
Day 2
Social Capital, Brokerage & Equivalence

Social Network Analysis



Global consulting organization had group dedicated to provide thought leadership and specialized support 

to to the organization’s knowledge management consultants. Group was composed of people with industry 

experience in (1) organizational design (soft-skills) and (2) technical fields (data warehousing). 
USP: holistic knowledge management solution. However, they were not delivering. Why?

SNA intervention – information sharing network.

Information & Success

about certain members’ expertise not being tapped while other members
appeared to be bottlenecks in sharing information. As a result of the discussion
around this social network, various changes were made to the group’s opera-
tions. First, a variety of internal projects—ranging from white papers to develop-
ment of a project-tracking database—were jointly staffed with one person from
each group. This forced people to work together and so begin to develop an
appreciation of each other’s unique skills and knowledge. Second, the partner

Making Invisible Work Visible
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EXHIBIT 1. Information Sharing within an Expert Consulting Group*

* Names were disguised in this example at the request of the organization.
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Post-Intervention (Nine Months Later)Cross, Borgatti & Parker (2002), “Making Invisible Work Visible: using social network analysis to support strategic collaboration”.

Skilled in strategy, org design, 

cultural interventions

Skilled in technical aspects of 

knowledge management (data, 

modeling, information storage)



Changes Made
• Cross-staffed new internal projects

– white papers, database development
• Established cross-selling sales goals

– managers accountable for selling projects  with both kinds of
expertise (forced people to integrate their approaches to 
addressing client problems)

• New communication vehicles
– project tracking db; weekly email update

• Personnel changes



9 Months Later
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a contrasting experience: embeddedness and bridging3.5. CLOSURE, STRUCTURAL HOLES, AND SOCIAL CAPITAL 65
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Figure 3.11: The contrast between densely-knit groups and boundary-spanning links is re-

flected in the di�erent positions of nodes A and B in the underyling social network.

There is a lot of further insight to be gained by asking about the roles that di�erent nodes

play in this structure as well. In social networks, access to edges that span di�erent groups is

not equally distributed across all nodes: some nodes are positioned at the interface between

multiple groups, with access to boundary-spanning edges, while others are positioned in the

middle of a single group. What is the e�ect of this heterogeneity? Following the expositional

lead of social-network researchers including Ron Burt [87], we can formulate an answer to

this question as a story about the di�erent experiences that nodes have in a network like the

one in Figure 3.11 — particularly in the contrast between the experience of a node such as

A, who sits at the center of a single tightly-knit group, and node B, who sits at the interface

between several groups.

Embeddedness. Let’s start with node A. Node A’s set of network neighbors has been

subject to considerable triadic closure; A has a high clustering coe⌅cient. (Recall that the

clustering coe⌅cient is the fraction of pairs of neighbors who are themselves neighbors).

To talk about the structure around A it is useful to introduce an additional definition.

We define the embeddedness of an edge in a network to be the number of common neighbors

the two endpoints have. Thus, for example, the A-B edge has an embeddedness of two, since

A and B have the two common neighbors E and F . This definition relates to two notions

from earlier in the chapter. First, the embeddedness of an edge is equal to the numerator in

Embeddedness (# of 
common neighbours
of edge):

- greater trust
- old, repackaged 

information?

Bridging:
- riskier;
- Brokerage
- amplifies creativity
- Gatekeeper power



strength of weak ties
Granovetter thesis that, under many circumstances, strong ties are less useful than weak 
ties:

- interviewed people in Amherst, MA across professions to determine how they 
found out about their jobs; 

- recorded whether they used social contacts and strength of the relationship;
- surprising proportion (~20%) of jobs were found through “weak ties”Strong tie defined 

  A strong tie 

  frequent contact 

  affinity 

  many mutual contacts 

  Less likely to be a bridge (or a local bridge) 

“forbidden triad”: 

strong ties are 
likely to “close” 

Source: Granovetter, M. (1973). "The Strength of Weak Ties", American Journal of Sociology, Vol. 78, Issue 6, May 
1973, pp. 1360-1380. 

Why?
• individuals involved in weak 

ties less likely to overlap in 
their neighborhoods;

• weak ties form bridges 
across groups that have 
fewer connections to each 
other (plays role in 
disseminating information).

• weak ties hold communities 
together;



triadic closure, local bridges and weak ties
3.1. TRIADIC CLOSURE 49

B

A

C

G

F

E D

(a) Before new edges form.

B

A

C

G

F

E D

(b) After new edges form.

Figure 3.2: If we watch a network for a longer span of time, we can see multiple edges forming

— some form through triadic closure while others (such as the D-G edge) form even though

the two endpoints have no neighbors in common.

the fact that the B-C edge has the e�ect of “closing” the third side of this triangle. If

we observe snapshots of a social network at two distinct points in time, then in the later

snapshot, we generally find a significant number of new edges that have formed through this

triangle-closing operation, between two people who had a common neighbor in the earlier

snapshot. Figure 3.2, for example, shows the new edges we might see from watching the

network in Figure 3.1 over a longer time span.

The Clustering Coe�cient. The basic role of triadic closure in social networks has

motivated the formulation of simple social network measures to capture its prevalence. One

of these is the clustering coe⇥cient [320, 411]. The clustering coe⌅cient of a node A is

defined as the probability that two randomly selected friends of A are friends with each

other. In other words, it is the fraction of pairs of A’s friends that are connected to each

other by edges. For example, the clustering coe⌅cient of node A in Figure 3.2(a) is 1/6

(because there is only the single C-D edge among the six pairs of friends B-C, B-D, B-E,

C-D, C-E, and D-E), and it has increased to 1/2 in the second snapshot of the network in

Figure 3.2(b) (because there are now the three edges B-C, C-D, and D-E among the same

six pairs). In general, the clustering coe⌅cient of a node ranges from 0 (when none of the

node’s friends are friends with each other) to 1 (when all of the node’s friends are friends

with each other), and the more strongly triadic closure is operating in the neighborhood of

the node, the higher the clustering coe⌅cient will tend to be.

Why are we likely to observe a tie 
forming between B and C ?

- Opportunity;
- Similarity;
- Incentive

Networks: Lecture 1 A Little Bit of Analysis

The Strong Triadic Closure

Recall job referral patterns.
Let us represent a weighted (undirected) graph in an economical
fashion as “augmented” undirected graph, G = (N,E ,E 0), where
E

0 ⇢ E represents “strong ties”. Thus, (i , j) 2 E means that i and j

are acquaintances, while (i , j) 2 E

0 means that i and j are close
friends.
The strong triadic closure property is the following:

if (i , j) 2 E

0 and (i , k) 2 E

0, then (j , k) 2 E .

i

j

(i , j) 2 E

0

k

(i , k) 2 E

0 (j , k) 2 E

Figure: Triadic Closure

27

Strong Triadic Closure Property

Any local bridge will necessarily be a weak tie…
[proof by contradiction]



edges are either embedded or bridging (Social Capital)

“the ability of actors to secure benefits by virtue of membership in social networks or other social 
strucures”

Social capital is viewed as property of a group (favorable structures contribute to higher social capital) or 
as property of an individual (depends on position of the individual in the network). Different approaches 
highlight different aspects: 

• Coleman values embedded edges (enable enforcement of norms, have reputational effects, 
enhance trusting mechanisms)

• Burt sees it as a tension between closure (as in Coleman’s embeddedness) and brokerage (ability 
to broker interactions between different groups).

• Putnam harmonizes both views when he discusses bonding capital and bridging capital.

“Social capital is at once the resources contacts hold and the structure of contacts in a network. The first 
term describes whom you reach. The second describes how you reach.”

1. “Who you reach” – network provides an actor with access to people with specific resoruces and 
functions as a conduit; establishes a correlation between your resources and theirs. Relates to concept of 
power and prestige.

2. “How you reach” – social structure is capital itself that is meaured in terms of network range and size. 
The value of the “rate of return” can be boosted given the structure of the network and the location of 
the actor’s contacts within that structure. The benefits include: information and control.



Approaches to Social Capital

• Topological (shape-based)
– Burt (structural holes)
– Coleman, Putnam (connectivity/embeddedness)

• Connectionist (attribute-based)
– Lin

• Combination of shape-based and attribute-based
– Gould & Fernandez



Structural Holes (Ron Burt)
The distribution of bridging edges among the nodes is unequal in a network…

A and B have different sources of relative advantages. B spans structural holes in the network.
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[Ron Burt] 

Who is better off Robert or James? 



Burt study
Burt: structural holes and good ideas 

  Managers asked to come up with an idea to improve the 
supply chain  

  Then asked: 
  whom did you discuss the idea with? 

  whom do you discuss supply-chain issues with in general 

  do those contacts discuss ideas with one another? 

  673 managers (455 (68%) completed the survey) 

  ~ 4000 relationships (edges) 



Structural Holes (Ron Burt)
Burt: structural holes and good ideas 

  Managers asked to come up with an idea to improve the 
supply chain  

  Then asked: 
  whom did you discuss the idea with? 

  whom do you discuss supply-chain issues with in general 

  do those contacts discuss ideas with one another? 

  673 managers (455 (68%) completed the survey) 

  ~ 4000 relationships (edges) 

Hypotheses:
1. Opinions within groups are homogenous;
2. People who extend themselves across structural holes are exposed to new information
3. New ideas emerge from having diverse pool of options



after intervention...

results 

  people whose networks bridge structural holes have 

  higher compensation 

  positive performance evaluations 

  more promotions 

  more good ideas 

  these brokers are 
  more likely to express ideas 

  less likely to have their ideas dismissed by judges 

  more likely to have their ideas evaluated as valuable 



Structural Holes: the ego-net perspective

• Lack of  ties 
among alters  may 
benefit ego

• Benefits
– Autonomy
– Control
– Information

Enric Duran



Control Benefits of Structural Holes

White House Diary Data, Carter Presidency

Data courtesy of Michael LinkYear 1 Year 4



• Effective size;
• Efficiency;
• Constraint;
• Hierarchy;

Measures of Structural Holes

Duran Duran

Redundancy: dyadic redundancy calculates, 
for each actor in ego’s neighborhood, how 
many of the other actors are also tied to the 
other. What % of Ego’s network is redundant? 
Correlates with embeddedness.



Effective Size

mjq = j's interaction with q divided by j's strongest relation with anyone
piq  = proportion of i's energy invested in relation with q

• Effective size is ego-network size (N) minus  
redundancy in network

j q

q ¹ i, j
ë û

é ù
=åê1-å piqmjq ú,

j j q

ESi

ESi q ¹ i, j=å1-åå piqmjq ,



Node "G" is EGO
Redundancy with EGO's

A
3/6

B
2/6

C
0/6

D
1/6

E
1/6

F
1/6

Total
1.33

other Alters:

Effective Size of G = Number of  G’s Alters – Sum of Redundancy of G’s alters
= 6 – 1.33 = 4.67

Effective Size

Node "G" is EGO A B C D E F Total
Redundancy with EGO's

other Alters:
3/6 2/6 0/6 1/6 1/6 1/6 1.33

Effective Size of G = Number of G’s Alters – Sum of Redundancy of G’s alters
= 6 – 1.33 4.67

Effective Size



• Mjq  = j’s interaction with q divided by j’s strongest tie withanyone
– So this is always 1 if j has tie to q and 0 otherwise

• Piq = proportion of i’s energy invested in relationship with q
– So this is a constant 1/N where N is ego’s network size

Effective Size formula

Effective Size in 1/0 Data
• Mjq = j’s interaction with q divided by j’s strongest tie with anyone

– So this is always 1 if j has tie to q and 0 otherwise

• Piq = proportion of i’s energy invested in relationship with q
– So this is a constant 1/N where N is ego’s network size
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the level of redundancy 
between ego and a 
particular alter j.

Effective Size in 1/0 Data
• Mjq = j’s interaction with q divided by j’s strongest tie with anyone

– So this is always 1 if j has tie to q and 0 otherwise

• Piq = proportion of i’s energy invested in relationship with q
– So this is a constant 1/N where N is ego’s network size
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Effective Size formula

Effective Size: å å ú
û

ù
ê
ë

é
-

j q
jqiqmp1

Piq is the proportion of actor i�s relations that are spent with q.

Adjacency
1 2 3 4 5

1 0 1 1 1 1
2 1 0 0 0 1
3 1 0 0 0 0
4 1 0 0 0 1
5 1 1 0 1 0

P
1   2   3   4   5

1 .00 .25 .25 .25 .25
2 .50 .00 .00 .00 .50
3 1.0 .00 .00 .00 .00
4 .50 .00 .00 .00 .50
5 .33 .33 .00 .33 .00

1

2

4 5

3



Effective Size formula

Effective Size: å å ú
û

ù
ê
ë

é
-

j q
jqiqmp1

mjq is the marginal strength of contact j�s relation with contact q. Which is j�s 
interaction with q divided by j�s strongest interaction with anyone.  For a binary 
network, the strongest link is always 1 and thus mjq reduces to 0 or 1 (whether j is 
connected to q or not - that is, the adjacency matrix).

The sum of the product piqmjq measures the portion of i�s relation with j that is 
redundant to i�s relation with other primary contacts.



Effective Size formula

Effective Size: å å ú
û

ù
ê
ë

é
-

j q
jqiqmp1

P
1   2   3   4   5

1 .00 .25 .25 .25 .25
2 .50 .00 .00 .00 .50
3 1.0 .00 .00 .00 .00
4 .50 .00 .00 .00 .50
5 .33 .33 .00 .33 .00

Working with 1 as ego, we get the following redundancy levels:

PM1jq
1   2   3   4   5

1 --- --- --- --- ---
2 --- .00 .00 .00 .25
3 --- .00 .00 .00 .00
4 --- .00 .00 .00 .25
5 --- .25 .00 .25 .00

Sum=1, so 
Effective size = 4-1 = 3.

1

2

4 5

3



Efficiency

1

2

4 5

3

Efficiency is the observed size divided by the observed size:

degree/effective size

Effective 
Node Size            Size:        Efficiency
1 4 3 .75
2  2 1 .5
3 1 1 1.0
4 2 1 .5
5 3                  1.67 .55



refers to how much room one has to negotiate or exploit potential structural holes in the

network

mjq= j’s interaction with q divided by j’s strongest relationship with anyone  So this is always 

1 if j has tie to q and 0 otherwise

piq = proportion of i’s energy invested in relationship with q  

So this is a constant 1/N where N is network size

q

• Alter j constrains i to the extent that

– i has invested in j

– i has invested in people (q) who have invested heavily in j. That is, i’s investment  

in q leads back to j.

• Even if i withdraws from j, everyone else in i’s network is still invested in j

= pij  +å piqmqj , q ¹ i, jcij

Constraint



• Constraint is a summary measure that taps the
extent to which ego's connections are to others
who are connected to one another.

• If ego's potential trading partners all have one  
another as potential trading partners, ego is  
highly constrained. If ego's partners do not have 
other alternatives in the neighborhood, they  
cannot constrain ego's behavior. (Hanneman &  
Riddle, 2005)

Constraint – crude idea



Constraint – formula
� The “network constraint” measure [Burt]: 
� To what extent are person’s contacts redundant 

 
 
 

 

� Low: disconnected contacts 
� High:  contacts that are  

close or strongly tied 
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Constraint – formula

� Network constraint: 
� James: ܿܬ = 0.309 
� Robert: ܴܿ = 0.148 
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� Constraint: To what 
extent are person’s 
contacts redundant 
� Low: disconnected 

contacts 
� High:  contacts that 

are close or strongly 
tied 



Sized by Constraint

© 2005 Steve Borgatti



Hierarchy
Conceptually, hierarchy (for Burt) is really the extent to which constraint is concentrated in 
a single actor.  It is calculated as:
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Source: Structural Holes and Good Ideas; R. Burt, American Journal of Sociology, 2004 

Cohesion
Structural Equivalence



Nan Lin (Social Resource Theory)
• Lin’s view

- Valued resources in societies represented by wealth, power
and status;

- Social capital is analysed by the amount or variety of such
characteristics of others with whom an individual has ties to;

- In short, it is the attributes of those you are connected to that
matters.

LEE

ST EVE

BRAZEY

BERT
RUSS

•We can look at the composition of an ego-net in terms of  
heterogeneity in attributes of the alters.



Lin – social capital as assets in networks

• Variety of heterogeneity of resources – measures of heterogeneity
in attributes of the alters.
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E-I Index

• Krackhardt and Stern

E - I  
E + I

• E is number of ties between groups, I is  
number of ties within groups

• Varies between -1 (homophily) and +1  
(heterophily)



Colored by Gender



E-I Index = E + I
E - I

Perfect  
heterophily

External Internal EI
HOLLY 3 2 0.2
BRAZEY 3 0 1
CAROL 0 3 -1
PAM 0 4 -1
PAT 0 3 -1
JENNIE 0 3 -1
PAULINE 1 4 -0.6
ANN 0 3 -1
MICHAEL 1 4 -0.6
BILL 0 3 -1
LEE 1 2 -0.333
DON 1 3 -0.5
JOHN 1 2 -0.333
HARRY 1 3 -0.5
GERY 0 4 -1
STEVE 1 4 -0.6
BERT 1 3 -0.5
RUSS 0 4 -1 perfect  

homophily



Homophily & Heterogeneity
• Homophily is all about comparing EGO 

to  the ALTERS
– Complete homophily is a woman who has all  

women for friends
– Heterophily is a man who has all women for  

friends
• Heterogeneity is about the diversity 

of  ALTERS only.
– Either man or a women with all men for  

friends has a Homogeneous network
– But with half man and half women has

heterogeneity © 2005 Steve Borgatti



computing Heterogeneity

• Blau Index
B =

• Where where pi corresponds to the proportion of group members in ith category and 
k denotes the number of categories for an attribute of interest. 

• This index quantifies the probability that two members randomly selected from a 
population will be in different categories if the population size is infinite or if the 
sampling is carried out with replacement. Hence, if B equals its minimum value (i.e., 
zero), all members of the group are classified in the same category and there is no 
variety. In contrast, the higher B is, the more dispersed group members are over the 
categories. 

• Not comparable if number of categories is not identical across diversity variables

• Index of Qualitative Variation
• Normalizes B index by dividing it by its maximum;
• this controls for the number of categories and yields IQV index (Agresti & 

Agresti, 1978).

INDEXES OF GROUP DIVERSITY   7 
 

In research attempting to optimally quantify diversity, the conceptualization of diversity types 

has not been consistently satisfied in derivations of the diversity indexes (Harrison & Sin, 

2006). The commonly used indexes for within-group variety have always been computed 

based on the proportion of differences within groups that comply with the basic axioms, for 

example, diversity should be maximized when all group members’ characteristics are present 

in equal proportions. 

Diversity as variety conceptualizes categorical differences across the relevant 

characteristics between group members (Carpenter, 2002; Miner, Haunschild, & Schwab, 

2003). For instance, a research group may consist of members with different categories such 

as fellows, associates, and project leaders. Variety is commonly measured by both Blau’s 

index, also known as the Hirschman-Herfindal index (Hirschman, 1964), and the entropy 

index, well-known as Teachman’s index (Teachman, 1980), which are linearly correlated 

(McDonald & Dimmick, 2003). 

Blau’s index, denoted here by B, is defined as  where p
,1

1

2¦
 

�
k

i
ip

i corresponds to the 

proportion of group members in ith category and k denotes the number of categories for an 

attribute of interest. This index quantifies the probability that two members randomly 

selected from a population will be in different categories if the population size is infinite or if 

the sampling is carried out with replacement. Hence, if B equals its minimum value (i.e., 

zero), all members of the group are classified in the same category and there is no variety. In 

contrast, the higher B is, the more dispersed group members are over the categories. The 

maximum value for this index is achieved in the condition where members of a group are 

equally distributed among all categories (i.e., p1 = p2 = …= pk), that is, if and only if n = mk, 

where group size, n, is equal to the number of categories multiplied by a positive integer, m. 

Thus, the maximum value is 



limitation of E-I index

It does not take into account the composition of the whole group:
a) people i connects to;
b) people i does not connect to.

Alternative measure: Yule’s Q, to assess the degree to which ties (and non-ties) 
tend to correspond with being similar or different. 0 = no association; -1,+1 
strong association.



Yule’s Q



Brokerage Roles

Broker

ba c

• Gould & Fernandez
• Broker is middle node of directed triad (note: a is  

NOT connected to c)
• What if nodes belong to different organizations?



Brokerage Roles
(with respect to B)

B

A C

B B

A C

Coordinator

B

A C
B

A C

A C

Representative Gatekeeper

Consultant

Liaison
•We can count how often a node enacts each  
kind of brokerage role



Advice Network:
Nodes Colored by Level (CEO / Manager/ Line Staff)



Counting of Role Structures
ID Coordinator Gatekeeper Representative Consultant Liaison

7 (CEO) 0 0 0 17 21
21(Mgr) 2 11 16 35 8
18(Mgr) 0 9 22 72 18
14(Mgr) 0 2 0 0 2

2 0 5 2 7 6
6 0 0 0 0 0
5 14 2 6 0 0
3 9 7 4 0 0

8 3 2 0 0
9

10 44 1 0 0 0
1 17 0 7 0 0

12 0 0 2 0 0
13 2 0 1 0 0

4 21 7 2 0 0
15 18 3 5 0 0
16 2 0 0 0 0
17 3 3 4 0 0

8 8 3 5 0 0
19 2 0 2 0 0
20 12 7 4 0 0
11 1 1 3 0 0



R2R4

R7

R10 R14

RR115

R16

Coordinator

Liaison

TRot6al

Correspondence Analysis

RR83

R9

R11

R12

R1R35

R17

R18

R19

R20
R21

Gatekeeper

Representative

Consultant



SUMMARY
Name: Description: Relation to Social Capital:

Effective Size  
(Burt, 1992)

The number of alters, weighted by  
strength of tie, that an ego is directly  
connected to, minus a "redundancy"  
factor.

Positive. The more different  
regions of the network an  
actor has ties with, the greater  
the potential information and  
control benefits.

Constraint  
(Burt,1992)

The extent to which all of ego’s  
relational investments directly or  
indirectly involve a single alter

Negative. The more  
constrained the actor, the  
fewer opportunities for action.

Compositional  
Quality (e.g., Lin)

The number of alters with high  
levels of needed characteristics  
(e.g., total wealth or power or  
expertise or generosity of alters)

Positive. The more connected  
to useful others, the more  
social capital.

Heterogeneity (e.g.,  
Burt, 1983)

The variety of alters with respect to
relevant dimensions (e.g., sex, age,
race, occupation, talents).

Positive (except when it  
conflicts with compositional  
quality)

Brokerage Roles (Gould  
& Fernandez, 1989)

There are different roles that ego  
can play depending on network  
structure and composition Depends on the situation



Equivalences
Imagine a hotel employee serving drinks at the general convention of the Episcopal church. All the 
delegates are in casual clothes, and at first he finds it difficult to identify the people who hold the 
most influential positions within the church. Eventually he notices that a group of delegates is 
treated with deference by everyone—call them the archbishops. Another group is treated with 
deference by everyone except the archbishops call them the bishops. Just by observing the 
delegates mingle, he might be able to guess the seniority of the office each person holds.

. . . by looking at a set of relationships within a community, we might discover that we can divide 
them in groups where people in the same group behave in a similar way with people of the other 
groups. In SNA, we say that people in these groups hold the same role.



Copyright © 2006 Steve Borgatti.
1

The Dream
• Formalizing hallowed notions of position, role 

and structure
• Society as concrete network of relationships 

among individuals 
– And social structure is underlying network of positions 

structuring observed pattern among individuals
• Role freed from essentialist and culturalist

definitions and defined in terms of characteristic 
relations among incumbents of positions, often 
reciprocally defined
– Like functional role of species in ecosystem



Positional Perspective
• Centrality measures one aspect of position
• But there are other aspects

– Creating groupings of classes of nodes based  
on similar patterns of ties within the groups

– Identified from their relational patterns to the  
groups being defined

– Unlike the cohesive perspective where groups  
were based on specific ties, these are based  
on generalized or abstracted inter-group ties



Experimental Exchange Nets
Experimental exchange networks is an area of study in which subjects are brought into a lab and 
asked to play a game in which they must try to get as many points as possible. In each round, 
they are given 24 points to divide up with an exchange partner. The experimenter arranges the 
people into networks of who can exchange with whom. Initially, it was thought that centrality 
would determine point-getting, but this is not true.
How can we get there?

Experimental Exchange Nets

• Divvy up 24 points
• Who has what kinds
of outcomes?

a b c

a b c d e

f

g



Implicit Hypothesis

• Structurally similar nodes have similar  outcomes
– Occupy same position, then same results
– This is the distinct from Burt’s brokerage

• By occupying a position others do not, I get a competitive advantage

• Networks with similar structures will also have similar
outcomes
– Similarly structured teams will have similar  performance outcomes

• Role equates to Position – we can express role through a 
relation (or set of relations). We only need to identify particular 
aspects of a positions.
• WHAT aspects?



Some definitions

• Equivalences use some terms we have  not yet encountered:
– Colorations
– Neighborhoods

Class Two: Self-Complementarity

When studying any type of mathematical object it is often useful to have
some notion for when two objects of this type are equal. For example, when
dealing with fractions we want to be able to say things like 6

3 = 2 6= 7
5 . What

allows us this freedom was the following condition:

a

b
=

c

d
() ad = bc. (1)

Since there is no shortage of di↵erent ways to draw a particular graph, we’d
like to come up with a similar type of condition which would allow us to say
if two graphs are the “same” or “di↵erent.” On an intuitive level it may seem
clear that the four graphs drawn below are “di↵erent,” but it is not clear
how do we go about turning this intuition into mathematics with the hope of
obtaining sometype of a checkable procedure akin to (1).

A graph is completely determined by its vertices and edges. And so in
drawing a graph we are free to move the vertices around all we want so long
as we don’t alter the edges. Roughly speaking, we say that two graphs are
isomorphic if we can deform one into the other, that is, if we can redraw one
them so that it appears exactly as the other. Otherwise we say the graphs
are non-isomorphic. Formally, given two graphs G and H if there exists a
bijection  : V (G) ! V (H) such that two vertices u, v 2 V (G) are adjacent
if and only  (u), (v) 2 V (H) are adjacent. Since there are n! bijections, one
way to check if two graphs are isomorphic is to check every single mapping.
However, for n � 4 we have that n! > 2n and so this is a very ine�cient



Colorations
• A coloration C is just a partition of nodes. The color of a 

node v, written C(v) is just the equivalence class it 
belongs to;

• An equivalence is just the relation E induced by a 
partition;

• Different equivalences (E) result in different colorations 
(partitionings) based  on different rules.
– Structural
– Automorphic
– Regular



Neighborhoods
• Neighborhood of v,
written N(v) is just the
set of nodes adjacent
to v.

• In digraphs, have
a b

• In digraphs, have
– In-neighborhood
Ni(v): nodes sending
arcs to v

– Out-neighborhood
No(v): Nodes receiving
arcs from v

c

de



Coloration

yr
a b

e

r

w

y
c d

e



Structural Equivalence
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Structural Equivalence
(simplified definition)

• u Ł v if, for any w, whenever uÆw then vÆw, 
and whenever wÆu then wÆv

• C(u) = C(v) if N(u) = N(v)
• C(u) = C(v) if Nout(u) = Nout(v) and Nin(u) = Nin(v)

Note: Equivalent 
nodes have been 
colored the same.

y

r

r

w

y

a b

c d

e



Structural Equivalence

• Structurally indistinguishable
– Same degree, centrality, belong to same number of  

cliques, etc.
– Only the label on the nodes themselves can  

distinguish them from those equiv to it.
– Perfectly substitutable: same contacts, resources
– Might identify who would take over if someone left

• Face the same social environment
– Same forces affecting them
– Expect, therefore, same outcomes







reducing graph to positions



Issues with  Structural Equivalence

• Location AND position
– You are your friends
– Confounds location with role

• In real data, few perfectly structural  
equivalent nodes
– So we often calculate the degree of structural  

equivalence between nodes



Structural Equivalence

Copyright © 2006 Steve Borgatti.
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Pros and Cons of SE

• Pros
– Captures notions like niche
– Location or position

• You are your friends

• Cons
– Confounds similarity with contiguity
– Not helpful for explaining results of 

exchange experiments
– Not a good formalization of social role

• Mother & father play same role to their kids,
but not other parents

• Can’t use in disconnected graphs

a b c d e

f

g

b

r

b

pr

a b

ec d

g
f



Only parents of same children are
playing the same role

b b
a b

g
f

r pr
ec d



Automorphic Equivalence

• Aka structural isomorphism
• Two graphs G(V,E) and G’(V’,E’) are same  

if you can find a 1:1 mapping of nodes of  
one to the other that preserves adjacency  
structure
– The mapping p is an isomorphism if (u,v) Î E  

iff (p(u),p(v)) Î E’
– P is called an automorphism when G=G’

• Automorphisms also called symmetries of a graph



Copyright © 2006 Steve Borgatti.
19

Isomorphisms

1 23

4

5

a

b

c

d e

z
q p

y

x

5xe

4pd

3yc

2zb

1qa

Fig 3Fig 2Fig 1

Mappings:

A mapping p from one graph to 
another is an isomorphism if
whenever u is tied to v, p(u) is tied 
to p(v).

Isomorphisms are mappings that 
preserve structure



Isomorphism

5 1

2

4

3
5

1 2

4
3

1

2

4

3

5

Maps between objects that 
preserve structure – it can 
consider different target and 
domain.



Automorphisms

a b

a b

cd

cd

cd

ef
1. Is (a b) (d c) an automorphism?
2. Is (a d) (b c) an automorphism?
3. Is (a c) (b d) an automorphism?

Automorphism is an isomorphism from G 
to G – source and target match.
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Cycle Notation

• (1 3) (2 4) (5)

• (a b d) (c)

1 2

4
3

5

55
24
13
42
31

p(v)v

a b

cd ad
cc
db
ba

p(v)v



Automorphic Equivalence

• A coloration C is automorphic if C(u)=C(v)  
iff there exists automorphism p such that  
u=p(v)

a b

c d

e f
g h

i j
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Automorphic Equivalence

• Node u is automorphically equivalent to 
node v if there exists an automorphism p 
such that u = p(v)

a b

c d

e f
g h

i j



Automorphic Equivalence

• Powerful, fundamental intuitive concept
• Truly structural/positional, not confounded  

by contiguity
• Captures results of exchange experiments
• Captures essentials of the role concept
• Generalization of structural equivalence



Problems with
Automorphic Equivalence

• A parent with 2 children  
does not play the same  
role as one with 3 children

• Extremely difficult to  
compute

• No obvious way to  
relax the concept for  
application to real  
world data

• Does not work well  
with asymmetric data

Copyright © 2006 Steve Borgatti.
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Problems with

Automorphic Equivalence

• A parent with 2 children 

does not play the same 

role as one with 3 children

• Extremely difficult to 

compute

• No obvious way to relax 

the concept for application 

to real world data

– No two nodes are ever AE

b

r

b

p r

gsy y

a b

ec
d

f g h i



Regular Equivalence

• Regularly equivalent nodes have the same  
colors in their neighborhood (not 
necessarily in the same quantity)
Copyright © 2006 Steve Borgatti.
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Regular Equivalence
• Two nodes u and v are regularly 

equivalent if
– Whenever uÆc, there exists a node 

d such that vÆd and c and d are 
regularly equivalent, and

– Whenever cÆu, there exists a node 
d such that dÆv and c and d are 
regularly equivalent

• C(u)=C(v) implies C(N(u)) = 
C(N(v))

• Actually, C(u)=C(v) implies 
C(Nout(u)) = C(Nout(v)) and 
C(Nin(u)) = C(Nin(v))

a b

ec d

f g h i

Regularly equivalent nodes are 
not necessarily connected to 
the same third parties, but they 
are connected to equivalent 
third parties (though not 
necessarily in the same 
quantity)
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Regular Equivalence
• Two nodes u and v are regularly 

equivalent if
– Whenever uÆc, there exists a node 

d such that vÆd and c and d are 
regularly equivalent, and

– Whenever cÆu, there exists a node 
d such that dÆv and c and d are 
regularly equivalent

• C(u)=C(v) implies C(N(u)) = 
C(N(v))

• Actually, C(u)=C(v) implies 
C(Nout(u)) = C(Nout(v)) and 
C(Nin(u)) = C(Nin(v))

a b

ec d

f g h i

Regularly equivalent nodes are 
not necessarily connected to 
the same third parties, but they 
are connected to equivalent 
third parties (though not 
necessarily in the same 
quantity)



Regular Equivalence

• Captures role concept really well
– Two actors are equivalent if they have the same  

relations with equivalent others
– You call American airlines and talk to clerk about  

booking flight, while I call USAIR and do same with  
their clerk

• You and I equivalent because the clerks are equivalent (and  
they are equivalent because you and I are equivalent)

• Less strict than automorphiic
– Not necessarily concerned with quantities of colors
– Finds more equivalent nodes
– Therefore, better at data reduction



Regular Equivalence

• Also captures position in hierarchies well
– Including trophic group

• Relatively easy to compute (and to relax)
• Easy to generalize to 2-mode data

– Consumers & brands
• Segments & positions
• identifying category boundaries

• Works well with multiple relations, valued,  
& directed data, and disconnected graphs



Regular Equivalence
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Regular Equivalence

b

r

b

rr

a b

ec d

b
f

y

r

r

r

y

a b

c d

y

r

r

r

y

ab

cd



Regular Equivalences



Regular Equivalence
in a Disconnected Network

Does a nice job capturing  
level in the hierarchy



Problems with Regular Equivalence

• Often hard to interpret
– Humans good at understanding pattern  

similarities, but not in the context of social ties
– Data sets often inappropriate for R.E. analysis

• Too small, no real roles
– Do not work well with undirected data

• A graph may have multiple colorations that  
are regular
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a b

c d

e f
g h

i j

a b

c d

e f
g h

i j

a b

c d

e f
g h

i j



recap

Structural Equivalence

Two actors are equivalent if they have the same type of ties to the same 
people.



recap
Automorphic Equivalence

Actors occupy indistinguishable structural locations in the network. That is, 
that they are in isomorphic positions in the network.

In general, automorphically equivalent nodes are equivalent with respect 
to all graph theoretic properties (I.e. degree, number of people reachable, 
centrality, etc.)



recap

Regular Equivalence

Does not require actors to have identical ties to identical actors or to be 
structurally indistinguishable.

Actors who are regularly equivalent have identical ties to and from 
equivalent actors.

If actors i and j are regularly equivalent, then for all relations and for all 
actors, if i k, then there exists some actor m such that j     m and k is 
regularly equivalent to m.

There may be multiple regular equivalence 
partitions in a network, and thus we tend to 
want to find the maximal regular 
equivalence position, the one with the 
fewest positions.



Note that:

1. Structurally equivalent actors are automorphically equivalent;

1. Automorphically equivalent actors are regularly equivalent.

1. Structurally equivalent and automorphically equivalent actors are regular 
equivalent.

In practice, we tend to ignore some of these fine distinctions, as they get blurred quickly once 
we have to operationalize them in real graphs.  It turns out that few people are ever exactly
equivalent, and thus we approximate the links between the types.  

The process of identifying positions is called blockmodeling, and requires identifying a measure 
of similarity among nodes.



Computation

• Relaxing concepts for real world data
• Two approaches

– Discrete or blockmodel
• Partition nodes into mutually exclusive classes  

such that departures from equivalence model are  
minimized

– Profile similarity
• For each pair of nodes, calculate the degree to  

which each pair is equivalent



structural equivalence | profile similarity

• Profile similarity method [sna::sedist & blockmodeling::sedist]

– Compute similarity/distance between rows of  adjacency
matrix
• Product-Moment Correlation
• Gamma Correlation
• Euclidean distance
• Hamming distance

– Much argument over handling of diagonals
– Can then MDS or cluster the resulting  proximity

matrix



computing equivalences | profile similarity

Because structural equivalence requirements of perfectly identical tie patterns almost 
never occurs in real networks, we relax criterion to find “approximately structurally 
equivalent” actors.

Several continuous measures can be computed on pairs of rows-columns. Distance 
measures:

- Euclidean distance [0,1] (number of neighbors that differ between two vertices): 
distance between rows i,j and columns i,j in the adjacency matrix. If two actors are 
structurally equivalent, then their entries in the rows and columns will be identical, and 
the Euclidean distance will be 0.

It also has the properties of a distance metric:
- distance from an object to itself is 0 (dii = 0)
- symmetric (dij = dji)
- distances are greater than or equal to zero (dij ≥ 0)
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Ties may be binary, signed, or valued. Larger numbers indicate greater 
distance, while dij = 0 indicates the two actors are exactly s.e.; why? 
 
For multiple networks of distinct relational contents, just calculate the 
Euclidean distances for each of the R sociomatrices and sum them before 
extracting the square root. 

 
A symmetrical matrix of pairwise Euclidean distances can be analyzed, as 
described below, to determine which subsets of actors are sufficiently close to be 
considered joint occupants of the same structurally equivalent positions. This matrix 
can also be analyzed by spatial plotting or mapping routines to display visually the 
distant/proximate locations among actors in a multidimensional social space. 
 



computing equivalences | profile similarity

Because structural equivalence requirements of perfectly identical tie patterns almost 
never occurs in real networks, we relax criterion to find “approximately structurally 
equivalent” actors.

Several continuous measures can be computed on pairs of rows-columns. Distance 
measures:

- Correlation coefficient [-1,1] (normalized count of common neighbors; compares 
number of common neighbors with expected value of that count would take in a random 
network);

Euclidean                 Correlations
A B C D E            A     B     D     C     E  

A  0 0 0 1 1 A  1.0  1.0  1.0  0.5  0.5
B  0 0 1 1 1        B  1.0  1.0  0.0  0.5  0.5
C  0 1 0 1 1        D  1.0  0.0  1.0  0.5  0.5
D  1 1 1 0 0        C  0.5  0.5  0.5  1.0  1.0
E  1 1 1 0 0        E  0.5  0.5  0.5  1.0  1.0

Permuted
A B D C E

A  0 1 0 0 0
B  1 0 0 0 0
D  0 1 0 0 0
C  1 1 1 0 0
E  1 1 1 0 0



computing equivalences | representing positions

Distances in miles between US cities

Multidimensional Scaling on similarities (Correlations) or dissimilarities ( Euclidean distance) matrices. 
Plots on n-dimensional plane.



computing equivalences | representing positions

Multidimensional Scaling on similarities (Correlations) or dissimilarities ( Euclidean distance) matrices. 
Plots on n-dimensional plane.



computing equivalences | blockmodel intuition

Equivalences within a graph are revealed by permuting (rearranging) the rows and 
columns of the adjacency matrix, to show adjacent actors that have identical rows and 
columns vector entries.



The goal is to reduce a large, incoherent network to 
a smaller comprehensible structure that can be 
interpreted more readily;

it is based on the idea that units can be grouped 
according to the extent to which they are 
equivalent, according to some meaningful definition 
of equivalence

A. Ferligoj: Cluster Analysis 1'

&

$

%

Introduction

The goal of blockmodeling is to reduce a
large, potentially incoherent network to a
smaller comprehensible structure that can be
interpreted more readily. Blockmodeling,
as an empirical procedure, is based on the
idea that units in a network can be grouped
according to the extent to which they are
equivalent, according to some meaningful

definition of equivalence (structural (Lorrain
and White 1971), regular (White and Re-
itz 1983), generalized (Doreian, Batagelj,
Ferligoj 2005).
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Figure 1: (a) An adjacency matrix representing a relation over a domain with twelve
objects (b) The adjacency matrix permuted according to z, a vector of class assign-
ments. The blue lines separate the four classes. (c) A class graph showing relations
between the four latent classes. Each class sends links to one class and receives links
from another class.

2 A generative model for relational data
Suppose we are interested in a system with a single directed relation R (multiple re-
lations will be considered later). The relation can be represented as a graph G with
labeled edges, where edge gij between objects i and j has value 1 if R holds between
i and j and value 0 otherwise. Our goal is to identify the latent classes z of the objects
using the information contained in G. For example, suppose that G is the graph repre-
sented as an adjacency matrix in Figure 1(a). Our goal is to find a partition of the 12
objects into classes. The best partition is represented in Figure 1(c), and Figure 1(b)
shows the matrix G sorted according to this four-class solution.

To find the best assignment of objects to classes, we define a process by which z
and G are generated and use Bayesian inference to infer z for an observed graph G.
We specify this generative model in two stages, first showing how G is generated given
z, and then describing the process by which z is generated.

2.1 Generating relations from classes
Assume that each potential relation between two objects is generated independently,
and p(gij = 1), the probability that the relation holds between i and j, depends only
on zi and zj , the classes of i and j. Given a set of assignments z, the probability of G
is

p(G|z, η) =
∏

a,b

(ηab)
mab(1− ηab)

m̄ab (1)

where a and b range over all classes, ηab is the probability that the relation holds be-
tween a member of class a and a member of class b, mab is the number of edges

3

structural equivalence | blockmodeling



Blockmodel is a partition of the set of g actors into B discrete 
positions, with permuted and blocked matrices showing the presence 
of absence of ties within and between positions.

Positions in blocked matrix rarely exhibit strict structural equivalence; 
In real social data, block models often find positions that contains 
mixtures of 1s and 0s. The analyst must decide then on some criterion 
for assigning either 0 or 1 to each cell of the block model image.

structural equivalence | blockmodeling
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For a binary network, most blockmodelers use an α density criterion to determine 
the image matrix: 
 

• If the intra- or interblock proportion of direct ties is above the α density, 
recode that block = 1 in the image matrix. 

 
• If the density of direct ties falls below the specified cutoff density, recode that 

image block = 0. 
 
For a network of valued relations, an analyst might recode the image according to 
whether each block’s density is above or below the network mean density. 
 

Suppose a 4x4 blocking finds these submatrix proportions, where the overall 
mean network density = 0.30: 

 
 Block I Block II Block III Block IV 
Block I 0.70 0.48 0.27 0.19 
Block II 0.33 0.40 0.31 0.11 
Block III 0.37 0.30 0.29 0.08 
Block IV 0.32 0.29 0.02 0.12 

 
Then using 0.30 as the α density criterion, the blockmodel image is: 

 
1 1 0 0 
1 1 1 0 
1 1 0 0 
1 0 0 0 

 
The cells in red draw attention to three positions whose densities are just 
above or just below the α cutoff. Increasing the α criterion (e.g., to 0.40) or 
lowering it (e.g., to 0.20) would produce a much different blockmodel images 
with fewer or more oneblocks, respectively. 

 



computing equivalences | representing positions
CONvergence of iterated CORrelations [CONCOR] routine:

- repeatedly correlates the row and column vectors of one (or more) adjacency 
matrices until all entries either become +1 or -1.

- an initial partition into two structurally equivalence submatrices (or “blocks”); 
subsequent bifurcations continue until every actors occupies a solo position;

- as an analyst, you MUST decide which level of split to report, typically using 
substantive knowledge of the network.
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Here’s the four-block partition of nondirected binary ties 
in a “German Network” (courtesy Ulrich Brandes): 
 

              K L M   U P R   S O   T V W   
             -----------------------------  
  1 Katrina |     1 |       |     |       | 
  2  Lothar |     1 |       |     |       | 
  3  Monika | 1 1   |       |   1 |       | 
            ------------------------------- 
  9  Ulrike |       |       | 1   | 1 1 1 | 
  5   Peter |       |       | 1 1 | 1     | 
  6    Rolf |       |       | 1 1 |       | 
            ------------------------------- 
  7  Sabine |       | 1 1 1 |     |       | 
  4   Oskar |     1 |   1 1 |     |       | 
            ------------------------------- 
  8  Tamora |       | 1 1   |     |       | 
 10  Volker |       | 1     |     |       | 
 11    Wolf |       | 1     |     |       | 
             ------------------------------ 

 
 
 

Observe that some densities within and between positions differ from the 0.0 or 1.0 
levels required under strict structural equivalence. The CONCOR dendogram 
reveals a simple differentiation: the German Network splits into four positions that 
have no subpositions (alternatively, each actor joins one of four positions, which 
then all merge simultaneously at the complete-network level). 

 

 
 
 

Densities in 
each/between 
blocks differ 
from 0 or 1 levels 
required by SE.



computing equivalences | representing positions
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Observe that some densities within and between positions differ from the 0.0 or 1.0 
levels required under strict structural equivalence. The CONCOR dendogram 
reveals a simple differentiation: the German Network splits into four positions that 
have no subpositions (alternatively, each actor joins one of four positions, which 
then all merge simultaneously at the complete-network level). 

 

 
 
 

CONCOR dendogram reveals each actor 
joins one of 4 positions in this german
network, with 0 sub-positions.



computing equivalences | representing positions

CONCOR dendogram reveals 2 multi-actor 
position and two solo-actor positions.

Hierarchical Clustering on Euclidean distance matrices
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HIERARCHICAL CLUSTERING 
 
Another method for identifying approximate structurally equivalent positions is to 
agglomerate (lump together) actors using a hierarchical cluster analysis of the matrix of 
Euclidean, correlational, or other distance measures. Unlike CONCOR’s two-splits-at-a-
time, clustering permits actors to join existing positions in diverse sequences. The UCINET 
program is located in dropbox “Tools/Cluster/Hierarchical”. 
 

EX: First I computed and saved a Euclidean distance matrix of undirected German 
ties. Then a hierarchical cluster analysis of that matrix yielded this dendogram: 

 
        K L M O R P S T U V W 
        a o o s o e a a l o o 
        t t n k l t b m r l l 
Level   r h i a f e i o i k f 
-----   - - - - - - - - - - - 
    2   XXXXXXX . . XXXXXXXXX 
    1   XXXXXXXXX XXXXXXXXXXX 

 

 
 

This method reveals two multi-actor positions and two solo-actor positions 
(singletons). One possible reason for the different results may be that I used 
correlations for CONCOR and Euclidean distances for the hierarchical clustering. 

 
 
SPATIAL REPRESENTATIONS 
 
Multidimensional scaling (MDS) comprises a set of methods for plotting or mapping the 
proximities between network actors or positions, using a symmetric matrix of pairwise 
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structural equivalence | blockmodeling example
(money and information exchange among 10 Indianapolist organizations)
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BLOCKMODELS & IMAGES of MULTIPLEX RELATIONS 
 
A blockmodel that simultaneously blocks two or more relations by partitioning actors 
into structurally equivalent positions may produce distinctive images for each 
matrix. This example blocks two asymmetric networks -- money and information 
exchange -- among 10 Indianapolis organizations (Knoke and Kuklinski 1982:44). 
 

First, import both matrices into UCINET and create two transposes. Use 
“Data/Join” to stack all four matrices into a single 40x10 data array. Next, use 
“Tools/Similarities” to compute the matrix of correlations among pairs of 
columns: 
 
                    1      2      3      4      5      6      7      8      9     10 
               County Counci Educat Indust  Mayor    WRO Newspa United Welfar Westen 
               ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ 
  1    County   1.000  0.142  0.150  0.451  0.278  0.105  0.298  0.257  0.341  0.107 
  2   Council   0.142  1.000 -0.061  0.142  0.404  0.350  0.297  0.143  0.142  0.207 
  3 Education   0.150 -0.061  1.000  0.043 -0.041 -0.102  0.316  0.375  0.471  0.171 
  4  Industry   0.451  0.142  0.043  1.000  0.383  0.105  0.298  0.150  0.341  0.358 
  5     Mayor   0.278  0.404 -0.041  0.383  1.000  0.317  0.323 -0.041  0.068  0.153 
  6       WRO   0.105  0.350 -0.102  0.105  0.317  1.000 -0.086  0.068 -0.070  0.419 
  7 Newspaper   0.298  0.297  0.316  0.298  0.323 -0.086  1.000  0.000  0.406  0.077 
  8 UnitedWay   0.257  0.143  0.375  0.150 -0.041  0.068  0.000  1.000  0.257  0.293 
  9   Welfare   0.341  0.142  0.471  0.341  0.068 -0.070  0.406  0.257  1.000  0.358 
 10   Westend   0.107  0.207  0.171  0.358  0.153  0.419  0.077  0.293  0.358  1.000 

 
Then use CONCOR on the saved correlation matrix to find a 2-level partition 
(4 blocks); answer “YES” to “input is corr mat”. Here’s the cluster diagram 
showing which orgs belong to which block: 

 

 
 
 

correlation 
matrix
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Clustering informs row-partition/blocking to use in 
separate blockmodels
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Use “Transform/Block” to impose two separate blockmodels on the original 
info and money matrices, according to the partition results above. Tell this 
program which actors belong to which blocks by entering a sequence of 
numbers, into the “Row partition/blocking (if any)” and “Column 
partition/blocking” lines, that correspond to the block location of each actor. 
Indianapolis orgs 1-10 must be sorted into these 4 blocks:  1 3 2 1 3 4 1 2 2 4 

 
Imported from Money.txt 
                                        1   
                1 7 4   3 9 8   5 2   6 0   
                C N I   E W U   M C   W W   
               ---------------------------  
  1    County |       | 1 1 1 | 1   |   1 | 
  7 Newspaper |       |     1 |   1 |     | 
  4  Industry |   1   | 1 1 1 |   1 |     | 
              ----------------------------- 
  3 Education |       |     1 |     |     | 
  9   Welfare |       | 1   1 |     |     | 
  8 UnitedWay |       |   1   |     |   1 | 
              ----------------------------- 
  5     Mayor |       | 1 1 1 |   1 |     | 
  2   Council |       | 1     |     |     | 
              ----------------------------- 
  6       WRO |       |       |     |     | 
 10   Westend |       |       |     |     | 
               ---------------------------- 
 
Reduced BlockMatrix 
         1     2     3     4 
     ----- ----- ----- ----- 
  1  0.167 0.778 0.500 0.167 
  2  0.000 0.667 0.000 0.167 
  3  0.000 0.667 0.500 0.000 
  4  0.000 0.000 0.000 0.000 

 
Finally, if you save the Reduced BlockMatrix densities (by typing a name into 
the “(Output) Reduced image dataset” line), you can then obtain its image 
with the “Transform/Dichotomize” program. For “Cut-Off Operator” choose 
“GE - Greater Than or Equal” and for “Cut-Off Value” set the α density 
criterion at 0.50. The resulting money exchange image is: 

 
Rule:  y(i,j) = 1 if x(i,j) >= 0.50, and 0 otherwise. 
Reduced BlockMatrix 
     1 2 3 4 
     - - - - 
  1  0 1 1 0 
  2  0 1 0 0 
  3  0 1 1 0 
  4  0 0 0 0 
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Generalized equivalence / block types

Y
1 1 1 1 1

X 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
complete

Y
0 1 0 0 0

X 1 1 1 1 1
0 0 0 0 0
0 0 0 1 0

row-dominant

Y
0 0 1 0 0

X 0 0 1 1 0
1 1 1 0 0
0 0 1 0 1

col-dominant

Y
0 1 0 0 0

X 1 0 1 1 0
0 0 1 0 1
1 1 0 0 0

regular

Y
0 1 0 0 0

X 0 1 1 0 0
1 0 1 0 0
0 1 0 0 1

row-regular

Y
0 1 0 1 0

X 1 0 1 0 0
1 1 0 1 1
0 0 0 0 0
col-regular

Y
0 0 0 0 0

X 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

null

Y
0 0 0 1 0

X 0 0 1 0 0
1 0 0 0 0
0 0 0 1 0

row-functional

Y
1 0 0 0
0 1 0 0

X 0 0 1 0
0 0 0 0
0 0 0 1

col-functional
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Types of pre-specified blockmodels

The pre-specified blockmodeling starts with a blockmodel specified, in terms of
substance, prior to an analysis. Given a network, a set of ideal blocks is selected, a
family of reduced models is formulated, and partitions are established by minimizing
the criterion function.

The basic types of models are:

* * *

* 0 0

* 0 0

* 0 0

* * 0

? * *

* 0 0

0 * 0

0 0 *

core - hierarchy clustering

periphery
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• Blockmodeling approach
– Optimization method [sna::blockmodel]

[blockmodeling::opt.random.par]
• you tell it how many classes to create and it  reports 

how well it did
• similar algorithm available in R; but models for 

different k can then be assessed using “blockmodel” 
package.

• Older Concor method
[devtools::install_github("aslez/concoR")] 

• CONvergence of iterated CORrelations
• Actually based on profile method, uses  convergence of 

iterative correlation calculations
• Not as accurate as Profile method

structural equivalence | blockmodeling



• REGE (Algorithms for computing (dis)similarities in terms of regular equivalence) 

[blockmodeling::REGE]

– Creates a similarity matrix based on the data  in the original 
matrix, so if there’s not much  variety in your original data, it’s 
likely to clump  all (most) of your nodes together.

– Converting your data to geodesic distances  may help with 
this, but even then if the  patterns of distances are very similar, 
it may  still produce only the trivial regular  equivalence 
(coloration) of all nodes in one  color.

computing | regular equivalence



REGE

• Getting around the trivial partition in data without  
much variation (e.g., binary, symmetric)

– The best way around this, is to create a new matrix
that has more variety (like maximum flow) and then
run REGE on that

– Or, simply use the OPTIMIZE routine, and specify the  
number of colors you want.

• But this is a combinatorial optimization and can be very  
sensitive to number of nodes in the network.


