O o0 -0 OO0

Empty One edge Two-path / Triangle
Two-star



local structure and triad counts

A simple example graph triad type

with 5 nodes.

(3)
do

triangle
one edge
one edge
two-star
one edge
empty
two-star
one edge
one edge

(@0 I ) T 1 N T S e S N e I
A WP WLWONNDN DN
(262 NG B 62 BEE NG ) BEE S OO R =

In this graph, the triad census is (1,5,2,1)
(ordered as: empty — one edge — two-star — triangle).



MAN coding for triad census

Holland and Leinhardt (1975) proposed the following MAS coding.

(1) Mutual ©O—0
(2) Asymmetric ®—@

(3) Null ® O

the scheme a further identifying letter: Up, Down, Cyclical, Transitive.

E.g. 120 has 1 mutual, 2 asymmetric, 0 null dyads and the Down
orientation



triad census

(0) (1) (2) 3) (4)

[ ] [ ] [ ]
[ ] 0/ f [ ]
003 012 102
@
Transitivity = 030C / \4
Closure = 030D * °
Similarity = 030T 021D

A\ ’ ‘

[ J
Q/(—)Q
120C
Transitivity: tie i to k to occur if ties from i to j and j to k exist;

Closure: tie i to j to occur if persons k with ties to both i and j exist;
Similarity: tie i to j to occur if persons k to whom i and j have ties exist;

(6)

Transitive

Mixed




triad census - example

Type Number of triads

1-003 21

2-012 26
3-102 1
4-021D

5-021U
6 - 021C
7-111D

1

1

5

3

2

8-111U 5
9 -030T 3
1

1
1
1

1

1

1

10-030C
O 11-201

/ 12 -120D
O O 13 - 120U
14 - 120C

15-210
16 - 300

Sum (2 - 16): 63



« triads define behavioral mechanisms: we can leverage the distribution of triads
in a network to test whether the hypothesized mechanism is active.

«  How?
(1) Count the number of each triad type in a given network

(2) Compare to the expected number, given some (random) distribution of ties in
the network;

« Statistical approach proposed by Holland and Leinhardt is now obsolete.
Statistical methods have been proposed for probability distributions of graphs
depending primarily on triad counts, but complemented with stat counts and
nodal variables, along with some higher-order configurations essential for
adequate modeling of empirical network data.



