
Social Network Analysis

Day 1
Graph theory, Centrality, Clustering, 

Transitivity



Graph Theoretic
Concepts

• In this section we will cover:
– Definitions
– Terminology
– Adjacency
– Density concepts

• E.g,
Completeness

– Walks, trails, paths
– Cycles, Trees

– Reachability/Connectednes
s

• Connectivity, flows
– Isolates, Pendants, Centers
– Components, bi-components
– Walk Lengths, distance

• Geodesic distance
– Independent paths
– Cutpoints, bridges



What is a Graph?
• G = (V,E)

– A graph is a set of vertices and edges
• Vertices, sometimes called nodes, are the actors 

or  entities between which relationships exist
– People
– Organizations

• Edges, sometimes called relations or lines, are 
the  behavior/interaction/relationship of interest

– Communicates with
– Trusts
– Uses
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1-mode Complete Network

Data collected by Cross

1-mode Complete Network 

Information 
flow within 
virtual group



2-mode Complete Network

Data compiled from newspaper 
society  pages by Davis, Gardner &
Gardner



Bipartite graphs
• Used to

represent  2-
mode data

• Nodes can be  
partitioned into  
two sets  
(corresponding
to  modes)

• Ties occur only  
between sets,
not  within



Complete Network Data vs.
Complete Graph

• The term “Complete Network Data” refers to
collecting data for/from all actors (vertices) 
on  the graph
– The opposite if Ego-Network or Ego-Centric  

Network data, in which data is collected only 
from  the perspective an individual (the ego)

• The term “Complete Graph” refers to a 
graph  where every edge that could exist in 
the  graph, does:
– For all i, j (j>i), v(i,j) = 1
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Ego Network AnalysisEgo Network Analysis

• Combine the perspective of network analysis 
with the data of mainstream social science

Network
Analysis

Mainstream
Social Science

Ego
Networks

perspectivedata

• Combine the perspective of network 
analysis  with the data of mainstream social
science



1-mode Ego Network
Carter Administration
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Data courtesy of Michael
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2-mode Ego Network



Undirected Graphs
• An undirected graph G(V,E) (often referred to simply 

as  a graph or a simple graph) consists of …
– Set of nodes|vertices 

V  representing actors
– Set of lines|links|edges E

representing ties among pairs of actors
• An edge is an unordered 

pair  of nodes (u,v)
• Nodes u and v adjacent if (u,v) Î E
• So E is subset of set of all pairs of nodes

• Drawn without arrow heads
– Sometimes with dual arrow heads

• Used to represent logically symmetric social relations
– In communication with; attending same meeting as



Directed vs. Undirected Ties

• Undirected relations
– Attended meeting with
– Communicates daily with

• Directed relations
– Lent money to

• Logically vs empirically directed
ties
– Empirically, even un-

directed relations can
be non-symmetric due 
to  measurement error
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Biff



Directed Graphs (Digraphs)
• Digraph G(V,E) consists of …

– Set of nodes V
– Set of directed arcs E

• An arc is an ordered pair 
of  nodes (u,v)

• (u,v) Î E indicates u
sends  arc to v

• (u,v) Î E does not imply 
that  (v,u) Î E

• Ties drawn with arrow heads, which can be in 
both  directions

• Represent logically non-symmetric or anti-
symmetric  social relations
– Lends money to



Transpose Adjacency matrix
• In directed graphs, interchanging  

rows/columns of adjacency matrix 
effectively  reverses the direction & 
meaning of ties

Mary  Bill John Larry Mary  Bill  John Larry
Mary  
Bill  

John  
Larry

Mary  
Bill  

John  
Larry

0 1 0 1
1 0 0 1
0 1 0 0
1 0 1 0

0 1 0 1
1 0 1 0
0 0 0 1
1 1 0 0

Gives money to Gets money from

john

bill
mary

larry
john

bill
mary

larry



Valued Digraphs (vigraphs)

• A valued digraph G(V,E,W) consists of …
– Set of nodes V
– Set of directed arcs E

• An arc is an ordered pair of 
nodes (u,v)

• (u,v) ∈ E indicates u sends 
arc to v

• (u,v) ∈ E does not imply that 
(v,u) ∈ E

– Mapping W of arcs to real values

• Values can represent such things as
– Strength of relationship
– Information capacity of tie
– Rates of flow or traffic across tie
– Distances between nodes
– Probabilities of passing on information 
– Frequency of interaction
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Valued Adjacency Matrix
• The diagram below uses solid lines to 

represent the adjacency matrix, while 
the numbers along the solid line (and 
dotted lines where necessary) 
represent the proximity matrix.

• In this particular case, one can derive 
the adjacency matrix by dichotomizing 
the proximity matrix on a condition of 
pij <= 3.

Dichotomized
Jim Jill Jen Joe

Jim - 1 0 1
Jill 1 - 1 0
Jen 0 1 - 1
Joe 1 0 1 -

Distances btw offices
Jim Jill Jen Joe

Jim - 3 9 2
Jill 3 - 1 15
Jen 9 1 - 3
Joe 2 15 3 -

Jim

Jill

Jen

Joe

3

2

9

1

15
3



Node-related concepts
• Degree

– The number of ties incident 
upon  a node

– In a digraph, we have indegree  
(number of arcs to a node) and  
outdegree (number of arcs from 
a  node)

• Pendant
– A node connected to a  

component through only 
one  edge or arc
• A node with degree 1
• Example: John

• Isolate
– A node which is a component 

on  its own
• E.g., Evander
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Graph traversals
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• Walk
– Any unrestricted traversing of vertices 

across edges  (Russ-Steve-Bert-Lee-Steve)

• Trail
– A walk restricted by not repeating an edge 

or arc, although vertices can be revisited 
(Steve-Bert-Lee-Steve-Russ)

• Path
– A trail restricted by not revisiting any vertex (Steve-

Lee-Bert-Russ)

• Geodesic Path
– The shortest path(s) between two vertices (Steve-

Russ-John is shortest path from Steve to John)

• Cycle
– A cycle is in all ways just like a path except that it 

ends where it begins
– Aside from endpoints, cycles do not repeat nodes
– E.g. Brazey-Lee-Bert-Steve-Brazey



Length & Distance
• Length of a path (or

any  walk) is the 
number of  links it has

• The Geodesic Distance  
(aka graph-theoretic  
distance) between two  
nodes is the length of
the  shortest path
– Distance from 5 to 8 is 2,  

because the shortest 
path  (5-1-8) has two links
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• Length of a path (or any 
walk) is the number of 
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• The Geodesic Distance 
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distance) between two 
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Geodesic Distance Matrix

a b c d e f g
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0 1 2 3 2 3 4

1 0 1 2 1 2 3

2 1 0 1 1 2 3

3 2 1 0 2 3 4

2 1 1 2 0 1 2

3 2 2 3 1 0 1

4 3 3 4 2 1 0



Subgraphs
• Set of nodes

– Is just a set of nodes
• A subgraph

– Is set of nodes together 
with  ties among them

• An induced subgraph
– Subgraph defined by a set 

of  nodes
– Like pulling the nodes and  

ties out of the original
graph
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Subgraphs

• Set of nodes
– Is just a set of nodes

• A subgraph
– Is set of nodes together with 

ties among them

• An induced subgraph
– Subgraph defined by a set of 

nodes
– Like pulling the nodes and 
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Components

• Maximal sets of nodes in which every 
node  can reach every other by some path 
(no  matter how long)

• A graph is connected if it has just 
one  component

It is relations (types of tie) that define
different networks, not components. A network
that has two components remains one
(disconnected) network.



Components in Directed Graphs

• Strong component
– There is a directed path from each member of 

the  component to every other
• Weak component

– There is an undirected path (a weak path) 
from  every member of the component to 
every other

– Is like ignoring the direction of ties – driving 
the  wrong way if you have to
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Cutpoints and Bridges
• Cutpoint

– A node which, 
if  deleted, 
would  
increase the  
number of  
components

• Bridge
– A tie that, if 

removed,  would
increase
the number
of  
components

If a tie is a bridge, at least one of 
its  endpoints must be a
cutpoint



Data Representation

• Adjacency matrix
• Edgelist
• Adjacency/node list



!  Represen)ng!edges!(who!is!adjacent!to!
whom)!as!a!matrix!
!  Aij!=!1!if!node!i!has!an!edge!to!node!j!

!!!=!0!if!node$i$does!not!have!an!edge!to!j!

!  Aii!=!0!unless!the!network!has!self`loops!

!  Aij!=!Aji!if!the!network!is!undirected,!
or!if!i!and$j!share!a!reciprocated!edge!

data representation – adjacency matrix



data representation – adjacency matrix

1(

2(

3(

4(5(

0! 0! 0! 0! 0!
0! 0! 1! 1! 0!
0! 1! 0! 1! 0!
0! 0! 0! 0! 1!
1! 1! 0! 0! 0!

A!=!

Issues:

1. Your dataset will likely contain network data in a non-matrix 
format;

2. Large, sparse networks take way too much space if kept in a 
matrix format



data representation – adjacency matrix

9/21/15! Jure!Leskovec!and!Lada!Adamic,!Stanford!CS224W:!Social!and!Informa)on!Network!Analysis! 60!

A)'

B)'

C)'

Which adjacency matrix represents this network?



data representation – edgelist

!  Edge!list!
!  2,!3!
!  2,!4!
!  3,!2!
!  3,!4!
!  4,!5!
!  5,!2!
!  5,!1!
!

1(

2(

3(

4(5(
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Edgelist Data Format 

  
B A 1 

B E 1 

C A 1 

C E 1 

C D 1 

A 

C B D 

E 

Source Destination Weight 

Note: Weights are optional. 

data representation – edgelist with weights



data representation – nodelist
!

!  Adjacency!list!
!  is!easier!to!work!with!if!
network!is!
!  large!
!  sparse!

!  quickly!retrieve!all!neighbors!
for!a!node!
!  1:!
!  2:!3!4!
!  3:!2!4!
!  4:!5!
!  5:!1!2!

1(

2(

3(

4(
5(



Network Data Collection
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Some strategies for network data collection 

ͻ Can use standard sampling techniques (e.g. random sample) 
ͻ Each respondent describes their own relationships (name generators). 

Ego 
Networks 

ͻ Boundary specification?  
ͻ Each respondent reports their own relationships within the network. 
ͻ Could use a roster that people use to identify contacts. 

Complete 
Networks 

ͻ Ask not only for a person’s own relationships, but also for perceived  
relationships between other people in your population. 

Cognitive 
Social 

Structures 

ͻ Individuals included in the sample identify contacts  (friends, sexual 
partners, etc.) who are added to the study at the next step. 

ͻ Often used in preventive medicine.  

Snowball 
Sampling 

ͻ Digital traces, social media, hyperlink networks and many more.  Secondary 
Data 



Centrality, Clustering &Transitivity



Graph-theoretic measures

Which vertices are important?

M.Grandjean, 2014

Leonid E. Zhukov (HSE) Lecture 5 10.02.2015 2 / 22

networks are complex

Can we understand them better without a “ridiculogram”?



simplifying networks – undirected graph

Consider a classroom with 30 students. How many different possible networks 
could exist to represent the friendships in that classroom?



simplifying networks – undirected graph



simplifying networks – undirected graph



How do we determine who is   
“important” in a Network?

How to describe an individual position in the network?

- Degree (number of connections)

- Clustering

- Distance to other nodes

- Centrality, influence, power



describing networks

degree:  
number of connections

describing networks
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describing networks

degree:  
number of connections

describing networks

3

2

2

2

1

4
ki =

X

j

Aij

degree distribution

degree sequence

k

{1, 2, 2, 2, 3, 4}

Pr(k) =

✓
1,

1

6

◆
,

✓
2,

3

6

◆
,

✓
3,

1

6

◆
,

✓
4,

1

6

◆�



describing networksdegree distributions
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describing networks

degree:  
number of connections

describing networks

3

2

2

2

1
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when does node 
degree matter?

ki =
X

j

Aij

k



network degrees

spreading processes on networks 
biological (diseases)!

• SIS and SIR models!

social (information)!
• SIS, SIR models!
• threshold models

S I

R

S I

susceptible-infected-susceptible

susceptible-infected-recovered

⌃
1

1
0

threshold

describing networks



describing networks

cascade !
epidemic!
branching process!
spreading process

network degrees

R0 = net reproductive rate!
= average degree

R0 = 0.923 . . . caveat: 
ignores network structure, 
dynamics, etc.

hki

R0 is the basic reproduction 
number: the number of 
infected people an infected 
person can reproduce.



describing networks
network degrees

“sub-critical”!
small outbreaks

“super-critical”!
global epidemics

“critical”!
outbreaks of all sizes

R0 < 1 R0 > 1R0 = 1



describing networks



describing networks

how could we halt the spread? 
• break network into disconnected pieces

network degrees



describing networks

what promotes spreading? 
• high-degree vertices*!
• centrally-located vertices

network degrees
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average ⟨k⟩ and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! ⟨k⟩. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q ⟨k⟩)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at ⟨k⟩ and decaying
exponentially for k q ⟨k⟩.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free

ba

Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(⟨k ⟩ ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: ⟨http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm⟩.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, ⟨k ⟩ ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (⟨k ⟩ ¼ 3:4),
collected by the National Laboratory for Applied Network Research ⟨http://moat.nlanr.net/
Routing/rawdata/⟩. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
⟨k ⟩ ¼ 4:59.
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average ⟨k⟩ and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! ⟨k⟩. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q ⟨k⟩)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at ⟨k⟩ and decaying
exponentially for k q ⟨k⟩.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free
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Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(⟨k ⟩ ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: ⟨http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm⟩.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, ⟨k ⟩ ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (⟨k ⟩ ¼ 3:4),
collected by the National Laboratory for Applied Network Research ⟨http://moat.nlanr.net/
Routing/rawdata/⟩. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
⟨k ⟩ ¼ 4:59.
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Centrality examples

Closeness centrality

from www.activenetworks.net

Leonid E. Zhukov (HSE) Lecture 5 10.02.2015 11 / 22



Centrality examples

Betweenness centrality

from www.activenetworks.net

Leonid E. Zhukov (HSE) Lecture 5 10.02.2015 12 / 22



Centrality examples

Eigenvector centrality

from www.activenetworks.net

Leonid E. Zhukov (HSE) Lecture 5 10.02.2015 13 / 22



Centrality (node-level)

• A measure of how network structure and  
position contributes to a node’s  
importance

• Value associated with every node
• Many different measures which capture  

different aspects
• Can be characterized by the nature of the  

flow



describing networks



Centrality measures
• Degree

– how well connected; direct influence

• Closeness
– how far from all others
– how long information takes to arrive

• Betweenness
– brokerage, gatekeeping, control of info

• Eigenvector
– being connected to the well connected (a  

popularity & power measure)



Who’s Important in this network?

Data courtesy of David Krackhardt





Degree Centrality
• Index of exposure to what is flowing  

through the network

• Interpreted as opportunity to influence &  
be influenced directly

• Predicts variety of outcomes from virus
resistance to power & leadership to job
satisfaction to knowledge



Bob Con Joe Kim Lin Pam

Degree

Pat Pete Red Rick Rgr Sally Sam  Sue  Tim  Tylr Will
Bob 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 5
Con 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 4
Joe 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 4
Kim 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 4
Lin 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 8
Pam 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 3
Pat 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 3
Pete 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 6
Red 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 3
Rick 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 5
Rgr 0 1 1 0 1 0 1 0 0 1 0 0 0 0 1 0 1 7
Sally 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 5
Sam 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 3
Sue 1 0 0 1 0 1 0 1 1 0 0 1 0 0 0 0 0 6
Tim 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 5
Tylr 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 3
Will 0 1 0 0 1 0 1 0 0 1 1 0 0 0 1 0 0 6

5 4 4 4 8 3 3 6 3 5 7 5 3 6 5 3 6



Degree Centrality with Directed Data

• Indegree- The number of ties directed to the  
node

• Outdegree- The number of ties that the node  
directs to others



Degree Centrality with Valued 
Data

OUTDEGREE

0 100 500 1600 1100 300 2450 1500 0

MT6 MT71 MT72 MT83 MT93 MT210 MT215 MT272

MT6
0 100 500 1600 1100 300 2450 1500 7550

MT71
0 0 0 0 0 0 0 0 0

MT72
0 0 0 0 0 0 0 0 0

MT83
0 0 0 0 0 0 0 0 0

MT93
0 0 0 0 0 0 0 0 0

MT210
0 0 0 0 0 0 0 0 0

MT215
0 0 0 0 0 0 0 0 0

MT272
0 0 0 0 0 0 0 0 0

INDEGREE

NOTE: some software may binarize networks before calculating degree with valued data.



Centrality: who’s important 
based on their network 

It is a local measure!

how popular you are

how many people you know

Best measure if importance means:



formula for degree (normalized)Degree centrality

CD (i) =
ki

N � 1

M.E.J. Newman. (2010). Networks: An Introduction. Oxford 
University Press.



degree is not everything…
X and Y do not differ much for 

betweenness

Being close to all nodes

X Y

We want to capture:

Betweenness is not 
everything



Closeness



Closeness Centrality

• Is an inverse measure of centrality
• The extent to which a node is close from  

all other nodes
• Index of expected time until arrival for a  

given node of whatever is flowing through  
the network
–Gossip network: central player hears things  

first, on average



describing networks

position = centrality:  
harmonic, closeness 
centrality!

importance = being in 
“center” of the network

describing networks

ci =
1

n� 1

X

j 6=i

1

dij

dij =

⇢
`ij if j reachable from i
1 otherwise

distance:

length of shortest path

harmonic

   Boldi & Vigna, arxiv:1308.2140 (2013)!
   Borgatti, Social Networks 27, 55–71 (2005)



closeness centrality formulaCloseness centrality

X Y

C̃C (i) =

2

4
NX

j=1

d (i, j)

3

5
�1

Closeness centrality

X Y

C̃C (i) =

2

4
NX

j=1

d (i, j)

3

5
�1

CC (i) =
C̃C (i)

N � 1

All other nodes in the network

Normalized

M.E.J. Newman. (2010). Networks: An Introduction. Oxford 
University Press.

What happens to isolates?



GEODESIC DISTANCE MATRIX used to Calculate Closeness

Bob Con Joe Kim Lin Pam Pat Pete Red Rick Rgr Sally Sam  Sue  Tim  Tylr Will
Bob 0 1 3 2 3 1 3 1 2 3 2 1 4 1 3 4 2 36

Con 1 0 2 2 2 2 2 1 2 2 1 2 3 2 2 3 1 30

Joe 3 2 0 4 1 4 2 3 4 1 1 4 2 4 1 2 2 40

Kim 2 2 4 0 4 2 4 1 1 4 3 1 5 1 4 5 3 46

Lin 3 2 1 4 0 4 1 3 4 1 1 4 1 4 1 1 1 36

Pam 1 2 4 2 4 0 4 2 2 4 3 1 5 1 4 5 3 47

Pat 3 2 2 4 1 4 0 3 4 2 1 4 2 4 2 2 1 41

Pete 1 1 3 1 3 2 3 0 1 3 2 1 4 1 3 4 2 35

Red 2 2 4 1 4 2 4 1 0 4 3 2 5 1 4 5 3 47

Rick 3 2 1 4 1 4 2 3 4 0 1 4 1 4 2 2 1 39

Rgr 2 1 1 3 1 3 1 2 3 1 0 3 2 3 1 2 1 30

Sally 1 2 4 1 4 1 4 1 2 4 3 0 5 1 4 5 3 45

Sam 4 3 2 5 1 5 2 4 5 1 2 5 0 5 2 1 2 49

Sue 1 2 4 1 4 1 4 1 1 4 3 1 5 0 4 5 3 44

Tim 3 2 1 4 1 4 2 3 4 2 1 4 2 4 0 1 1 39

Tylr 4 3 2 5 1 5 2 4 5 2 2 5 1 5 1 0 2 49

Will 2 1 2 3 1 3 1 2 3 1 1 3 2 3 1 2 0 31

NOTE: if data is directed, you can calculate in-closeness and out-closeness centrality
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Closeness Centrality: Toy Example 

A B C E D 

closeness centrality example



Closeness in directed networks
!  choose a direction 

!  in-closeness (e.g. prestige in citation networks) 
!  out-closeness 

!  usually consider only vertices from which the 
node i in question can be reached 

 

 
 



Closeness in directed networks

• In-Closeness centrality measures the degree to which a node can be 
easily reached *from* other nodes (i.e. using edges coming in 
towards the node) where easily means shortest distance.

• Out-Closeness centrality measures the degree to which a node can 
easily reach other nodes (i.e. using edges out from the node), and 
easily again means shortest distance.

• If there is no (directed) path between vertex v and i then the total 
number of vertices is used in the formula instead of the path length.



Eigenvector

Eigenvector: The extent to  
which a given node is connected  
to other well-connected nodes

Data courtesy of David Krackhardt



Eigenvector Centrality
• Node has high score if connected to many  

nodes that are themselves well connected
(you are important to the extent your friends are important)

• Indicator of popularity,
– Google Page Rank

• Like degree, is index of exposure, risk

• However, tends to identify centers of large  
cliques



eigenvector centrality

position = centrality:  
PageRank, Katz, eigenvector 
centrality!

importance = sum of 
importances of nodes that 
point at you!

or, the left eigenvector of

describing networks

Ii =
X

j!i

Ij
kj

*

*modulo several technical details

Ax = �x

   Boldi & Vigna, arxiv:1308.2140 (2013)!
   Borgatti, Social Networks 27, 55–71 (2005)



Eigenvector centrality

A node is important if it is connected 
to important nodes

Xi =
NX

j=1

AijXjXi =
X

j2⇤(i)

Xj AX = �X

The solution (when exists) gives the node 
centrality. We take the highest �

This concept is at the core of the ranking 
algorithm of Google

M.E.J. Newman. (2010). Networks: An Introduction. Oxford 
University Press.

Note: Bonacich eigenvector centrality includes a parameter ß
which allows one to adjust how important are neighbours in different 
path lengths to a node’s centrality versus how important is the 
number of neighbours in path length = 1; high ß leads to low 
attenuation and the global network structure matters; low ß yields 
high attenuation and only the immediate friends matter. When ß = 0, 
equivalent to degree centrality.



c(β) =α(I −βA)−1A1
•  α is a normalization constant   
•  β  determines how important the centrality of your neighbors 
is 

• A is the adjacency matrix (can be weighted) 
• I is the identity matrix (1s down the diagonal, 0 off-diagonal)  
• 1 is a matrix of all ones. 

Bonacich'eigenvector'centrality'

ci (β) = (α +βcj
j
∑ )Aji



small β #'high'attenuation'
'only'your'immediate'friends'matter,'and'their'

importance'is'factored'in'only'a'bit'
'
high'β #'low'attenuation'

'global'network'structure'matters'(your'friends,'
your'friends''of'friends'etc.)'
 
'
 β'='0'yields'simple'degree'centrality'

Bonacich'Power'Centrality:'attenuation'factor'β

ci (β) = (α +βcj
j
∑ )Aji



β=.25 

β=-.25 

Why does the middle node have lower centrality than its 
neighbors when β is negative? 

Bonacich'Power'Centrality:'examples



NOTE: Node with highest eigenvector  
centrality is not always node with highest  

degree centrality

Highest degree  
centrality

Highest eigenvector  
centrality



Who is more important in the networks below? X or Y

Degree is not everything

Ability to broker between groups

Likelihood that information originating 
anywhere in the network reaches you

We want to capture:

Who is more important in the following 
situations: 

X or Y?



ability to broker between groups



ability to broker between groups





• How often a node lies along the shortest path between  
two other nodes

• Index of potential for gatekeeping, brokering, controlling
the flow, and also of liaising otherwise separate parts of
the network

• Interpreted as indicating power and access to diversity of  
what flows; potential for synthesizing

Betweenness Centrality



Betweenness centrality

C̃B (i) =
X

j<k

djk(i)

djk

CB (i) =
C̃B

(N � 1) (N � 2) /2

Number of pairs of vertices excluding i

Normalized

M.E.J. Newman. (2010). Networks: An Introduction. Oxford 
University Press.

# of shortest paths between j and k
djk(i)

djk
# of shortest paths between j and k that go 
through i 

formula

For directed graphs: when normalizing, we have (N-1)*(N-2) instead of 
(N-1)*(N-2)/2, because we have twice as many ordered pairs as 
unordered pairs.



Betweenness in directed networks

!  A node does not necessarily lie on a 
geodesic (shortest path) from j to k if it lies 
on a geodesic from k to j 

k 

j 



Betweenness in directed networks

An example I

1

2

3
4

5

6 The node betweenness for the
graph on the left:

Node Betwenness
1 0
2 1.5
3 1
4 4
5 3
6 0

Donglei Du (UNB) Social Network Analysis 20 / 85



Betweenness in directed networks
How to find the betweeness in the example?

For example: for node 2, the (n � 1)(n � 2)/2 = 5(5 � 1)/2 = 10

terms in the summation in the order of 13, 14, 15, 16, 34, 35, 36, 45,
46, 56 are

1

1

+
0

1

+
0

1

+
0

1

+
0

1

+
1

2

+
0

1

+
0

1

+
0

1

+
0

1

= 1.5.

Here the denominators are the number of shortest paths between pair of
edges in the above order and the numerators are the number of shortest
paths passing through edge 2 between pair of edges in the above order.

Donglei Du (UNB) Social Network Analysis 21 / 85





Betweenness Closeness

Eigenvector Degree

Summarizing

Centrality indices are 
answers to the question 
"What characterizes an 
important node?” 
The word "importance" 
has a wide number of 
meanings, leading to 
many different definitions 
of centrality.

Source: http://en.wikipedia.org/wiki/Centrality



Which nodes are most “central”?

Definition of ‘central’ varies by context/
purpose. 

Which nodes are most 
“central”?

Local measure: 
         degree 

Relative to the rest of network: 
         betweenness
         closeness
         eigenvector (Bonacich power 
centrality) 



Data Types:
Centrality

Disconnected or  
Connected

Binary or Valued Directed or  
Undirected

Degree Both Both Both
Closeness Strongly  

Connected
Binary Both

Betweenness Both Binary Both
Eigenvector Connected Both Undirected



•  generally different centrality metrics will be positively correlated 
•  when they are not, there is likely something interesting about the network 
•  suggest possible topologies and node positions to fit each square 

  

 
Low  
Degree   Low  

Closeness Low 
 Betweenness 

High Degree 

 
  

 

High Closeness 

 
  

 

High 
Betweenness 

 

  

 

Centrality: Check Your Understanding 

adapted from a slide by James Moody 

check your understanding



•  generally different centrality metrics will be positively correlated 
•  when they are not, there is likely something interesting about the network 
•  suggest possible topologies and node positions to fit each square 

Centrality: Check Your Understanding 

adapted from a slide by James Moody 

  

 
High Degree 

 
  

 
Embedded in cluster 
that is far from the 
rest of the network 

 

Ego's connections 
are redundant - 
communication 
bypasses him/her 

 High Closeness 

 
Key player tied to 
important/active 
players 

 

  

 
Probably multiple 
paths in the 
network, ego is near 
many people, but so 
are many others 

 High 
Betweenness 

 

Ego's few ties are 
crucial for network 
flow 

 

Very rare cell.  
Would mean that 
ego monopolizes 
the ties from a small 
number of people to 
many others.  

 

  

 

Low  
Degree   Low  

Closeness Low 
 Betweenness 



Fun Applications of
Centrality

• Oracleofkevinbacon.org
– 6 degrees of Kevin Bacon
– Can you find anyone with a Bacon score > 4?

• Theyrule.net
– Board overlaps of top corporations

• Oilmoney.priceofoil.org
– Tracking petroleum industry campaign  

contributions



Global Properties/Graph-level approach: 
Centralization

Freeman�s general formula for centralization (can use other 
metrics, e.g. gini coefficient or standard deviation): 

€ 

CD =
CD (n

*) −CD (i)[ ]i=1

g
∑
[(N −1)(N − 2)]

How much variation is there in the centrality scores among 
the nodes? 

maximum value in the network 

centralization:'skew'in'distribution'To measure the degree to which the graph as a whole is 
centralized, we look at dispersion of centrality



network position

vast wilderness 
of in-between

most!
centralized

most!
decentralized



degree centralization examples

CD = 0.167 

CD = 0.167 

CD = 1.0 

degree'centralization'examples'



real-world networks

example financial trading networks 

high in-centralization: 
one node buying from 
many others 

low in-centralization: 
buying is more evenly 
distributed 

realNworld'examples'



“model in which opinion flows only from the media to influentials, and then only 
from influentials to the larger populace is deprecated”



“large cascades of influence are driven not by influentials, but by a critical 
mass of easily influenced individuals.”



“influence is not really about the influencer as much about the susceptibles”



what have we learnt from it…
Baker & Faulkner (1993): Social Organization of conspiracy

Questions:  How are relations organized to facilitate illegal behavior? 

Pattern of communication maximizes concealment, and predicts the criminal 
verdict. 

Inter-organizational cooperation is common, but too much �cooperation� can thwart 
market competition, leading to (illegal) market failure. 
 
Illegal networks differ from legal networks, in that they must conceal their activity 
from outside agents.  A �Secret society� should be organized to (a) remain 
concealed and (b) if discovered make it difficult to identify who is involved in the 
activity 
 
The need for secrecy should lead conspirators to conceal their activities by creating 
sparse and decentralized networks. 

Baker & Faulkner:  
Social organization of conspiracy#

(reconstructs communication networks in three well-known price-fixing 
conspiracies in the heavy electrical equipment industry to study social 
organization)



The Social Organization of Conspiracy: Illegal Networks in the Heavy Electrical Equipment Industry, Wayne E. Baker, 
Robert R. Faulkner. American Sociological Review, Vol. 58, No. 6 (Dec., 1993), pp. 837-860. Published by: American 
Sociological Association, http://www.jstor.org/stable/2095954. 





Clustering
Clustering coe�cient

A feature of interest when studying a network is its transitivity, i.e., if
i ⇠ j and j ⇠ k then i ⇠ k.

If node i is connected to nodes j and k, how often is it the case that j
and k are also connected?

When i, j, and k are all connected to each other they form a triangle.



Clustering
What fraction of my friends are friends of each other?

(1)Calculate clustering for a particular node;

(1)Average individual clustering coefficients across the network (it weights 
clustering node by node)

(2)Overall clustering: out of all possible triplets in the network, what the 
frequency with which it is connected?

Differences�in�Clustering
Average tends to 1

Overall tends to 0



local clustering coefficient
Local clustering coe�cient

If i is a node with k
i

� 2 then its local clustering coe�cient is defined
as:

C
i

=
Number of triangles containing i

Number of pairs of neighbours of i
,

=
t
i

1
2ki(ki � 1)

,

where t
i

= [A3]
ii

.

�

�

� �

�
Possible triangles including node 1:

{(1� 2� 3), (1� 3� 5), (1� 2� 5),

(1� 5� 4), (1� 2� 4), (1� 3� 4)}.

Actual triangles:

{(1� 2� 3), (1� 3� 5)}.

C1 = 1
3 .

Local clustering coe�cient

If i is a node with k
i

� 2 then its local clustering coe�cient is defined
as:

C
i

=
Number of triangles containing i

Number of pairs of neighbours of i
,

=
t
i

1
2ki(ki � 1)

,

where t
i

= [A3]
ii

.

Possible triangles including node 1:

{(1� 2� 3), (1� 3� 5), (1� 2� 5),

(1� 5� 4), (1� 2� 4), (1� 3� 4)}.

Actual triangles:

{(1� 2� 3), (1� 3� 5)}.

C1 = 1
3 .



global clustering coefficient
Global clustering coe�cient

There are two alternative definitions of the global clustering

coe�cient:

Version 1:

C = hCii =
1

N

NX

i=1

Ci.

Version 2:

C =
3⇥ t

number of connected triples

where t is the total number of triangles. If there are no
self-loops then t = 1

3trace(A
3).

Average Clustering 
Coefficient

Overall Clustering 
Coefficient



Note that X

u,w2V

a
u,v

a
w,v

a
u,w

is the number of triangles involving v in the graph. Similarly,
X

u,w2V

a
u,v

a
w,v

is the number of 2-stars centred around v in the graph. The
clustering coe�cient is thus the ratio between the number of
triangles and the number of 2-stars. The clustering coe�cient
describes how ”locally dense” a graph is. Sometimes the clustering
coe�cient is also called the transitivity.

The clustering coe�cient in the Florentine family example is
0.1914894; the average clustering coe�cient in the Yeast data is
0.1023149.

26

The clustering coe�cient of a node v is, intuitively, the proportion
of its ”friends” who are friends themselves. Mathematically, it is
the proportion of neighbours of v which are neighbours themselves.
In adjacency matrix notation,

C(v) =
P

u,w2V

a
u,v

a
w,v

a
u,wP

u,w2V

a
u,v

a
w,v

.

The (average) clustering coe�cient is defined as

C =
1

|V |
X

v2V

C(v).

25



Social balance theories

Central question in modeling social networks from structural individualism:

how can the global properties of the network be understood from 
local properties?

E.g. theory of clusterability of balanced signed graphs:

(1) Harary’s theorem says that a complete signed graph is 
balanced iff the nodes can be partitioned into two sets, so that all ties 
within sets are positive, and all ties between sets are negative;

(2) Heider’s work on cognition of social situations (Person-
Object-Other), interested in correspondence between P and O, given their 
beliefs (like/dislike) about Object X [dyads PO, PX, OX];

(3) David & Leinhardt generalized conditions for clusterability of 
signed graphs and structures of ranked clusters;

These theories pose the problem: how can triadic properties of signed 
graphs (aggregate properties of all subgraphs of 3 nodes) determine 
global properties of signed graphs.



++

+

--

+

++

--

-

(+)(+)(+) = (+)

(-)(+)(-) = (-)

(-)(-)(-) = (-)

(+)(-)(+) = (-)

Balanced

Balanced

Unbalanced

Unbalanced

“A friend of a 
friend is a friend”

“An enemy of my 
enemy is a friend”

“An enemy of my 
enemy is an 

enemy”

“A Friend of a 
Friend is an 

enemy”

argument that unbalanced triads tended towards balance, which implied 
all intransitive triads would disappear from the network. not what we find 
empirically…



Transitivity

The tendency for a tie from i to k to occur at greater than chance 
frequencies if there are ties from i to j and from j to k – the i to j tie 
completes “transitively” the triple consisting of the tie from i to j and the tie 
from j to k.

Transitivity depends on triads, subgraphs formed by 3 nodes

Local Structure – Transitivity

Transitivity
Transitivity of a relation means that
when there is a tie from i to j , and also from j to h,
then there is also a tie from i to h:

friends of my friends are my friends.

Transitivity depends on triads, subgraphs formed by 3 nodes.

j

h

i

j

h

i

j

h

i

?

Potentially
transitive

Intransitive Transitive

c� Tom A.B. Snijders University of Oxford Transitivity and Triads May 14, 2012 5 / 32

Local Structure – Transitivity

Transitive graphs

One example of a (completely) transitive graph is evident:
the complete graph K

n

, which has n nodes and density 1.
(The K is in honor of Kuratowski, a pioneer in graph theory.)

Is the empty graph transitive?

Try to find out for yourself,
what other graphs exist that are completely transitive!

c� Tom A.B. Snijders University of Oxford Transitivity and Triads May 14, 2012 6 / 32



Simmelian Ties

• These are the ties that make up transitivity
• Simmelian ties are [reciprocated] transitive  

triples
CD,DE,EC is one set of simmelian ties  
CT,TE,EC is another set
All other sets are not simmelian

A

B C

T

D
E



Local Structure – Transitivity

Measure for transitivity

A measure for transitivity is the (global) transitivity index,
defined as the ratio

Transitivity Index =
]Transitive triads

] Potentially transitive triads
.

(Note that “]A” means the number of elements in the set A.)
This also is sometimes called a clustering index.

This is between 0 and 1; it is 1 for a transitive graph.
For random graphs, the expected value of the transitivity index
is close to the density of the graph (why?);
for actual social networks,
values between 0.3 and 0.6 are quite usual.

c� Tom A.B. Snijders University of Oxford Transitivity and Triads May 14, 2012 7 / 32

Local Structure – Transitivity

Local structure and triad counts

The studies about transitivity in social networks
led Holland and Leinhardt (1975) to propose that
the local structure in social networks can be expressed
by the triad census or triad count, the numbers of triads of any kinds.

For (nondirected) graphs, there are four triad types:

i j

h

i j

h

i j

h

i j

h

Empty One edge Two-path /
Two-star

Triangle
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measuring transitivity – clustering index
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Local Structure – Transitivity

Measure for transitivity

A measure for transitivity is the (global) transitivity index,
defined as the ratio

Transitivity Index =
]Transitive triads

] Potentially transitive triads
.

(Note that “]A” means the number of elements in the set A.)
This also is sometimes called a clustering index.

This is between 0 and 1; it is 1 for a transitive graph.
For random graphs, the expected value of the transitivity index
is close to the density of the graph (why?);
for actual social networks,
values between 0.3 and 0.6 are quite usual.
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A simple example graph
with 5 nodes.
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i j h triad type
1 2 3 triangle
1 2 4 one edge
1 2 5 one edge
1 3 4 two-star
1 3 5 one edge
1 4 5 empty
2 3 4 two-star
2 3 5 one edge
3 4 5 one edge

In this graph, the triad census is (1, 5, 2, 1)
(ordered as: empty – one edge – two-star – triangle).
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Local Structure – Transitivity

It is more convenient to work with triplets instead of triads:
triplets are like triads, but they refer
only to the presence of the edges,
and do not require the absence of edges.

E.g., the number of two-star triplets
is the number of potentially transitive triads.

The triplet count for a non-directed graph
is defined by the number of edges,
the total number of two-stars
(irrespective of whether they are embedded in a triangle),
and the number of triangles.
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MAN coding for triad census



triad census
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Transitivity =  030C
Closure =  030D
Similarity =  030T

closure

Transitivity:  tie i to k to occur if ties from i to j and j to k exist;
Closure: tie i to j to occur if persons k with ties to both i and j exist;
Similarity: tie i to j to occur if persons k to whom i and j have ties exist;



triad census - example

Type              Number of triads
---------------------------------------

1 - 003                  21
---------------------------------------

2 - 012                  26
3 - 102                  11
4 - 021D                  1
5 - 021U                  5
6 - 021C                  3
7 - 111D                  2
8 - 111U                  5
9 - 030T                  3
10 - 030C                  1
11 - 201                   1
12 - 120D                  1
13 - 120U                  1
14 - 120C                  1
15 - 210                   1
16 - 300                   1

---------------------------------------
Sum (2 - 16):               63



• triads define behavioral mechanisms: we can leverage the distribution of triads 

in a network to test whether the hypothesized mechanism is active.

• How?

(1) Count the number of each triad type in a given network

(2) Compare to the expected number, given some (random) distribution of ties in 

the network;

• Statistical approach proposed by Holland and Leinhardt is now obsolete. 

Statistical methods have been proposed for probability distributions of graphs 

depending primarily on triad counts, but complemented with stat counts and 

nodal variables, along with some higher-order configurations essential for 

adequate modeling of empirical network data.


