Social Network Analysis

Day 3
SNA Data Collection
Cohesion, Subgroups & Communities
Hypothesis Testing, Inferential Network Models



Collection, Ethics & Entry



Steps to a SNA study

1. ldentify the population
 Bounding, sampling, gaining access

2. Determine the data sources
« Archival, interviews, observations, surveys

3. Collect the data
« Survey design



1. ldentify the Population: Bounding
the Study

« Extremely vexing to beginners and outsiders
— Network concept would seem to argue against boundaries

 Empirical research makes clear we are all connected

— Even if distant links don’t matter, some people in the sample will
be at the edge, no matter where we cut it

* One key is to isolate when bounding matters
— Yes: Interpersonal influence studies
— No: Selection studies



Types of Boundaries

« Attribute-based

— Top management team at Enron
— Drug injectors in Hartford

- Relation-based

— Snowballing out from seed sample until few or no new names
(i.e., exhaust current component)

* Mixed criteria
— Sexual ties among residents of Nang Rong

- Theoretical criteria



boundary specification...

What is the theoretically relevant population?

Networks are (generally) treated as bounded systems, what constitutes your bound?

Local Global
Everyone connected to ego | All relations relevant to
e L, in the relevant manner (all social action (“adolescent
Realist friends, all sex partners) peer network™ or
(Boundary from actors’ “Community Health
Point of view) Leaders” )
Relations defined by a Relations within a
Nominalist n.an'le—ggnerator, typically pgrticular setting .(“.School
(Boundary from researchers’ limited o num,l,)er 5 frlen.ds” o “Phys.mans
nt of view) closest friends”) serving this hospital™)
poin

Most of the time....these boundaries are porous



boundary specification...

In practice:
a) set a pragmatic bound that captures the bulk of theoretically relevant data
b) Collect data on boundary crossing.
a) You might ask “friends in this neighborhood” but also “Other close friends?”
b) Don’t limit nominations to current setting, but only trace within the bounds.

Good prior research, ethnography, informants, etc. should be used to identify the
bounds as best as possible, but these sorts of data allow one to at least control for
out-of-sample effects in models.

For adaptive sampling, such as link-trace designs, you might use a capture/recapture
rule to figure out if you've saturated your population. Once you stop receiving new
names...you’ve finished.

--but, if you jump to a new population...this can be hard to discern.



boundary specification...

1. The level of analysis implies a perspective on sampling:
1. Local = random probability sampling
2. Adaptive = Link trace, RDS

3. Complete = Census

These are not as dissimilar as they may appear:
a) Local nets imply global connectivity:

a) Every ego-network is a sample from the population-level global
network, and thus should be consistent with a constrained range of
global networks.

b) If you have a clustered setting, many alters in a local network may
overlap, making partial connectivity information possible.

c) For attribute mixing (proportion of whites with black friends, low
BMI with high, users with non-usres, etc.), ego-network data is
sufficient to draw global inference



Social Network Data
Research Design: Network Sample

Data collection strategy

Nominalist Realist
(researcher pov) | (natural groups)

Local * Probability samples * Family interviews
* Clinical samples * Neighbors
» Extracted from » Workplace samples

complete settings

Adaptive * Fixed diameter chain  + Unlimited diameter
from qualifying chain on qualifying
seed(s) relation

Complete « Census withinafixed + Only practical for real
setting (hospital, groups (“Duke
school, etc.) Faculty” “Crip”). Get

list from informant &
enumerate.

(The column distinction is squishy...)



Social Network Data
Research Design: Network Sample

1. Ego Network Sampling

* Most similar to standard social survey:
« Easily sampled (as any other survey implementation)

« All information comes from the respondent, so very subject to personal
projection.

» Ask ego to report on characteristics of alter
For k alters and q attributes - adding kq questions
i.e. 5 friends with 10 behaviors adds 50 questions to the survey!

» Ask ego to report on relations amongst alters.
For k alters and j relational features = j(k(k-1)/2) questions
i.e. 5 friends and 2 relation question is 20 questions: 2*((5*4)/2)



Social Network Data
Research Design: Network Sample

2. Snowball and ““link trace” designs

| Link-Tracing Designs |

Ego-networks Complete Census

Basic idea is to use “adaptive sampling” — start with (a) seed node(s), identify
the network partners, and then interview them.

Earliest “snowball” samples are of this type. Most recent work 1s “respondent
driven sampling. (RDS)”

-- If done systematically, some inference elements are knowable. Else, you
have to try and disentangle the sampling process from the real structure



Social Network Data
Research Design: Network Sample

3. Global network samples: Population Census

« Key issue is to enumerate the population & collect relational
information on all.

— If dynamic, this can make implementation difficult

— Tends to force case-study style designs (highly clustered
settings)

— Contrast N of networks with N of respondents

— Because behavior 1s self-reported (rather than alter
reported), adding network questions to a census-based
survey is low cost.

« If you are doing a census anyway....then good to add
network questions.



Sampling

« Sampling is not a problem for ego
networks

« Sampling for complete networks is in its
infancy



Gaining Access

 Alittle harder than for ordinary studies
— Strong preference for complete data
— Respondent fears
— Length of interview

* Quid pro quo helps but muddies the
ethical waters



Step 2: Determine Data Sources

Archival data
Interviews
Observations
Surveys



Step 3: Collect the Data

* \What questions to ask?

— How many questions to ask
* Depends on style (roster v. recall)

* How to format your survey?



What Questions to Ask?

* IT DEPENDS!!!

— A relation is just a variable. “Giving advice” is
to network analysis what “attitude toward gun-
control” is to survey research.

— It is the researcher who defines the relations
of interest. What’s relevant for the
phenomena in question?

« HIV diffusion: sexual ties and needle-sharing are
directly involved, other ties like acquaintanceship
can potentially turn into sex and sharing ties



what question to ask?

What information do you want to collect?

This 1s ultimately a theory question about how you think the social network matters
and what social or biological mechanisms matter for the outcome of interest. This
is driven by thinking through:

Health Outcome = Mechanism = Relation(s)

Examples:
Sometimes the relations are clear:
STD/HIV - Contagion-carrying contact = Sex, Drug sharing, etc.

Sometimes not so much:
Health Behavior = Information flow = Discussion networks
Health Behavior = Social Conformity Pressure = Admiration nets
Health Behavior = opportunities = Unsupervised interaction



what question to ask?

What information do you want to collect?

Sometimes the outcome 1s deliberately unspecified, as when you are collecting data
for a large common use projects (GSS, Add Health, NHRS).

Then the design is effectively reversed: What relations capture the most (general?

comprehensive? efficacious? Reliable?) social mechanisms that will be of broad
interest?

Contact 7 Disease

Excitement Suicidal Ideation
Relation(s —> Respect Substance Use

Pressure BMI

Information > Treatment adherence

Social mechanism ambiguity allows broad use, which favors relations that tend to be
general. This, of course, makes crisp causal associations more difficult.



what question to ask?

What information do you want to collect?
Health Outcome = Mechanism - Relation(s)

Relations themselves are often multi-dimensional...do these matter for
your question?

- Perception vs. interaction?
“who do you like?” € -2 “who do you talk with?”
- Intensity?
“How often ...”, “how much...”
strong vs. weak
- Dynamics?
Starting & ending dates, everyday contact or sporadic?



what question to ask?

Ethnographic Sandwich

« Ethnography at front end helps to ...
— Select the right questions to ask
— Word the questions appropriately

— Create enough trust to get the questions
answered

« Ethnography at the back end helps to ...
— Interpret the results
— Can sometimes use resps as collaborators



A Public Service Announcement

* Douglas White has a

book about the NETWORK ANALYSIS
ooy o and ETHNOGRAPHIC
Network Analysis PROBLEMS

— It's a couple years old

« Based on reputation, |
expect it is very good, so
you might consider
looking at this if you are
particularly interested in
the subject and problem.

 https://goo.gl/eqnJdkdJ

DUMIGLAS WHITE
AND ULLA JOHANSEN




Surveys

Survey Elements

a) Informed consent
a) It is important to let people know that their identities matter: network data are confidential
but (at least in the construction) not anonymous.

b) Name Generator Questions
a) General term for what relation you are trying to tap.
b) Many extant name generators out there...most evidence suggests that people are very
sensitive to the questions asked.
a) If you ask multiple relations, be clear whether it is OK to repeat names!

c) Response Format
a) Open List =2 number of lines suggests “right” answer
b) Check off/select = very simple on/off, might result in over-estimates
c) Limit choice = limiting choice limits degree which affects *every* network statistics.
d) Rank/Rate = asking people to rank each other is difficult (and can backfire!)
e) If multiple name generators — grid or separate questions?



Surveys

If you use surveys to collect data, some general rules of thumb:

a) Network data collection can be time consuming.
If interests are in network-level structure effects, it is better to have breadth over depth. Having
detailed information on <50% of the sample will make it very difficult to draw conclusions about
the general network structure.

If interest 1s in detail interpersonal information — social support for example — detailed
information on one or two key ties might be more important.

Survey time is the crucial resource: never enough to ask everything you want.

b) Question format:
e Ifyou ask people to recall names (an open list format), fatigue will
result in under-reporting
« Ifyou ask people to check off names from a full list, you can often get
over-reporting

c) It 1s common to limit people to ~5 nominations. This will bias network stats
for stars, but 1s sometimes the best choice to avoid fatigue.



Survey Design Issue

Paper or Plastic?

Close-ended (Roster) vs. Open-ended
Repeated Roster vs. MultiGrid

Tick vs. Rate



Paper or Plastic”?

* Paper medium
— Reliable
— Reassuring to respondents
— Errors in data entry
— Data entry is time-consuming

 Electronic

— Span distances, time zones

— Harder to lose

— Fewer data handling errors

— Lower response rate

— Emailed documents vs survey instruments



Closed-Ended vs Open-Ended

Roster of names or just blank lines?

GE

+ Closed-ended (aided) Newe s
— Requires bounded list l“‘““ .
— Can be impractical for L
large networks e :

* Open_ende'd (UnaidEd) If you wanted to get something done

on behalf of a customer who would you

— Subject to recall errors  contact? gante as many names as

Vo a Dileao
- - - T = fortad TR L ool PN Nl da P TN

.. in the spaces provided)

— Can limit number of
choices made (more
effort, limited space)

Copyright © 2006 by Steve Borgatti



Hybrid Questionnaire

1. If you wanted to get something improved or
done on behalf of a customer who would you
contact?

Dennl Terlo (169
Evic Estrada

2. If youwanted to get a true reading on where
[company name] was headed as an
organization, who would you talk to?

—

Copyright © 2006 by Steve Borgatti

Paper version uses
separate booklet
containing name
directory

drop-down menus




(11 Please indicate which of the (1. sing the checkbormes belowr, pleaze indicate who vou have heard of or

_ knowr sbout armong the participants of the srotkshop
following you had met or been aware

i i Q2. Thecl oft the nanes of the people you know By *lmow* Troesn thed you
of before coming to this wo l—kShﬂﬂ- can attach o name oo Fice, wou hase spoken toosach cther ot least cnee; aod the

pther perzanis also lkely o pub o dogr

Allata i JDE_FI = Q3. Check off the names of peaple youl have worked with of a peper or ather

Bae r, Justin 0 academic/adiministrative project

Bake r, Ted L QH. Check off the the natnes of & selected 2ot of peaple whory vou dont o
& but would like to know, based on things you've heard, or thetr inkerests, ete.

2. Check of f the names of the

people you know. By “know” | mean - WY A ek WO W el
that you have spoken to each ... | ofthem =~ them | with  toknow
Allata, Joan ¥ [ I L
Baer, Justin r L I |
Allata, Joan = Baker, Ted - - - =
Baer, Justin = ‘Bercuwits, Rick = i = :
Baker, Ted | ‘Branzel, Oana r - - r
0 ‘Brooks, Scott r " - r
E FOWVET, Ral[.;l:.L r - - r

Copyright @ 2006 by Steve Borgatti



Tick or Rate?

« Ask respondent for yes/no decisions or quantitative
assessment?

— Yes/no are cognitively easier on respondent (therefore
reliable, believable),

— Yes/no *much” faster to administer
— But yes/no provides no discrimination among levels

« A series of binaries can replace one quant rating:
— Instead of “How often do you see each person?”
— 1 =once a year; 2 = once a month; 3 = once a week; etc.
« Use three questions (in this order):
— Who do you see at least once ayear?
— Who do you see at least once a month?
— Who do you see at least once a week?



Question Wording Issues

* “Friendship” does not mean the same
thing to everyone

— Especially across national cultures

« Some helpful practices

— Use one word label plus two or three
sentence description, plus have full paragraph
detailed explanation available

— Use homogeneous samples



Survey Construction Strategies

Ego Net
Row-based (for undirected relations)

Row and Column-based (for directed
relations)

Matrix based (Krackhardt CSS)



Ego Networks

« (Random) sample of nodes
— Each sampled node called an

« Each is asked for set of contacts
called “alters”

 Each is asked about attributes of
self, and alters

« Ego also asked (usually) about
ties among alters

« Connections between ego’s or
between alters of different egos
are not recorded

— Each ego is a world in itself



Row-Based

« Each informant questionnaire corresponds
to one row in the network adjacency matrix

* Issues of comparability across
respondents

* For logically undirected relations, can deal
with accidental asymmetry and missing
respondents via symmetrization
— Intersection rule: X;=11if X; =1 and X; = 1
— Union rule: X; =1 if X; =1 or X;= 1



Row and Column Based

Each informant effectively asked to fill out both their row
and their column of the adjacency matrix (but actually
stored as separate matrices)

— A;: Who do you give advice to?
— Bj: Who do you get advice from?

Handle asymmetry by creating new matrix X =A N BT
(intersection crlterlong

— Xj=1iff (A;=1)AND (B; = 1)
— i.e., i gives advice toj if i says i gives advice to j and j says they
receive advice from |

Problem with cognitive & affective relations
Respondent is the expert



Matrix-based

« Krackardt CSS
« Each respondent asked about relations among
all pairs of persons in group, not just those
involving self
— Yields network matrix C(k) for each respondent
« Aggregate respondent matrices using choice of
rules
— Local: X;=1if C(i); and C(j);
— Global: X;=1 if C(k); =1 for most k



Response scale:  Blank = They have never met. 1 = They are merely

Dan Dawe Dawd EBEd George Greg Howard

Copyright @ 2006 by Steve Borgatti



How Reliable are SNA data?

* Response bias
* Asymmetry

» Missing data

» Accuracy

* Ethics



Response Bias

Some respondents positively biased

— Give big numbers in general when rating strength of
tie or frequency

Row-based approach yields matrices in which
each row potentially has different measurement
scale

— Can create asymmetry when none “exists”

For valued data can normalize by rows
— Z-scores, euclidean norms, maximum, marginals



Unexpected Asymmetry

A claims to have sex with B, but B does not
claim to have sex with A

— The relation is logically symmetric, but empirically
asymmetric

— Errors of recall; strategic response
« Sometimes asymmetry is the point
* Logically symmetric data may be symmetrized

— If either A or B mentions the other, it's a tie
— Only if each mentions the other is it a tie



Non-symmetric Relations

Gives advice to

Can’t symmetrize logically non-symmetric
relations, except by changing meaning of
tie

Unless you ask question both ways:

— Who do you give advice to?

— Who gives advice to you?

Two estimates of the A—B tie, and two
estimates of the A<B tie



Missing Data

* For logically symmetric relations
— if Xj; is missing, substitute X;
— If whole row missing, substitute corresponding column
* For logically non-symmetric relations, ask
guestions both ways (who do you give advice to,
who gives advice to you)
— set A =B;
— i.e., missing row is replaced with column of the
Inverse relation



What to do about missing data?

Easy:
* Do nothing. If associated error is small ignore it. This is the default, not particularly satisfying.

Harder: Impute ties
 If the relation has known constraints, use those (symmetry, for example)
» [Ifthere is a clear association, you can use those to impute values.
* If imputing and can use a randomization routine, do so (akin to multiple imputation
routines)
« All ad hoc.
Hardest:
* Model missingness with ERGM/Latent-network models.
* Build a model for tie formation on observed, include structural missing & impute.
Handcock & Gile have new routines for this.
* Computationally intensive...but analytically not difficult.



Informant Accuracy

Bernard, Killworth et al compared observed with
recalled interaction data

— Ham radios, deaf TTYs

— About half of the cells in the adjacency matrix were
wrong

Romney & Faust noted that structural analyses
didn’t seem so far off

— Surface structure vs deep structure

Freeman, Romney & Freeman
— Respondents biased toward long term patterns



Krackhardt CSS

* Many sources of inaccuracy

— Recall and exaggeration of ties with high
status people

— ldiosyncratic understanding of the question

« Take "average” of everyone’s perception
of given dyad’s relationship

— Great for deliberately hidden relationships



Dillman Survey Design Considerations

Network questionnaires can be fun but are
usually time-consuming and generate
anxiety

* Providing value

Treating respondent with respect
Attractive formatting

Cloaked in authority and importance



Ethical issues



Ethical and Strategic Issues

* What makes network research especially
challenging ethically?
» What are the dangers & to whom?
— In academic setting
— In management setting
— In mixed situations
— In national security setting

 \What can we do about it?




Ethical Issues

Respondents cannot be anonymous
Non-respondents are still included
Missing data can be powerful

Has the potential to be mis-used by
Management



The Belmont Report: Guiding Ethical
Principles to Social Science Research

Respect for Persons

Autonomy

Voluntariness
Informed Consent

Beneficen

ce Do not harm

Maximize possible benefits/Minimize Possible Harms

Justice

The risks and benefits of research should be
equitably distributed



Questions of Informed Consent and Privacy

Key Components of Informed Consent

Disclosing to potential research subjects information needed
to make an informed decision

Facilitating the understanding of what has been disclosed

Promoting the voluntariness of the decision about whether or
not to participate in the research.



Risks in Social Network Studies

In most social network research, the chief risk to respondents is that
of being stigmatized as a result of being identified as belonging to a
stigmatized category or group (e.g., sex workers, drug addicts), or
from adverse consequences resulting from revealing an individual's
role or position in a social setting (e.g., discovering you are the least
liked individual in your organization).

Social network research shares these risks with other forms of
survey-based research that examine the impact of one’s social

environment on phenomena such as risk taking, mental health, and
attitudes towards medical providers.

However, there are some unique sources of risk.



Potential Risks Associated with Relational Data

Outing People
Minor: Mom Finds Out Mike Smokes

Major: Wife Finds Out that Her Husband Has Been Cheatir
Legal Risks

If you trace a relationship between an adult and a child
that
would be treated as contributing to the delinquency of a

%3 R RIS H I GRRASe e SRR

do we inform the partner of the respondent’'s STD

Detééditig Fraud

Network analyses can reveal inconsistencies that
suggest fraud (very high degree, say, or sharing patients

In a way that is highly irregular .



Confidentiality Reminder

 This is In addition to consent form

Social Network Questionnaire

Therles for parbicipatng, Flesse note that the dela gensrated mttus survey are
HOT ancnyrnous and are MOT confidential, The results will be uzedan the
worlcshop in Washington, ITmportant note: vou must enter vour name in

Chestion 0.

WWhen vou're dons. press the "Bubrmut" bulten, Thanks for your help.

Q0. What iz your name:



3-Way Disclosure Contract

 Forresearch
done in
organizations

« Signhed by
management
the researchers,
and each
participant

+ Clearly identifies
what will be done
with the data

Copyright @ 2006 by Steve Borgatti

Managemnent Disclosure Contrac

Stwd v Authorizmtion

This decument authorizes Steve Bonzatn and Jose Lus Boling o conduct a socml
acteork study at Monspemen it Daizion Sveicms (hersaltar “fhe company™) dunng ihe
!'L'[II\.! Joamuary 1, 2005 1o Map b1, 2005

Rights al the Researe lers

The data — properly mmonymizad = that neither mdvadusl nor the company are dentifisd
e 'l\ll] I-i'i'rl'n |l|. I'l.H!E IFI-ﬂ:llI.IJrI_'-']'Hl hl.;l.'i“ll'll'li

Rights of the Company

In addinen, ke rescarchers will fumish the company sath a copy of all ehe das The
company agrees thal these dats wall ot be shened among the employees and will caly be
e I"q. Y ITsmagre mierik The COEEEY e e that the dats will net form the hesis for
evatluation of mdveidual emploves. but wall be wsed m a developmental way bo miprove
the mctiomeg ol the company.,

figivis of ihe Farticipanis

The partcipants of the sumey ihe r.:-\'-|~|...' whose metworks are lxnnrl meeumred — ahall
have the nghi o see ther own daa o confirm cormecness. They nenw abso requesia
general repor from the rescanchers that does not vielite confidentaliy of the other
parbicipants roganhing what wes lzamad m the gudy.

(e




Truly Informed Consent Form

Truly Informmed lﬂ_‘mﬁent Form

I vl lion

Thas s o movial ssiwonlk = |||.L_| m el we wall [LRTERT — EgER ] e communnation seivwed ol il o Ratm sl e

i Sl

Ihe academie goal of ths stady 15 0 understnd the faciors that determme sho alls 0 whom. We aast o udorstand
whiat [ciors humder commmmcation, aml which omes Rcdinie commmicatin, The crgame ion’s goal m ibis siudy 15

I TP SO I arcs that o L.

Frocedwres

Wi will b svskeard 1 (3 cunt mm on e survey abos i who vou miemet with regularky, akoog wih back greund

infcormatsen about vowrse |1, =uch a2 tmimmeg. depastiment you’re m, amd s om. It sheouale] ke :ll'h."l.l:l 30 pmmbes o
commplete o order o map om whe wlks o whom, we will vead vouw oo give s yom name whes Blling an the surcey,

Ohmce the datn have been colbectel. we will consct social netsork maps lile this one:

L

Mot that e mers comtain asch persn’s mame, These maps will be sown e monsgement (specilically, all officers m
the orgamiration, but will mot ba shewn o others m the enanestion. o addition, = will caloplsts ook mcirics
wch Jin \.Jh;ul.u-p Lhie ':h.p:.:i il u[\.'|r.'u|.|||" [ L) e s of p.,'n-pl, (e the lemzth of the pework paths o ose

pemct ko analk b
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Truly Informed Consent Form

Risks & Cosls

Siwe Imanae Rk will =e¢ the resulis of thi= ':I:I.hljn'. there is o chance thai someone m Imani@emenl o wilid conside o
sel of communicalon conlacls o be H:l“‘lh“.’ltiah‘ [iw somenne: m YLy pus.ili..i. wiad could duink less 1.l|-_l.1.lLl. Please
nabe, however, that the rescarchers have chiamed a s agrecment from management stipulatmg thit the data wall be
used o wnpronang comemmication i dee company and wall not be wsed moan cvalvatng way,

Individmal Benelils

We will |Hu'|-'i;1: ok ith diweet, walividmalized feedhsck I\:ydtlljhi} VioLiF keseatson in the secwl nevwod: of the
onE O

Withdrawal From the Study

Wou may chovss o shop your participation i this shly ot any tiee. 17 s, youn sall ol appear on any of the socaal
netwrk mapes s no metrics wil] be caloulsted invulve won, Mode that iemagement lus ||:.h:..1] thist participation in
the simdy 1 voluntary.

Conlide n liality

A5 u.t]‘l]nilal .II'II.I'I-'\.'. _1\.1.|r Fq.th.n;irulll.lll n‘lll msk I!n,: ilI'II'I1.\‘l'|'H.rI|5. lia iIII.lI.I'IlI'IL q” ui'l-.'lp- |T|:||1.1p,:1trr|1 'n-'i” ]'-: i|1'|]|.' s =i
resailis of the -5-ILt|;|. that wac lude VOllF fa e, Ouiiside of I1||‘| i g amcnlL |um-ru:r, the dmta wall be Lrl‘lt ol el
Ay publicly avmlbable malyses of these data will not identify any mdividual by reane, voe identily the onganizaion,

Participant’s Certilication

I herve remad and 1 b lieve 1 understand this Informed Consent docmment. | believe [ understanl the parpose of the
research project and shat | sall be askad o do. 1 understand that 1 may stop my participation i ths ressarch shdy at
-llﬂ\t:lr-“"; ||‘i 1hll| I (s | 1] T‘-rl'-'”i‘- Iy @pswer any ﬂ[“':s'll-“]l sl I un'.'« I'Flill'll ‘l-ll “I-qllw\-r“\-lﬂ ﬂ'lll “"“I'\ HIHI‘L‘IE\-I'IH—'IH “'lll =
'h'r nﬁﬂhl' “Fll'll?i' Fl 'H,...l.'l'l:l'l ‘lth ||:|l!|--|‘||l|l-||li |‘|m“h'r||- h\ e,

| ]'h.n_]‘h Fr\.'n. |11'| ||1 Ilrrm_-..{ .Lh.:l |n:~n. caoEsid o |‘\-: K] rqﬂ:IL ||l:|h| |I:| I|||: ERTTS ]1.

Rignaiures:

S




Data Agreements
When collecting data establish:
Who owns the data
How will it be collected
Who stores and processes it
How long will identifying information be retained

Who has access to identifying information

The answers to these questions can help in determining
whether you believe the study can be conducted in an ethical 11



Summary

* There are three steps to getting started on a
social network study
— ldentify the population
— Determine data sources
— Collect data

 |n addition there are a number of issues that
must be considered such as response bias,
missing data, unexpected asymmetry, and
ethical considerations



2. Cohesion, Subgroups & Communities



Application

 How do you think network structure
interacts with the morale of the group?

?\.//
5 e




CO re' Pe ri p h e ry Stru Ctu res & M O ra I e Johnson et al. (2003) “Social Roles and the

50

Evolution of Networks in Extreme and Isolated
Environments”;

Palinkas et al. (2004) “Social Support and
depressed mood-in-isolated and confined

45 A

40 1

Degree of
coreness

30 1

25 1

20 A

15 1

10

Core/Periphe

Group Morale

environments”

m Study by Jeff Jonnson of a South
Pole scientific team over 8 months

m C/P structure seemsto affect
morale

Mont
h

- peripheral individuals would often develop thyroid problems, which is related to

depression;

- globally coherent networks were associated with group consensus



Dyadic & Whole Network Cohesion

» Dyadic cohesion refers to pairwise social
closeness

* \Whole network measures can be
— Averages of dyadic cohesion

— Measures not easily reducible to
dyadic measures

* \We are going to focus on the whole
network parts of cohesion.



Measures of Group Cohesion

Whole Network Measures

* Density & Average degree

* Average Distance and Diameter

« Component measures (# & Ratio)

* Fragmentation (reachable & distance-
weighted)

« Connectivity

« Centralization

« Core/Peripheriness



Density

 Number of ties, expressed as percentage of the
number of ordered/unordered pairs

Low Density (25%) High Density (39%)
Avg.Dist. = 2.27 Avg.Dist. = 1.76
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Average Degree

* Average number
of links per
person

* |s same as
density*(n-1), where
n is size of network
— Density is just
normalized avg
degree
— Often more
Intuitive than
density

Density 0.14
Avg Deg 4



Average Distance

* Average geodesic distance between all
pairs of nodes

?\.//
5 e

avg. dist. = 1.9 avg.dist.= 24



Diameter

« Maximum distance

?\.//
5 e

Diameter =3 Diameter =3



Fragmentation Measures

 Component ratio
* F measure of fragmentation
» Distance-weighted fragmentation PF



Component Ratio

* No. of components divided by number of
nodes

Component ratio = 3/14 = 0.21



F Measure of Fragmentation

* Proportion of pairs of nodes that
are unreachable from each other

Z”zj

F=1-—*
n(n—1)

r;= 1 if node i can reach node j by a path of any length
r; = 0 otherwise

« If all nodes reachable from all others (i.e.,
one component), then F =0

 If graph is all isolates, then F = 1




Computation Formula for
F Measure

* No ties across components, and all
reachable within components, hence can
express in terms of size of components

Zsk(sk —1)
1 _k
n(n—1)

F =

S, = size of kth component



Computational Example

Games Data

Comp Size  Sk(Sk-1)
1 1 0

2 1 0
3 12 132
14 132

0.2747 =1—(132/(14*13)) =F




Distance-Weighted Fragmentation

* Use the reciprocal of

distance
1
_ letting 1/o0 = 0 2
DF: i#] dl]
_ n(n
- Bounds -1

— lower bound of 0 when every pair is adjacent to
every other (entire network is a clique)

— upper bound of 1 when graph is all isolates



Connectivity

* Line connectivity A * Node/point
IS the minimum connectivity K s
number of lines that minimum number of
must be removed to nodes that must be
discon- nect removed to discon-

network nect network

T




Centralization

* Degree to which network revolves around
a single node

Carter admin.
Year 1



Core-Periphery Models

A core periphery structure has a single
cohesive subgroup with a set of other
nodes, loosely connected to the core

Core members interact with (lots of) other
core members

Periphery members interact with (a few)
core members

Periphery members rarely interact with
each other



Finding Core/Periphery Structures
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Core Periphery Block Model

Basic ldea:

@ A module or community is a collection of nodes defined by how its
edges behave:
e Edge Density: For social networks, we expect edge density to be
greater within a community than without. (Assortative Community)
o Edge Weight: For coexpression networks, we expect the correlations
to be higher within a functional module than without.
o Etc.



Core Periphery Block Model
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Continuous Core/Periphery

e Calculate a “Coreness” vector C, in which
c iIs the likelihood actor i is in the core

* Run a “Concentration” score to determine
what is most appropriate core size

— Basically correlate “coreness” values to
ideal partition of core (1) and periphery (0)
* Runs other measures as well
— Pick the size with the highest correlation

* Create an "expected value” matrix which is
CCT (product of each dyad’s coreness)



Dyadic Cohesion

Adjacency
— Strength of tie <

Average is density

— Reciprocity

Reachabil |ty «_ 1 1-f(Average) is fragmentation

— A path Wually as 1/dij)
Distance <

Or distance weighted fragmentation

Average is average distance

— Length of shortest path between two nodes
— # Geodesics (how many paths of this length)

Multiplexity

— Number of ties of different relations linking two nodes
Number of paths linking two nodes

— Edge independent
— Node independent

<

Minimum is line connectivity

<

Minimum is point connectivity




Cohesive Subgroups & Communities

Broadly: “a group of nodes that are relatively densely connected to each other but
sparsely connected to other dense groups in the network” Porter et al. 2009

No universal definition! But some ideas are:

. A community should be densely connected

. A community should be well-separated from the rest of the network

. Members of a community should be more similar among themselves than with
the rest

Most common..

nr. of intra-cluster edges > nr. of inter-cluster edges

Typology of network communities

1. Cohesive subgroups
2. Similarity based clustering (agglomerative)
3. Graph partitioning (divisive)




i I\\-‘ SN
/_:I\!.;g\""?" N
) "."!

Imagine this Graph ....



Vertices: People
Edges: Friendship
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What factors might affect the formation of
friendships in a high school social network?

Ideas: Age, Gender, Class, Race, Interests

How might we assign communities to this
network?



Vertices: People
Edges: Friendship

What factors might affect the formation of
friendships in a high school social network?

Ideas: Age, Gender, Class, Race, Interests

How might we assighn communities to this
network?
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Vertices: People
Edges: Co-voted
at least once

Now let’ s look at the same network as if it
represented co-voting in the Senate.

Ideas: Issue position, geography, ethnicity, gender

How might we assign communities to this
network?
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Independents

Vertices: People
Edges: Co-voted
at least once

Now let’ s look at the same network as if it
represented co-voting in the Senate.

Ideas: Issue position, geography, ethnicity, gender

How might we assigh communities to this
network?



Key, H = hispanic, E = english
P = planing, M = milling, Y = yard

O The management at the sawmill was having difficulty persuading the workers
to adopt a new plan, even though everyone would benefit. In particular the
Hispanic workers (H) were reluctant to agree. The management called in a
sociologist who mapped out who talked to whom regularly. Then they
suggested that the management talk to Juan and have him talk to the

Hispanic workers. [t was a success, promptly everyone was on board with the
new plan. Whye



context matters

Note that we have assigned community membership differently
despite observing the same graph!

Community detection is not a concept that can be divorced from context.




context matters — why do we observe communities at
all?

they arise out of an affiliation network! the one-mode projection we observe is
an embedding of a multidimensional network that exists.

O otherwise known as
O membership network
O e.g. board of directors
O hypernetwork or hypergraph
O bipartite graphs
O inferlocks




practical aspects

Undirected Directed

Many methods:
do not incorporate direction;
allow for bidirected edges;
may implement same method with or without support for directed egdes



practical aspects

In computational complexity, “Big-O notation” conveys information
about how time and storage costs scale with inputs.

* O(1): constant - independent of input

* O(n): scales linearly with the size of input

* O(n”"2): scales quadratically with the size of input
* O(n”3): scales cubically with the size of input

These terms often occur with log n terms
and are then given the prefix “quasi-.”
For graph algorithms, the input n is typically
*[/V/[, the number of vertices o
*/E[, the number of edges

4 6 8 10

Computation complexity mainly focused on two resources:

1. Time — how long does it take to perform sequence of operations?
2. Storage — how much space does it take to store our problem?

We tend to communicate both through “Big-O notation”.



Cohesive Subgroups: A Typology

Found by algorithm
(input data driven)

Found by finding sets with
output properties

Graph-theoretic data
driven algorithms

Formal definitions of
sociological groups

Network / Newman-Girvan {mathematical ethnography}
Graph Clique, n-clique, n-clan, n-
theory club, k-plex, Is-set, lambda-
set, k-core, component
Multivariate clustering Formal definitions of abstract
C analysis methods clusters

Proximities / . . . . o

: Johnson'’s Hierarchical Combinatorial optimization
Clustering clustering; k-means; MDS

Factions (Core-Periphery)




taxonomy of communities

Each node
satisfies certain

properties Node-

Centric

Constructs

hierarchical Hierarchy- COmmunIty Group-
structure of Centric Detection Centric

communities

Partitions the
whole network NetWO['k-
into disjoint Centric

sets




Basics of communities

We focus on the mesoscopic scale of the network

Microscopic Mesoscopic Macroscopic



Fundamental Hypotheses of communities

H1: A network’s community structure is uniquely encoded in its wiring
diagram

H2: Connectedness Hypothesis — a community corresponds to a
connected subgraph

H3: Density Hypothesis — communities correspond to locally dense
neighbourhoods of a network;

H4: Random Hypotheses: randomly wired networks are not
expected to have a community structure;

HS: Maximal Modularity Hypotheses: the partition with the
maximum modularity M for a given network offers the optimal
community structure



Fundamental Hypotheses of communities

Strong and weak communities i

k,ea:t . 1
Consider a connected subgraph C of N, nodes ) o

Internal degree, k/™ : set of links of node i that connects
to other nodes of the same community C. 1

External degree k£X': the set of links of node /that
connects to the rest of the network.

If ke¥!=0: all neighbors of i belong to C, and Cis a good
community for /.

If k/"'=0, all neighbors of i belong to other communities,
then /i should be assigned to a different community.



Fundamental Hypotheses of communities

Strong community: Weak community:
Each node of C has more links within the The total internal degree of C exceeds its
community than with the rest of the graph. total external degree,
kl-int(C) > kieXt(C) 2 kl.in(C) > Z kiom(C)
ieC ieC
(a) (b) (©)

Clique Strong Weak



Node-Centric | Community Detection (Cohesive subgroups)



Node-Centric | Community Detection

Defined by graph-theoretic characteristics of resultant sets, where nodes must satisfy
different properties:

« Complete Mutuality [everybody in the group knows everybody else]
e components
« cliques

* Reachability of members [individuals are separated by at most n hops]
* n-clique, n-clan, n-club

 Nodal degrees [everybody in the group has links to at least k others in the

group]
» k-plex, k-core

* Relative frequency of within-outside ties [subgroup members v non-members]
LS sets, Lambda sets



complete mutuality | components

 Maximally connected subgraph

— In undirected graphs, it just means
everyone’'s connected to everyone else

— In digraphs there are strong and
weak components:

« Strong components mean everyone can
reach everyone else, even when considering
the

one-way streets in the network

 Weak components means, if we ignore the
directionality of the ties, everyone is reachable
by everyone else



Campnet
Colored by Strong Components




complete mutuality | cliques

 Definition
— Maximal, complete subgraph

—SetSs.t. foralluyving, (u,v)in
E

* Properties
— Maximum density (1.0) (c.d.e} is the
— Minimum distances (all 1) , onlyclaue
— overlapping
— Strict

a




Subgraphs

« Set of nodes
— Is just a set of nodes
* Asubgraph

— |s set of nodes together
with ties among them

* An induced subgraph

— Subgraph defined by a set
of nodes

— Like pulling the nodes and
ties out of the original
graph

Subgraph induced by {a,b,c,f,e}



Geodesic

Reachability is calibrated by the
Geodesic distance

Geodesic: a shortest path between
two nodes (12 and 6)

® Two paths: 12-4-1-2-5-6, 12-10-6

m 12-10-6 is a geodesic

Geodesic distance: #hops in geodesic

between two nodes
® eg.,d(12,6)=2,d(3, 11)=5

Diameter: the maximal geodesic
distance for any 2 nodes in a network Diameter = 5

®m #hops of the longest shortest path



complete mutuality | clique

* A maximal complete subgraph
— Everyone is adjacent to everyone else
— Distance & Diameter is 1
— Density is 1

* Limitations
— Undirected
— Binary
— 3+ nodes




10 cliques found. o

HOLLY MICHAEL DON HARRY HARRY
BRAZEY LEE STEVE BERT

CAROL PAT PAULINE

CAROL PAM PAULINE

PAM JENNIE ANN /

© PAM PAULINE ANN

: MICHAEL BILL DON HARRY \ P
- JOHN GERY RUSS )

: GERY STEVE RUSS
10: STEVE BERT RUSS

LCoNoaRWON 2

PAT

GERY

LEE

TEVE
e JENNIE

BRAZEY RUSS JOHN

BERT




Problems with Cliques

Very strict
Not robust: one missing link can disqualify a clique

Sometimes too many and overlapping;

Not interesting
« everybody is connected to everybody else
* no core-periphery structure
* no centrality measures apply

Sometimes too few

— This has lead to many kinds of relaxations.The distinctions between them
are subtle, and not generally of practical importance.

« We’'ll go through them, but don’t worry about the nuances, just know
multiple variants exist



Types of Relaxations

» Distance Relaxations (length of paths)
— n-clique
—n-clan
—n-club

* Density Relaxations (number of ties)
— k-plex
— k-core




reachability of members | n-clique

* n-Clique
— Maximal subset with all

nodes within n steps of

each other
 Path can include

nodes not in n- DON
HARRY

Clique

* AClique is a 1- e
Clique Q
s this a 2-Clique? & ol
NO' l STEVE ; ‘ PAM JENNI
What about "{BRAZEY rlss. é @ CAROL
now? . BERT
But so is ANN

this!!!



reachability of members | n-clique

* Definition
— Maximal subset s.t. for all u,vin S, d(u,v) <=n

— Distance among members less than specified
maximum

— When n = 1, we have a clique

* Properties

— Relaxes notion of
clique

* Avg distance
can be greater
than 1 f e
Is {a,b,c,f,e} a 2-clique?
yes

b




10 2-cliques found.

HOLLY MICHAEL BILL DON HARRY GERY
MICHAEL JOHN GERY STEVE RUSS HARRY
PAULINE JOHN GERY RUSS

HOLLY PAULINE GERY

BRAZEY LEE GERY STEVE BERT RUSS
JOHN GERY STEVE BERT RUSS

HOLLY CAROL PAM PAT JENNIE PAULINE ANN
CAROL PAM PAT PAULINE ANN JOHN

: HOLLY PAM PAT MICHAEL DON HARRY

10 PAM PAT MICHAEL JOHN

> QXN hwh =

HOLLY

PAT
GERY

LEE
STEVE

i Ao JEN
BRAZEY RUSS JOHN N RS
BERT
ANN



Some are counter-intuitive
(And not necessarily cohesive)

Red Nodes form a
This is a 2- 2-Clique, so do
Clique Blues



Issues with N-Cliques

» Overlapping
—{a,b,c,f,e} and {b,c,d,f,e} are both 2-cliques

* Membership criterion satisfiable through non-
members

« Diameter may be greater than n

* n-cligue may be disconnected (paths go through
nodes not in subgroup)

» Even 2-cliques can be fairly non-cohesive

— Both sets of alternating nodes belong to a different 2-
clique but none are adjacent

2 - clique
diameter=3

path outside the 2-clique



Many of these are (too) plentiful

« One way to process the information is to
look at CliqgueSets as a two-mode network

Red circles are actors
Blue squares are cliques



Or, Look at CliqueOverlap

CliqueOverlap with
isolates removed




Loosen the density restriction

* n-Cliques (and the attempts to fix them, n-Clans, and n-Clubs) all
start from the definition of Cliques and relax the distance
requirement (all distances = 1) in varying ways:

* e.g. n-club: maximal subgraph of diameter 2

« But, Cliques also have maximum density (d = 1), and we can
relax that definition instead.

« But for this, we must define the alpha operator,

o, such that o(u,G) is the number of edges from node u to nodes
in graph G



nodal degrees | k-plex

* k-Plex

— A cliqgue where members don’t have to
be connected to everyone else, just all
but Kk members, or...

—a [maximal] subgraph S s.t. for all u in S,
o(U,S)
>= |S|-k, where |S] is size of set S
 All subsets of k-plexes are k-plexes (if non-
maximal)

* Get distance for free based on S, k.
— If k < (|S|+2)/2 then diameter <= 2

* Numerous & Overlapping

* May be more intuitive than distance-based
measures

« A Clique is a 1-plex (We assume it not tied to itself)



a b

e d
Is {a,b,d,e} a 2-plex? Is the graph as a whole a 2-plex?
Is {a,b,c,d,e} a 2-plex? Is it a 3-plex?
Is {a,b,d} a 2-plex?




nodal degrees | k-core

« Sort of opposite approach from k-plex

— Because the size of the group is not taken into account, k-cores
are more directly about specifying how many ties MUST be
present independent of how many nodes are in the core,
whereas the k-plex is about how many may be missing.

« Ak-Core is maximal subgraph within which all nodes

have ties to at least k other nodes
— All nodes in a components are at least 1-Cores

— Each nodes is assigned a “core” which is the largest k-core to
which it belongs (and it therefore also belongs to all lower
cores that exist)

— K-cores are hierarchical and form a partition

— However, they may be disconnected



formal definition

* A k-core is a maximal subgraph such that
foralluin S, a(u,S)>=k

\/-h
— All nodes are 2-core (and 1-

core) Red nodes are 3-core.

* Great for analyzing large
networks

k

]



but still too stringent...

node on top right only has 2 edges, so it is excluded from the 4 core group
identified; the next k-core partition it can join is one that captures the whole
network...



recap node-centric communities
(cohesive subgroups)

Each node has to satisfy certain properties
m Complete mutuality

m Reachability

®m Nodal degrees

m Within-Outside Ties

Limitations:

®m Too strict, but can be used as the core of a community

®m Not scalable, commonly used in network analysis with small-size
network

® Sometimes not consistent with property of large-scale networks
e.g., nodal degrees for scale-free networks



Network-Centric | [Agglomerative . Divisive] Community
Detection



Network-Centric | [Agglomerative . Divisive] Community Detection
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Hierarchical Clustering



Hierarchical Clustering - procedure

1. Build a similarity matrix for the network

2 Similarity matrix: how similar two nodes are to each other > we need to
determine from the adjacency matrix

3. Hierarchical clustering iteratively identifies groups of nodes with high similarity,
following one of two distinct strategies:

Agglomerative algorithms merge nodes and communities with high
similarity.

Divisive algorithms split communities by removing links that connect
nodes with low similarity.

4. Hierarchical tree or dendrogram: visualize the history of the merging or splitting
process the algorithm follows. Horizontal cuts of this tree offer various

community partitions.



Network-Centric | [Agglomerative] Community Detection

Similarity based vertex clustering:

@ Define similarity measure between vertices based on network structure
- Jaccard similarity
- Cosine similarity
- Pearson correlation
- Eucledian distance (dissimilarity)

@ Calculate similarity between all pairs of vertices in the graph
(similarity matrix)

@ Group together vertices with high similarities

Pseudocode

1. Assign each node to its own cluster

2. Find the cluster pair with highest similarity and join them
together into a cluster

3. Compute new similarities between new joined cluster and
others

4. Go to step 2 until all nodes form a single cluster



Network-Centric | [Agglomerative] Community Detection

Example
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Exa m p I e iteration 004
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Exa m p I e iteration 005
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Exa m p I e iteration 007
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Exa m p I e iteration 008
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Exa m p I e iteration 009
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Exa m p I e iteration 010
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Exa m p I e iteration 011
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Exam ple iteration 015
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Exa m p I e iteration 017
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Exa m p I e iteration 018
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Exa m p I e iteration 019
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Exa m p I e iteration 020
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Exa m p I e iteration 021
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Similarity Measures | structural equivalence or vector
similarity

Node similarity is defined by how similar their interaction
patterns are

Two nodes are structurally equivalent if they connect to
the same set of actors
® e.g., nodes 8 and 9 are structurally equivalent

Groups are defined over equivalent nodes
®m Too strict
m Rarely occur in a large-scale
®m Relaxed equivalence class is difficult to compute

In practice, use vector similarity
® e.g., cosine similarity, Jaccard similarity




Similarity Measures | structural equivalence or vector similarity (Cosine v
Jaccard)

a vector == 1 1
structurally 1 1 1
equivalent 1 1 1
o AB
Cosine Similarity: Similarity = cos(f) = IANBI
sim(5,8) = : _
o 2x3 6
o AN B
Jaccard Similarity: (. _ | .
y- J(A,B) AU B

J(58) = mem =1/4

{1,2,6,13}]

28



Similarity Measures for nodes | euclidean distance & pearson
correlation

Euclidean distance: (or rather Hamming distance since A is
binary)
dij =) (A — Ai)’
k

Normalized Euclidean distance:?

oo A= AR S g
J k,'—l—kj ki—|—kj

Pearson correlation coefficient

cov(Ai, A)) (A — i) (A — 1)

0i0; no;o;

I’,'j:

where p; = >, Ay and o; = \/% > k(A — pi)?



Decide GROUP SIMILARITY| Agglomerative Hierarchical clustering

> Single linkage: sxy = min s,
xeX,yeY
> Complete linkage: sxy = max_s,,
xeX,yeY

D _xeX yEY Sxy

> Average linkage: sxy =

/ o \_.l‘.“.‘
o

X] < Y]
(a) (b)
o 2 o
O O @ O @ 06 —©0
- 2
1 A | 2?75 2F22 546 3_08 Single Linkage: 719 = 1.59
—— —Tij = B [338 268 397 340
xlj C | 231 159 288 234
(c) (d)
1 2 1
o o

Complete Linkage: 7"190 = 3.97

Average Linkage: 719 = 2.84

Single linkage: similarity of two
clusters is the similarity of their most
Similar or closest members; we only
pay attention to the area where the
two clusters come closest to each
other — we're connecting a point to a
nearby point. tends to produce long
chains.

[only wants one point in the cluster to
be close to another point in a different
cluster]

Complete linkage: similarity of two
clusters is the similarity of their most
dissimilar members. chooses farthest
elements in clusters.

[makes sure all points in two clusters
are close to each other]



Clustering on Node Similarities | Agglomerative Hierarchical clustering

@ Assign each vertex to a group of its own
@ Find two groups with the highest similarity and join them in a single
group
@ Calculate similarity between groups:
- single-linkage clustering (most similar in the group)
- complete-linkage clustering (least similar in the group)
- average-linkage clustering (mean similarity between groups)
@ Repeat until all joined into single group

Dendrogram




Johnson’s Hierarchical Clustering

« Qutput is a set of nested partitions, starting with
identity partition and ending with the complete
partition

— A“PARTITION" is a vector that associates each node
with one and only one “group” (mutually exclusive)

 Different flavors based on how distance from a
cluster to outside point/node is defined
— Single linkage; connectedness; minimum
— Complete linkage; diameter; maximum
— Average, median, etc.



Clustering on Node Similarities | Agglomerative Hierarchical clustering

Geodesic Distances
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Clustering on Node Similarities | Agglomerative Hierarchical clustering

P M
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CU H E CH R S
AL ON B HA BATGUJR
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TLEMYENLLYNETYETYNS
1 1111 1111
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1.000 XXXXX XXX XXX XXXXXXX XXXXXXX XXXXX
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1.457 XXXXX XXXXXXX XXXXXXX XXXXXXXXXXXXX
1.481 XXXXXXXXXXXXX XXXXXXX XXXXXXXXXXXXX
2
3

.723 XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX
.142 XXXXXXXXXXXXXXXXXXXXXXXXXXXXX



Clustering on Node Similarities | Agglomerative Hierarchical clustering

Zachary karate club
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Clustering on Node Similarities | Agglomerative Hierarchical clustering

Height

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Cluster Dendrogram

12

13 —

14

20

18
22

11 —

33
34 |

S

28
1

23
21
19
15
16

Dist
hclust (*, "average")

25
26

We can decide at what
level we want to cut. Do
we want very fine or very
coarse communities?



Clustering on Node Similarities | Agglomerative Hierarchical clustering
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Clustering on Node Similarities | Agglomerative Hierarchical clustering



Clustering on Node Similarities | Agglomerative Hierarchical clustering
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Clustering on Node Similarities | Agglomerative Hierarchical clustering
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Node Similarity| k-means clustering

K-means Clustering Algorithm

®m Each cluster is associated with a centroid (center point)
®m Each node is assigned to the cluster with the closest centroid

Algorithm 1 Basic K-means Algorithm.

: Select K points as the initial centroids.

: repeat

1
2
3: Form K clusters by assigning all points to the closest centroid.
4 Recompute the centroid of each cluster.

5%

: until The centroids don’t change




Node Similarity| k-means clustering
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Node Similarity| Multidimensional Scaling

Latent-space models: Transform the nodes in a network into a
lower-dimensional space such that the distance or similarity between
nodes are kept in the Euclidean space

Multidimensional Scaling (MDS)

®m Given a network, construct a proximity matrix to denote the distance between
nodes (e.g. geodesic distance)

m Let D denotes the square distance between nodes
m ¢ Rp™k  denotes the coordinates in the lower-dimensional space
SS’ = -1(1 -leeT)D(l-leeT) = A(D)
2 n n
m Objective: minimize the difference min | A(D)-SS" ||,
m Let A =diag(\.---.)\;) (the top-k eigenvalues of A), V the top-k eigenvectors
S = VAY?

m  Solution:
Apply k-means to S to obtain clusters



1
[]
r~ o
7)) )
© 2 )
[}
) v L
- []
]
© o
m N "o .ow-
1 [ ]
- 8
< ]
u - -
n
™ o
[}
L @
L T R = L R e
AN OO OO NI ANDNMNDMNOWOO M v
— MmN NSO GONNS S« ®
S99 ~90S98 <o~
82821381990579
N®=QO¥N®SO®® T
T 9dToS-g5onNg g

DS

M

NOOOOANM~— M I - O
NOO—OANOMOON~—~ IO
TTOTONTOOOM O <
NOO-TANTTANNNO OO~ M
T ANANANNTTANNON OM
TANANANNTNOANN OOM
OOTONTOANANN «—oOmOMm
ANANONTO v~ NN
NT ONO T~ ANANNN OMmm
T ANNOOANOMOANANT ™
TANONMOTANN® IH OO

TOANANTANOANNOM S0OM

O~ AN ANM~«—— AN < N Q)

Geodesic Distance Matrix

Node Similarity| Multidimensional Scaling



Node Similarity| Multidimensional Scaling
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Node Similarity| Multidimensional Scaling
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Node Similarity| Multidimensional Scaling
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Node Similarity| Block-Model Approximation

After
Reordering

| 4

50 100 150 200 250 300

Network Interaction Matrix Block Structure

»Objective: Minimize the difference between an interaction

matrix and a block structure
min || A — SYST| g

s.t. S € {0,1}"* ¥ € R** is diagonal

»Challenge: S is discrete, difficult to solve

»Relaxation: Allow S to be continuous satisfying s75s = I,
» Solution: the top eigenvectors of A

»Post-Processing: Apply k-means to S to find the partition



Hierarchy-Centric | Community Detection Divisive Algorithms



Hierarchy-Centric | Community Detection Divisive Algorithms

Goal is to build a hierarchical structure of communities based on network topology.

This now becomes a graph partitioning problem:
- we now focus on the edges rather than on similarity of the nodes;
- we want to cut as few edges as possible to see the graph split and fall apart
into the groups of nodes that compose it.
- graph partitioning is NP-hard (Nondeterministic Polynomial time) — a class to
classify complexity of problems.
e.g. (p) can you sort these cubes by color? sure, easy.
(np-hard) solve this sudoku puzzle; okay; after a long time, it's solved.
(np) can you check if the solution for the sudoku puzzle is valid/correct?
yes, easy.

- Numher of all nnssihle nartitions of a graph (n-th Bell number)

B, = z”: S(n, k)
k=1

Byo = 5,832,742, 205, 057



Hierarchy-Centric | Heuristic Approach

Focus on edges that connect communities.
Edge betweenness -number of shortest paths o4:(€e) going through edge e

Cg(e) = Z o=(€)

Ost
s#t Newman-Girvan, 2004

Algorithm: Edge Betweenness
Input: graph G(V,E)
Output: Dendrogram

repeat
For all e € E compute edge betweenness Cg(e);

remove edge e; with largest Cg(e;) ;

until edges left;

Construct communities by progressively removing edges



Hierarchy-Centric |Girvan-Newman Edge Betweenness
algorithm
O successively remove edges of highest betweenness (the bridges,

or local bridges), breaking up the network into separate
components

© (10)
4 XD °‘o
(6 ) (12)

(a) Step 1 (b) Step 2



how do we calculate edge betweenness?

Calculate total flow
over edge 7-8




One unit flows over 7-
8 togetfrom1to8




One unit flows over 7-
8togetfrom1to9




One unit flows over 7-
8 to get from 1 to 10




7 total units flow
over 7-8 to get from 1
to nodes 8-14




7 total units flow
over 7-8 to get from 2
to nodes 8-14




7 total units flow
over 7-8 to get from 3
to nodes 8-14




7 x 7 =49 total units
flow over 7-8 from
nodes 1-7 to 8-14







Calculate
betweenness for edge
3-7




G 3 units flow from
1-3 to each 4-14
(2)—3)) s

so total =

S 3x11=33




Betweenness = 33
for each
symmetric edge




Calculate
(// betweenness for edge
1-3




Carries all flow to

a (/( node 1 except from
node 2,
e ,e so betweenness =

12




betweenness =12
for each
symmetric edge




Calculate

vetweenness for edge
1-2




Only carries flow
from 1 to 2, so
betweenness = 1




betweenness = 1
for each symmetric edge




Edge with highest




Hierarchical Clustering: compute centrality of each link; remove link with highest centrality;
recalculate centrality; build dendrogram; choose communities that maximizes modularity;

(e) §)

0.5

03 -

02

A B CDEF J H I J K



quantifying quality of community structure | Modularity

How to select the number of clusters/evaluate the algorithm?

Random graphs are not expected to have community structure, so
we will use them as null models.

Q = (nr. of intra-cluster communities) — (expected nr of edges)

In particular:

1
Q=5 > (A= Py) 8(C, )
7
where P;j; is the expected number of edges between nodes / and

under the null model, C; is the community of vertex /, and
0(Ci, G;) =1if C; = C; and 0 otherwise.

Original A Null Model P Modularity (A-P)



quantifying quality of community structure | Modularity

How to computer P;;?

The “configuration” random graph model choses a graph with the
same degree distribution as the original graph uniformly at random.

> Let us compute Pj;

» There are 2m stubs or half-edges available in the configuration
model

» Let p; be the probability of picking at random a stub incident
with /
ki

P = om

- L .. ki k;
> The probability of connecting / to j is then p;p; = s egggszt:&sg;ngzzgfg

» And so P;; = 2mp;p; = =2 is
v PiPj = 2m 5*3/(2*17) = 15/34



quantifying quality of community structure | Modularity

Let n. - number of classes, ¢; - class label per node
Compare fraction of edges within the cluster to expected fraction if
edges were distributed at random
Modularity:
1 kik;
Q= P Z (A,-J- — %) d(ci, ¢j), 6(ci, cj)- kronecker delta

y
Q = (# edges within group s) —

(expected # edges within group

s)
Positive Q means the number of edges
within groups exceeds the expected
; number
B /

The higher the modularity score - the better is community
Modularity score range @ € [—-1/2,1)
Single class, 6(ci,cj)) =1, Q=0



quantifying quality of community structure | Modularity

Useful for selecting number of clusters;
Modularity can be optimized directly (e.g. Louvain algorithm, Spectral
Q modularity

algorithm);




quantifying quality of community structure | Modularity
Optimization

Which partition {C.c=1,n} ?

« Optimal partition, that
OPTIMAL PARTITION SUBOPTIMAL PARTITION maximizes the modularity.

=0.41 =0.22
Sub-optimal but positive
modularity.
Negative Modularity: If we

assign each node to a different
community.

(o) SINGLE COMMUNITY (d) NEGATIVE MODULARITY
M =0 M= -012 « Zero modularity: Assigning all

nodes to the same community,
independent of the network
structure.

Modularity is size dependent




quantifying quality of community structure | Modularity
Optimization

A greedy algorithm, which iteratively joins nodes if the move increases the new
partition’s modularity.

Step 1. Assign each node to a community of its own. Hence we start with ¥
communities.

Step 2. Inspect each pair of communities connected by at least one link and
compute the modularity variation obtained if we merge these two communities.

Step 3. ldentify the community pairs for which AM is the largest and merge them.
Note that modularity of a particular partition is always calculated from the full
topology of the network.

Step 4. Repeat step 2 until all nodes are merged into a single community.

Step 5. Record for each step and select the partition for which the modularity is
maximal.



quantifying quality of community structure | Modularity
Optimization

n,. l k 2
Which partition {C.,c=1,n} ? M(Ce)= [_c - <_c> ]







Random Networks



Erdos-Rényi Random Network

Definition:

A random graph is a graph of N nodes where each pair
of nodes is connected by probability p.

G(N, L) Model

N labeled nodes are connect-
ed with L randomly placed
links. Erdés and Rényi used
this definition in their string
of papers on random net-
works [2-9].

G(N, p) Model

Each pair of N labeled nodes
is connected with probability
p, a model introduced by Gil-
bert [10].



The number of links Is variable
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Number of links in a random network

P(L): the probability to have exactly L links in a network of N nodes and probability p:

The maximum number of links

/ in a network of N nodes.

/V(/V—l)_[
AL =\2]lpa-p 2 Binomial distribution...
Z

——

Number of different ways we can choose
L links among all potential links.

*The average number of links <L>in a random graph

MAN-1)

<L>= Y Zf([):p%_l) <k>=2LIN=pN-1)

=0




DEGREE DISTRIBUTION OF A RANDOM GRAPH

P(K)

V-1 # N=1)-#
P(é)=( A,)p(l—p)( )

/ / probability of

missing N-1-k
edges

Select k
<k> nodes from N-1 probability of

K having k edges

<h>= pN-1) o7 = Al - PV -1)

o [l-p 1717 1
7 (V=1 (V-1

<k>

As the network size increases, the distribution becomes increasingly narrow —we are
increasingly confident that the degree of a node is in the vicinity of <k>.

Insights: we don’t expect large hubs in the network



Real Networks are not Poisson

Pk

1012 r

10! F
102 F
10+ ;
104 ;

10": | . - e
l.‘ e s
|
10_.:: i .! il sl wl
10° 10! 10° 10°

Internet

Pk

10°

10

1074

1073

1074

Science Collaboration

A e R e e e e Rt |
e s
t— o.- .
e
8 L/ 4

L
: -
F "
r ' @
v LY
- ’ -
-
]

10° T
-~
10! E * E
3 .
.;
'
> ;\
- " ks
k2
10-3 E ¢ 3
: - W e e
10 4 M * i 1
10° 10! 102

Protein Interactions




Phase transition of the size of the giant component
in the Erdos-Rényi Random Network

@ The largest component in the ER random graph has constant
size 1 when p = 0 and extensive size n when p = 1.

@ An interesting question to ask is how the transition between
these two extremes occurs if we construct random graphs with
gradually increasing values of p, starting at 0 and ending up at
1—this is bond percolation!

@ It turns out that the size of the largest component undergoes a
sudden change, or phase transition, from constant size to
extensive size at one particular special value of p = 1/n.



EVOLUTION OF A RANDOM NETWORK

disconnected nodes =>» NETWORK.
1 T T

0.8

0.6

0.4

0.2

0

How does this transition happen?



EVOLUTION OF A RANDOM NETWORK

disconnected nodes =>» NETWORK.

<k_>=1 (Erdos and Renyi, 1959)

The fact that at least one link per node is necessary to have a giant component is

not unexpected. Indeed, for a giant component to exist, each of its nodes must be
linked to at least one other node.

It is somewhat unexpected, however that one link is sufficient for the emergence of
a giant component.

It is equally interesting that the emergence of the giant cluster is not gradual, but
follows what physicists call a second order phase transition at <k>=1.



The size of the giant component in the Erdos-Rényi
Random Network (Bollobas et al., 2001)

o If p< %
e with high probability, there is no giant component, with all
connected components of the graph having size O(logn).

o Ifp> %
e with high probability, there is a single giant component, with all

other components having size O(logn).

o lfp=1

n

e with high probability, the number of vertices in the largest
component of the graph is proportional to n2/3.
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DISTANCES IN RANDOM GRAPHS

Random graphs tend to have a tree-like topology with almost constant node degrees.

<k> nodes at distance one (d=1).
<k>?nodes at distance two (d=2).
<k>3 nodes at distance three (d =3).

<k>4nodes at distance d.

~(A™ B s



DISTANCES IN RANDOM GRAPHS

log V

max =10g<é>

In most networks this offers a better approximation to the average distance
between two randomly chosen nodes, (d), thantod, -

log V
log(4)

< d>=

We will call the small world phenomena the property that the average path
length or the diameter depends logarithmically on the system size. Hence,
"small” means that <(d) is proportional to log N, rather than N.

The 1/log<k) term implies that denser the network, the smaller will be the
distance between the nodes.



CLUSTERING COEFFICIENT

() All Networks (b) Internet
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Characteristics of a random network

@ Sparsity: Average density = p.
@ Degree distribution: Poisson distribution

Puc=t) = (" Jrta-pr

Q

€

—1

o ()

k!

@ Average path: small world

(D) =

logn
log(K)

@ Average clustering coefficient: low for large
network ()
(C)=p=-—=

n

@ The threshold for the emergence of the giant
component Is

= — K)~1
p n0r< )

@ No community structure
@ No assortative mixing



Real networks are not random



Newman “Networks, an Introduction”
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PATH LENGTHS IN REAL NETWORKS

Prediction: ' Wiood webs ' ' "

H-neural network

- X power grid

Acollaboration networks
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Real networks have short distances gﬂ
like random graphs.



CLUSTERING COEFFICIENT

Prediction:
o A

E 'Wiood webs
~* L ¥neural network

W metabolic networks

> powergrid
EAcollaboration networks
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C,.,q Underestimates with orders of magnitudes
the clustering coefficient of real networks.



THE DEGREE DISTRIBUTION

Prediction:

Internet Science Collaboration Protein Interactions
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Characteristics of a REAL network

Sparsity: |E| = O(n) edges.
Degree distribution: Power distribution (scale-free)
Average path: O(logn), small world

Average clustering coefficient: high for large network (compared
to random network)

@ Giant component: common
@ Community structures: common

@ Assortative mixing: common



ER

network vs real network

Characteristics

ER prediction

Real network

Density
Degree distribution
Clustering coefficient
Average distance
Giant component
Community structure
Homophily

p = Sparse
Poisson (or Normal)
p — Low
Small world
Yes
No
No

Sparse
Power-law
High
Small world
Yes
Yes
Yes

Two questions:

1. How to obtain power-law distributions from random network
models?

2. How to obtain higher cluster coefficients from random network
models?




Power-law distribution

P(x)
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Poisson distribution
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2 Ingredients in generating power-law

networks

O nodes prefer to attach to nodes with many
connections (preferential attachment, cumulative

advantage)

@) Q

O Process also known as
) O cumulative advantage
‘5 O rich-get-richer

JQ. O Matthew effect



Barabasi-Albert model

O First used to describe skewed degree distribution of the World Wide
Web

O Each node connects to other nodes with probability proportional to
their degree

O the process starts with some initial subgraph
O each new node comesin with m edges
O probability of connectingto node j

k

I

2.5

J

I1(i) =m

O Results in power-law with exponent a = 3



To start, each vertex has an equal
number of edges (2) 112233

O the probability of choosing any
vertex is 1/3

We add a new vertex, and it will
have m edges, here take m=2 1122233344

O draw 2 random elements from the
array — suppose they are 2 and 3

Now the probabilities of selecting
1,2,3,0r4 are
1/5, 3/10, 3/10, 1/5

Add a new vertex, draw a vertex for

it to connect from the array

O etc 11222333344455




Small world phenomenon:
Milgram’ s experiment

MA



Milgram’s experiment

Instructions:
Given a target individual (stockbroker in Boston), pass the

message to a person you correspond with who is “closest” to
the target.

Outcome:

20% of initiated chains reached target
average chain length = 6.5

O “Six degrees of separation”

Two striking facts:
1. Short paths are abundant;
2. People are effective at collectively finding these short path;



The paradox of short paths abundance

your friends

dogoOdoooO00OoDbOo00OObOo0O0O0On fliEﬂdSUf}!UlllmEﬁdS

(a) Pure exponential growth produces a small world

your friends

friends of your friends

(b) Triadic closure reduces the growth rate

Network grows exponentially, leading to the
the existence of short paths!

e The average person has between 500 and
1500 acquaintances, leading to
5002 = 25K in one step, 5003 = 125M in
two steps, 500* = 62.58 in four
(Figure (a)).

However, the effect of triadic closure works
to limit the number of people you can reach
by following short paths (Figure (b)).

e Triadic closure: If two people in a social
network have a friend in common, then
there is an increased likelihood that they
will become friends themselves at some
point in the future.

Question: Can we make up a simple model
that exhibits both of the features: many
closed triads (high clustering), but also very
short path (small-world)?



Small world phenomenon:

Watts/Strogatz model

Reconciling two observations:

 High clustering: my friends’ friends tend to be my friends
* Short average paths




The Watts-Strogatz small-world network

@ Small-world network satisfies two properties according to Watts
and Strogatz:

o small average shortest path (global)
e high clustering coefficient (local)

@ Such a model follows naturally from a combination of two basic
social-network ideas:

e Homophily: the principle that we connect to others who are like
ourselves, and hence creates many triangles.

e Weak ties: the links to acquaintances that connect us to parts
of the network that would otherwise be far away, and hence the
kind of widely branching structure that reaches many nodes in a
few steps.

@ The crux of the Watts-Strogatz model: introducing a tiny
amount of randomness—in the form of long-range weak ties—is
enough to make the world “small” with short paths between
every pair of nodes.



Watts-Strogatz model:
Generatmg small world graphs

addition of links

v

v

Select a fraction p of edges
Reposition on of their endpoints

Add a fraction p of additional
edges leaving underlying lattice
intact

B Asin many network generating algorithms

m Disallow self-edges
B Disallow multiple edges



Clust coeff. and ASP as rewiring increases

Fast decrease
of average
distance;

Slow decrease
in clustering (it
remains
almost
constant,
indicating that
a transition to
a small world
is almost
undetectable
at a local level
forp < 0.1

1 :EI O R ] [u] O 0 I o I -
o O
osl ° C(p)/ C(0) © i
O
0.6 - i
0.4 F . - d
o HP/LO) . i
i ® . . O -
ol Ll " N .. .....J;l
0.0001 0.001 0.01 0.1 1

1% of links rewire

10% of links rewired



Hypothesis Testing with Network Data



Units of Analysis
« Dyadic (tie-level)

— The raw data
— Cases are pairs of actors

— Variables are attributes of the relationship among pairs (e.g.,
strength of friendship; whether give advice to; hates)

— Each variable is an actor-by-actor matrix of values by dyad
« Monadic (actor-level)

— Cases are actors

— Variables are aggregations that count number of ties a node has,
or sum of distances to others (e.g., centrality)

— Each variable is a vector of values, one for each actor
* Network (group-level)

— Cases are whole groups of actors along with ties among them

— Variables ag%( egations that count such things as number ofties
in the network, average distance, extent of centralization,
average centrality

— Each variable has one value per network



Types of Hypotheses

Dyadic (multiplexity)
— Friendship ties lead to business ties

— Social ties betweenm exchange partners leads to less formal
contractual ties (embeddedness)

Monadic
— Actors with more ties are more successful (social capital)
Mixed Dyadic-Monadic (autocorrelation)

— People prefer to make friends (dyad level) with people of the
same gender (actor level) (homophily)

— Friends influence each other’s opinions
Network

— Teams with greater density of communication ties perform better
(group social capital)



Statistical Issues

Samples non-random

Often work with populations
Observations not independent
Distributions unknown

This is not true if comparing network
measures across independent networks

— Then you can calculate the measures and
iInput them to normal Regressoins

— This is generally true in [pure] ego-net analysis



Solutions

* Non-independence

— Model the non-independence explicitly as in
Hierarchical LM

« Assumes you know all sources of dependence
— Permutation tests

* Non-random samples/populations
— Permutation tests

 Unknown distributions
— Permutation tests



Logic of Permutation Test

« Compute test statistic
— e.g., correlation or difference in means

— Correlation between centrality and salary is 0.384 or difference
in mean centrality between the boys and the girls is 4.95.

— Ask what are the chances of getting such a large correlation or
such a large difference in means if the variables are actually
completely independent?

« Wait! If the variables are independent, why would the
correlation or difference in means be anything but zero?
— Sampling
— “Combinatorial chance”: if you flip coin 10 times, you expect 5

heads and 5 tails, but what you actually get could be quite
different



Logic of Permutation Test

e So to evaluate an observed correlation between two
variables of 0.384, we want to

— correlate thousands of variables similar to the ones we are
testing that we know are truly independent of each other, and

— see how often these independent variables are correlated ata
level as large as 0.384

» The proportion of random correlations as large (or small) as
the observed value is the p-value of the test
 How to obtain thousands of independent variables
whose values are assigned independently of each other?
— Fill them with random values
» But need to match distribution of values
— Permute values of one with respect to the other




Outline of Permutation Test

 Get observed test statistic

« Construct a distribution of test statistics
under null hypothesis (no relationship)
— Thousands of permutations of actual data

» Count proportion of statistics on permuted
data that are as large as the observed
— This is the p-value of the test



Friendship, age, class

10

A |B [C [D

10

E

A |B |C (D

10

Age difference education

Friendship tie



Friendship, age, class

10

A |B |C (D

10

A |B |C (D

10

Age difference education

Friendship tie



QAP procedure

A |[B |C |D|E |F |G A |[B |C |D|E |F |G A|B |C |D|E |F |G
A |0 |1 |]O (0O |1 (O |O A [0 |1 |0 (2 |1 |0 |O A |0 [1 |02 ]1]0]0
B |1 |O |3 |5 (1 (|4 |2 B |1 |0 |3 |5 (1 1[4 |2 B [1 |0 (3 [5 |1 14 |2
CcC |0 |3 |0 [4 |5 (8 |10 C |0 |3 |0 [4 |5 (8 |10 C |0 |3 |04 |5 (|8 |10
D [2 |5 |4 [0]0 (3 ]2 | |D|2 (5|4 |00 (3 ]2 + D (2 |5 [4 [0 |0 |3 ]2
E |1 |1 |3 |0 [0 |2 |2 E |1 |1 |3 |0 [0 |2 |2 E (1 |1 |3 [0 |0 |2 |2
F |10 |4 |2 |3 (3 |0 ]1 F |10 |4 |2 |3 (3 |0 ]1 F [0 |4 |2 [3 |3 ]|]0 |1
G |0 |2 (1 |2 |2 |1 ]0 G |0 |2 (1 |2 |2 |1 ]0 G |0 |2 111212 1f11]0

Friendship tie Age difference education

* Permutes dependent variables lots of time. Measure
the sampling distribution of the coefficients.

* P-value is a proportion of times that the observation is
Falling outside the sampling distribution.




QAP process — graph representation

before reshuffling after



1. Regression on response and predictors;

2. Permute response variable lots of time to create random
datasets
a. gives sampling distribution of null hypothesis)
b. Preserves dependence between dyads — (person A's
values stay together during permutation)
c. but removes relationship between response/predictor



bill

maria
mikko
esteban
jean

ulrik

joao
myeong-gu
akiro
chelsea

Monadic Hypotheses

Centrality
10
20
40
30
70
50
40
50
60
10

Grades
2.1
9.5
7.3
4.1
8.1
8.1
6.6
3.3
9.1
7.2

« This, effectively, is basic
social science research

— However, centrality
measures in most
network based research
are non-independent, so
OLS is not appropriate

— Ego-Net based research,
on the other hand, would
arguably yield
iIndependent measures



Testing Monadic Hypotheses

* We use the same techniques for
determining coefficients as in traditional
statistics
— Regression for continuous variables
— T-Tests to compare across two groups
— ANOVA to compare across more than two

* But, we use the permutation test
mechanisms to determine the significance
of our findings



Dyadic Hypotheses

« Hubert / Mantel QAP test Friendship
— All variables are actor-by- Jim Jill Jen Joe
actor matrices Jm| - [1[ 0] 1
— We use one relation Jill] 1] -1 1
(dyadic variable) to predict Jenl o 111 - | 1
another
Joe[ 1 10| 1 3
— Test statisticis ¥ = sz,jyu
— Significance is i Proximity
prop(y 2y ), Jim Jill Jen Joe
Jm| - |3] 9| 2
=2, 2. %Y o000 Jill| 3 |-11115
i Jen| 9 (1| - | 3
Joe| 2 |15] 3 | -

* QAP correlation & MR-
QAP multiple regression



Dyadic/Monadic Hypotheses

* One dyadic (relational) variable, one monadic
(actor attribute) variable

— Technically known as autocorrelation
— But, unlike in OLS, autocorrelation is NOT bad
 Diffusion
— adjacency leads to similarity in actor attribute
» Spread of information; diseases
« Selection

— similarity leads to adjacency

* Homophily: birds of feather flocking together
* Heterophily: disassortative mating



Continuous Autocorrelation

« Each node has score on continuous
variable, such as age or rank

* Positive autocorrelation exists when nodes
of similar age tend to be adjacent
— Friendships tend to be homophilous wrt age
— Mentoring tends to be heterophilous wrt age

« Can measure similarity via difference or
product



Autocorrelation Measures

Geary’'s C
— Also called Geary’s [Contiguity] Ratio
— Most sensitive to local autocorrelation

Moran’s |

— Measures autocorrelation not only on variable values or location
(adjacency), but rather on both simultaneously

— More sensitive to global autocorrelatoin

| is about covariation of pairs, C is about variation in
variable values

Really the differences are probably immaterial



Comparing C & |

08}

y=0.874-0.939" x+eps |

0.4

e
o

Maran's |

0.4

0.8

0.0 0.4 04d 1.2 16 20
Ceary's C

This figure suggests a linear relation between Moran's [ and Geary's C, and
either statistic will essentially capture the same aspects of spatial
autocorrelation.

http://www.lpc.uottawa.ca/publications/moransi/moran.htm




Geary's C

Let w; > O indicate adjacency of nodes i and j, and X;
indicate the score of node i on attribute X (e.g., age)

Zzwzj('xi_xj)z
C=(n-1)—"

ZZWZ.].Z(XZ. ~-X)°

I

Range of values: 0 <=C <=2

— C=1 indicates independence;

— C > 1 indicates negative autocorrelation;

— C <1 indicates positive autocorrelation (homophily)



Moran’s |

Ranges between -1 and +1

Expected value under independence is
-1/(n-1)

| = +1 when positive autocorrelation

| = -1 when negative autocorrelation

D wy (x; —x)(x; - x)

I=nt!
— 2
ZWUZ(xi—x)
i, i



Positive Autocorrelation

(Similars adjacent; Moran’s | > -0.125)

Node Attrib A

G MmO O

F Moran’s I: 0.500
Significance: 0.000

a A WA WONW®WN 2



No Autocorrelation

Independence; (Moran’s | = -0.125)

Node Attrib
A 3
B 4
C 3
D 4
E 3
F 2
G 1
H 2

I )
Moran’s I: -0.250

Significance: 0.335




Negative Autocorrelation

(Dissimilars adjacent; Moran’s | < -0.125)

Node Attrib

A 4

B 1
C 4

D 2

E 5

F 2
G 3

H 3

I 3

Moran’s I: -0.875

Significance: 0.000




Interpreting Autocorrelation

 With Moran's /

— A value near +1.0 indicates clustering
(adjacency tends to accompany similarity
along a dimension)

— A value near -1.0 indicates dispersion
(adjacency tends to accompany dissimilarity
along a dimension)

— a value near 0 indicates random distribution

* For Geary’'s C
— just substitute 0, 2, and 1 for 1, -1, and 0 above



With Categorical Variables

 Moran’s | and Geary’s C are designed for continuous
variables (also, frequently, dichotomous)

« For categorical variables, we use either ANOVA Density
Models to determine if there is a homophily effect

« Homophily effects (preference for in-group ties) can be
modeled as
— Constant: Determine one in-group effect across all groups

» People in general prefer their own gender to same extent,
independent of their gender.

— Variable: Each group can have its own in-group effect

« Some groups show stronger tendencies to choose in-group
ties than others.

« E.g., Mormans show stronger in-group marriage ties than
other Christian denominations



Campnet Example

Observed

Female Male

Female 12 7
Male 7 16
Expected
Female Male Female Male
Female 1.87| 0.38 Female 6.4 18.3
Male 0.38 1.55 Male 18.3 10.3




Campnet Example

Density Table

1 2
Femal Male

1 Fem 0.429 0.087
2 Mal 0.087 0.356

MODEL FIT

R-square Adj R-Sgr Probability

REGRESSION COEFFICIENTS

Un-stdized Stdized
Independent Coefficient Coefficient Significance

Intercept 0.087500 0.000000 1.000
Group 1 0.341071 0.313982 0.001
Group 2 0.268056 0.290782 0.001

Proportion
As Large

Proportion
As Small



Another Approach

 Convert the attribute vector into a matrix
* QAP this new matrix against the
adjacency matrix

— Significances will be the ~same because it
uses same underlying permutation method

— Values will follow same pattern (but not same
values) as Moran’s |



Using QAP for Autocorrelation

BER RUS

JOH HAR GER STE

LEE DON

BIL

JEN PAU ANN MIC

BRA CAR PAM PAT

HOL

Gender

HOLLY

HOLLY

1

BRAZEY
CAROL
PAM
PAT

BRAZEY
CAROL
PAM
PAT
JENNIE

1
1

JENNIE

1

PAULINE
ANN

1

PAULINE
ANN

0

MICHAEL
BILL
LEE

2

MICHAEL
BILL
LEE

DON
JOHN

0

HARRY
GERY

DON
JOHN

STEVE
BERT
RUSS

HARRY
GERY
STEVE
BERT
RUSS

This matrix was constructed based on “exact match”

but you can use different transformations



Comparing QAP & Moran’s |

Moran’s | Output

A value of -0.059 indicates Autocorrelation: 0.667
perfect independence. Significance: 0.001
QAP Output
Un-stdized Stdized
Independent Coefficient Coefficient Significance
Intercept 0.056250 0.000000 0.999

CAMPATTR2-MAT 0.251969 0.330131 0.001



A word about
permutation test significances

* As you increase the number of iterations
or permutations, the test statistic
(correlation, difference in mean, etc.) will
stay the same

* The p value, or significance, may change
a little, but should converge

— At relatively low permutations (2K), you may
get different p values

— A higher values (>25K or 50K) they should be
stable and consistent



Inferential Network Analysis



ERGMS

A key twist on this simple model above is that while we work with dyads
(i.e. our observations in the dataset will be ij dyads), the model is of the
entire network — including all the dependencies.

Substantively, the approach is to ask whether the graph in question is an
element of the class of all random graphs with the given known elements.

For example, all graphs with 5 nodes and 3 edges, or, put
probabilistically, the probability of observing the current graph given the
conditions.



The “p1” model of Holland and Leinhardt 1s the classic foundation
— the basic 1dea 1s that you can generate a statistical model of the
network by predicting the counts of types of ties (asym, null, sym).
They formulate a log-linear model for these counts; but the model
is equivalent to a logit model on the dyads:

lOglt(XU = 1) = + ,B] + p(Xl])

Note the subscripts! This implies a distinct parameter for every
node i and j in the model, plus one for reciprocity.




Statistical Models for Networks
Modeling the network: ERGM B OUTPUT.LOG4 - Notepad

File Edit Format View Help

[1s] UCINET 6 for Windows -- Version 6.235

File Data T:ansform Tools Network. Visualize Options Help Input dataset: PRISON (C:\D
[l I I i | \| D I Cohesion 4
: Regions 4
How to cite UCINET: Subgroups N G-5Square DF
Borgatt, S.P., Everett, M.G. andf P aths 2 for Social Network Analysis. Harvard, MA: Anall 1166, 61 4880
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This copy of UCINET is registerec  Group Centrality > o B ’
Core/Periphery »
Roles & Positions » Expansiveness and Popularity Parameters
Triad Census 1 2
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-oae 5 -0.148 0.539
Extras » 6 -1.077 0.131
7 -1.596 0.984
8 1.303 -0.057
9 0.08% 0.113
10 0.101 -1.042
11 -0.725 -0.690
12 0.298 0.317
13 -0.206 -0.176
14 0.101 -1.042
15 0.089 0.113
16 -1.272 1.547
17 -0.484 (0.368
18 0.520 -0.124
15 0.056
20 0.089 0.113
21 -1.114 1.331
|C:\Documents and Settings\jmoody77\My Documents 3% 8 gjg :g j gj
24 0.08% 0.113
25 0.056
26 0.056
27 0.850
28 -0.148 0.539
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Results from SAS version on PROSPER datasets



Once you know the basic model format, you can imagine other
specifications:

LOglt(XU — 1) = a; + ,B] + p(XU)
Logit (X;; = 1) = a; + B; + py(X;;) — differential reciprocity
Logit (X;; = 1) = a; + B; + py(X;;) + (node attributes)

Key is to ensure that the specification doesn’t imply a linear
dependency of terms.

Model fit 1s hard to judge, and for all but the simplest rhs features,
the se’s are “approximate.”

How to fix the inference problem?



Analytic & estimation solutions came with some careful thinking on the underlying
structure on this model. Start with a re-expression of a general graph model:

exp{0'z(x)}
k(0)

p(X =x) =

Where:
g is a vector of parameters (like regression coefficients)
Z is a vector of network statistics, conditioning the graph
K is a normalizing constant, to ensure the probabilities sum to 1.

So here, we're just asking the probability of observing our network, given some
network statistics.



We need a way to express the probability of the graph that doesn’t depend on
that constant. It turns out we can do this by conditioning on a ‘complement’
graph.

First some terms:

X{;: Sociomatrix with ij element forced to be 1
X;;= Sociomatrix with ij element forced to be 0
Xi;= Sociomatrix array without ij element

After some algebra:

0 {E =S} = 0 [s(x) - ox7)] =

We can re-write the probability of the graph as a function of the change scores
(complement graph), which has to do with the tie being present or absent.

Which ends up being a logit model on z, where z are “change statistics” or counts of
features on the full graph when that statistic for the ij dyad is differenced.



Now we can get an unbiased estimation of the graph as a function of the change
statistics;

Imagine what the change score looks like for the simples configuration: an edge. This
gives us an intercept only model: what’s the number of ties in the network if each
edge is/is not present?

What about reciprocity? What's the number of reciprocal ties if Xij is present/asbent.

Steps in estimating an ERGM
1) Specify the model
2) Fit the model
3) Examine MCMC chains for convergence & such
4) Examine Goodness of fit
1) If poor, return to 1
2) Else, publish your paper. ©



Question is the
likelihood of a network
given an observed set of
network mixing
statistics.

The set of such statistics
(“terms”) 1s large...and
growing.

Intuitively, these capture
a social process you
think 1s driving network
formation.
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ergm-terms(ergm) R Documentation

Terms used in Exponential Family Random
Graph Models

Description

The function exrgm is used to fit linear exponential random graph models, in which the
probability of a given network, v, on a set of nodes is exp{theta * g(v)}/c(theta), where g(v)
is a vector of network statistics for y. theta is a parameter vector of the same length and ¢
(theta) is the normalizing constant for the distribution.

The network statistics g()) are entered as terms in the function call to exgm.
This page describes the possible terms (and hence network statistics).
Specifying models

Terms to ergm are specified by a formula to represent the network and network statistics.
This is done via a formula, that is, an R formula object, of the formy ~ <term 1> +
<term 2> ..., where y is a network object or a matrix that can be coerced to a network
object, and <term 1>, <term 2>, etc, are each terms chosen from the list given below. To
create a network object in R, use the network function, then add nodal attributes to it using
the $v% operator if necessary.

Possible terms to represent network statistics

The erom function allows the user to explore a large number of potential models for their
network data. What follows is a list of model terms currently available by the program, and a
brief description of each. In the formula for the model, the model terms are various function-
like calls, some of which require arguments, separated by + signs.

Additional terms can be coded up by users via the statnetuserterms package.
The terms currently available are:
absdiff (attrname, pow=1l)
Absolute difference: The attrname argument is a character string giving the name of a

quantitative attribute in the network's vertex attribute list. This term adds one network
statistic to the model equaling the sum of abs (attrname[i]l-attrname[j]) “pow

~
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Structural

Theory Colloquialism Signature Model Term
_ ] NodeMatch()
Homophily | Birds of a feather... ' m -
-/ /
_ A friend of a friend... Balance,
Social Balance A friend of an enemy ... » Transitivity,
GWESP

Don’t | know your...

Clustering & k-

Small-Worlds or paths
Kevin Bacon game...
_ _ In-degree, k-stars

Attachment

First mover advantage




Common classes of terms:

Edges
Receiver, Sender

Degree(d,attr)

Mutuality

Nodecov(attr), nodefactor()
Nodematch(attr)

Gwesp

Dyadcov, edgecov
Isolates

Cycle(k)

Density
Fit person specific degree distribution

Fit the observed global degree distribution,
perhaps by attribute

Reciprocity

Differential row/colloumn effects by an attribute
Homophily on a particular attribute

Geometric form for closed partners

Pair specific covariates, differ by directed or not.
Fit the number of isolated nodes in the graph

Fit cycles of length k (slow!)



Model Sensitivity

ERGM models are very sensitive to model specification, and work
best if you have a good intuition about how the interdependencies in
a network operate — most of us do not have that intuition!

Model Degeneracy: Intuitively, it happens when the network
sample space implied by the model does not contain any
instances of your model.

Example: Simple model of edges & triangles.

Intuitively, we’d expect from balance a positive coefficient on
triangles.



P(x=x)

Intuition from regression: b(triangle) is positive

Triangles



..S0 what you really want is:

P(x=x)

Triangles

Or that there are marginal decreasing returns to each *additional* closed triad

GWESP



But note the model really says “more closed triads is good”

So if this is good... ..this is better!



Running a model feels a lot like any general linear model.:

R> model2 <- ergm(fmh ~ edges + nodematch("Grade") + nodematch("Race") +
+ nodematch("Sex"))
R> summary(model2)

Estimate Std. Error MCMC s.e. p-value

edges -10.01277 0.11526 NA <1e-04 *x*x
nodematch.Grade 3.23105 0.08788 NA <le-04 *x*x
nodematch.Race 1.19646 0.08147 NA <1e-04 *x*x%
nodematch.Sex 0.88438 0.07057 NA <1e-04 *x*x*

Under the hood, it's using a pseudo-=likelihood (logit) for models with only
dyad-independent features, or fitting an MCMC if there are dependencies.

Coeficcients are given in log-odds scale. If we exponentiate, we get the
probability of observing a tie in the network



STATNET has a
bunch of MCMC
diagnostic tools. For
example, you want to
make sure your trace
plots are nice and
random, rather than
trending in one
direction or
another...
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Once you have a model, the most common way to assess fit is to draw samples
from the implied network space and compare them to your observed graph.

R> model2 <- ergm(fmh ~ edges + nodematch("Grade") + nodematch("Race") +
+ nodematch("Sex"))
R> summary (model2)

Estimate Std. Error MCMC s.e. p-value

edges -10.01277 0.11526 NA <1e-04 *x*x
nodematch.Grade 3.23105 0.08788 NA <1e-04 *xx%
nodematch.Race 1.19646 0.08147 NA <1e-04 *xx%
nodematch.Sex 0.88438 0.07057 NA <1e-04 *xx%

R> sim2 <- simulate(model2, burnin = le+6, verbose = TRUE, seed = 9)



Once you have a model, the most common way to assess fit i1s to draw samples
from the implied network space and compare them to your observed graph.

Goodness—of-fit diagnostics
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log-odds for an edge
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BIRDS OF A FEATHER, OR FRIEND OF A FRIEND?
USING EXPONENTIAL RANDOM GRAPH MODELS TO
INVESTIGATE ADOLESCENT SOCIAL NETWORKS®

STEVEN M. GOODREAU, JAMES A. KITTS, AND MARTINA MORRIS

Figure 3. Coefhicients From the Full Model, Plotted Across All 59 Schools
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Notes: Boxplots follow the Tukey method. Boxes represent quartiles; whiskers extend to the most extreme data point within

1.5 times the interquartile range from the edge of the box; and points represent outliers.




Lord of Flies theory is correct among adolescents:

. o Network Ecology and
We give them no structure and they create a rich hierarchy A doglescent Social Structure

and beat the shit out of each other

Daniel A. McFarland,* James Moody,"’C
David Diehl,! Jeffrey A. Smith,®
and Reuben J. Thomas!

Table 2. Mechanisms of Friendship Formation across Groups: Results of Multilevel Models with Measurement
Error Correction

School Networks
Cross Sectiona!l Longitudinal
Log- Log-
Odds Odds f Odds Odds '

Edges 001 -6.680 12888 =** 001 -6.615 -12.76 *=*
Mutuality 29.767 3.393 7151 =*= 21.802 3.082 8.60 ***
Closure 2595 954 111.07 **=* 2372 864 1543 #==
Hierarchy 1.131 123 64.34 == 1.177 163 11.54 #==
Club Ties 1.508 411 2821 === 1.664 509 5.68 *=*
Prior Year 26.552 3.279 13,12 *=*
Same Race 1.647 499 2005 === 3.221 1.170 606 ***
Same Gender 1.202 184 2550 F== 1.492 400 738 *==
Same Age 3425 1.231 37.16 *=** 2.035 710 722 ***
GPA Diff. 813 -.207 -35.13 === 828 —.188 -5.56 **=*
SES Diff. 966 -.035 -1932 === 1.001 001 04 ns
Null Mode! Likelihood Ratio Test

y-square 1256.0 =*=* 1003 *=*
Model Fit

Dewviance -1302.4 69.5




Figure 1. Variability in hierarchical macro structure resulting from variability in micro-structural parameters with detailed block

models from selected regions. (based on ERGM simulations from observed parameter estimate ranges)
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f36: coefficient for Closure-GWESP
Clustering
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B7: coefficient for triad-based hierachy

Caption: Heat map measures the rank-cluster tau score for simulated networks from the
example equation on p. 26, using coefficient values reflecting the range of our observed
models. To better explain the implication of these scores, we draw 4 examples from the
extreme regions of our space and blockmodel the resulting networks. We use a modularity
maximization routine to identify the number of positions in each network, a mean density
cuttoff for drawing arcs in the image network (no cuttoff used for calculating hierarchy

position), and array positions vertically according to the ratio of density received over density
sent. Those with a ratio of one have equal ties sent/received, greater than one receive more

than they send, less than one send more than they receive.
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Latent Space Models

Latent Space Approaches to Social Network Analysis

Peter D. HoFF, Adrian E. RAFTERY, and Mark S. HANDCOCK

Network models are widely used to represent relational information among interacting units. In studies of social networks, recent
emphasis has been placed on random graph models where the nodes usually represent individual social actors and the edges represent the
presence of a specified relanon between actors. We develop a class of models where the probabihity of a relation between actors depends
on the positions of individuals in an unobserved “social space.” We make nference for the soaal space within maximum hkehhood and
Bayesian frameworks, and propose Markov chain Monte Carlo procedures for making inference on latent positions and the effects of
observed covanates. We present analyses of three standard datasets from the social networks literature, and compare the method 1o an
alternative stochastic blockmodeling approach. In additon to improving on model fit for these datascts, our method provides a visual
and interpretable model-based spatial representation of social relationships and improves on existing methods by allowing the statistical
uncertainty in the social space 10 be quantified and graphically represented.

KEY WORDS: Conditional independence model; Latent position model; Network data; Random graph; Visuahzation.

Fitting Position Latent Cluster Models for Social
Networks with latentnet

Pavel N. Krivitsky Mark S. Handcock

University of Washington University of Washington



Does not require any theoretical machinery about social processes.

Simple latent distance model, where the z are actors positions in a latent space, such
that people close to each other in z space tend to have a tie, and not otherwise:

P(Yla l)—np(\, ]la Lifs *-)
i#j

and

=a—|z -zl

logit p(y; ; = e,z z

)

Given a distribution of points in the space defined by z, probability of a
tie decreases with their distance in the latent space.

Z can be as many dimensions as you want; typically we try to fit the
minimum number of dimensions that provide reasonable fit to the data.

We don’t know what z means!



2d solution
for
Sampson
monistary
data

Don’t
require
social
processes
or functional
forms.

Works well,
people close
in z space
have a tie

(a) (b)

Figure 1. Maximum Likelihood Estimates (a) and Bayesian Marginal
Posterior Distributions (b) for Monk Positions. The direction of a relation
is indicated by an arrow.



Z, = a dimension in some unknown
space that, once accounted for makes
ties independent.

In addition, we can now embed z
within a group structure, which adds
probability of ingroup ties.

MLE pocitione
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Figure 1: MLE positions for a fit on Sampson’s Monks

> samplike.fit <- ergmm(samplike ~ latent(d = 2), tofit

c("mle"))
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Example with the MKL Latent Positions of Im1

Prosper data, with Sl far
three groups

Dimension isn’t

just Euclidean.

There’s some

clustering soaking ¥ = -
up variation.

Here we assume 3 .
groups.

-10 5 0 .



Latent space models tend to be (a) much more robust to model
specification errors than are ERGMs and (b) have better known
convergance properties (i.e. you can prove that the models will converge,
which follows because you’re making a conditional independence
assumption that's not made in ERGM).

But, you rarely know what the dimensions mean socially. So it provides a
fit, but doesn’t test a mechanism.

This is a key difference; if you’re goal is out of sample prediction or simply
controlling the “noise” of a network, a latent space model is probably the
best solution. If your goal is to test a particular network mechanism, an
ERGM is probably better.



AMEN: Additive & multiplicative effects from latent factor models (Hoff & Volfovsky)

Basic social relations model

ot At ~t _

i i ] [N
Dyad Row Column Row Col dyad
effects effects effects error error error

More general frame:

ot ot at t :
Yij = -*'-}dxd.rj + By Xri + -*'-}c:XC-j +ai + bf T UpVj + €

Latent
multiplicativ
e

Model is very general; can deal with y on any scale (bina??Y@r@QPe
values), fits latent space & observed covariates.

Computationally intensive...for networks > 100;
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Affinity of GoT characters




Highest Affinity, No S7 Relationships

DAENERYS-SANSA -

ELLARIA-JON 1

JON-YARA -

JON-MARWYN 4

JON-RANDYLL +

Pair

JON-OLENNA 1

ARYA-DAENERYS 1

DICKON-JON +

JON-TYENE 1

ARYA-TYRION 1

-
o

5
Estimated Affinity

O+



(Field) Experiments

Randomizing into conditions, done by
experimenter or naturally by exogenous shock.



Three examples

1. Peer Effects: does j influence the behaviour or
outcomes of i?

2. Network Formation: what conditions whether j forms a
tie with i?

3. Designing networks: which network structures
maximize network level outcomes?



