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Graph�Theory�Beginnings:�Leonard�Euler

Swiss mathematician and logician (1707 - 1783)

Network analysis begins with solution to the “Bridges of
Königsberg” question in 1735



The�Seven�Bridges�of�Königsberg

%FGJOJUJPO��BO�&VMFS�QBUI�XBMLT�UISPVHI�B�HSBQI�XJUIPVU�SFWJTJUJOH�FEHFT��BO�
&VMFS�DJSDVJU�JT�BO�&VMFS�QBUI�UIBU�TUBSUT�BOE�TUPQT�BU�UIF�TBNF�WFSUFY�

Big�Question:�Can�one�
walk�across�all�seven�
bridges�and�never�cross�
the�same�one�twice?
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What is a network?
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sNetwork

• Set of nodes
• Set of ties among them
• Ties interlink through

common nodes
• Resulting in paths

• In social network analysis,
ties typically represent a social
relation
• E.g., kinship, family



Adjacency matrix

• Can represent a network as a node-by-node matrix
• Typically 1s and 0s, could be strengths of tie

a b c d e f
a 1 0 0 0 0
b 1 1 1 0 0
c 0 1 1 0 0
d 0 1 1 1 0
e 0 0 0 1 1
f 0 0 0 0 1

a
b

c

d

e

f



Marriage ties between families

Padgett & Ansell (1991). Marriage ties among Florentine families during the Renaissance 



Business ties between families



Dyadic variables

• A given type of relation, such as
marriage, can be seen as a
dyadic variable that describes
the relationship between every
pair of nodes
• A dyadic variable assigns a

value to each pair of nodes

Dyad Married Business
ACCIAIUOLI-GUADAGNI 0 0
GUADAGNI-STROZZI 0 0
PUCCI-STROZZI 0 0
BISCHERI-SALVIATI 0 0
ACCIAIUOLI-GINORI 0 0
GUADAGNI-RIDOLFI 0 0
MEDICI-TORNABUONI 1 1
CASTELLANI-SALVIATI 0 0
BARBADORI-GUADAGNI 0 0
CASTELLANI-LAMBERTESCHI 0 1
ACCIAIUOLI-ALBIZZI 0 0
GUADAGNI-PUCCI 0 0
LAMBERTESCHI-STROZZI 0 0
MEDICI-PUCCI 0 0



Acquaintance network

Acquaintance ties 
among drug injectors 
on streets of Hartford 



Book Co-
purchasing

Diagram 
courtesy of 
Valdis Krebs
www.orgnet.com

Is this a network?



Comparing airlines’ route structures

Major Carrier “Discount” Airline

Note: Route maps defined around one specific hub only
Source: Industry data, BCG analysis



Dyadic/Relational 
Phenomena

Relational 
States

Similarities

Co-location

Co-
membership

Shared 
attribute

Social 
Relations

Kinship

Other role-
based

Mental 
Relations

Cognitive

Affective

Relational 
Events

Social
Actions

Transactions

Behaviors

Dyadic effects

Flows

Reactions

Things you are
(always on)

Things you do
(have frequency)

What is transmitted, 
adopted, transferred, 
copied, caused by 
relational events

Elements of 
social structure

Relational 
conditions

Goods,
ideas,
diseases

“patterns of recurring interactions”

Causal chains
- A laughs @ B
- B is mean to C
- C is sad

Based 
on 2-
mode 
data



Entailed interactions

• Friendship carries with it certain norms about how the friends will
behave toward each other

• Rights and obligations
• Expectations

• Kinship ties have these too
• Professor / student
• So this means that a given “base relation” entails a variety of

interactions
• And base relations also have a variety of different functions, e.g., material aid,

emotional support, advice, etc.



Multiplexity

• A given dyad (pair of persons) can be
connected by more than one kind of
base relation at the same time

• E.g., both kin and co-worker
• I wouldn’t classify being friends and

talking often as multiplex
• Because the base relation

entails the talking

Dyad Married Business
ACCIAIUOLI-GUADAGNI 0 0
GUADAGNI-STROZZI 0 0
PUCCI-STROZZI 0 0
BISCHERI-SALVIATI 0 0
ACCIAIUOLI-GINORI 0 0
GUADAGNI-RIDOLFI 0 0
MEDICI-TORNABUONI 1 1
CASTELLANI-SALVIATI 0 0
BARBADORI-GUADAGNI 0 0
CASTELLANI-LAMBERTESCHI 0 1
ACCIAIUOLI-ALBIZZI 0 0
GUADAGNI-PUCCI 0 0
LAMBERTESCHI-STROZZI 0 0
MEDICI-PUCCI 0 0

Multiplex 
relationship



Networks: why do we care?



Networks are everywhere

• A molecule is a network of atoms
• A brain is a network of neurons
• A body contains many networks, including the circulatory system
• Genes form regulatory networks that turn other genes on and off
• Firms are networks of individuals, passing along information, orders and coordinating efforts
• Buildings contain many networks, including heating/cooling, plumbing, electrical
• Economies are networks of firms and other agents buying and selling
• Societies are networks
• Countries contain many networks, e.g.,  transportation systems, phone systems
• The internet is a network
• Ecosystems are networks of species eating each other, creating environments for each other, etc.

So maybe we should try to understand them?



But … 

• Networks are also a lens
• We see networks everywhere because we like to think that way
• A network is created any time a researcher says
• I’m interested in this set of people,
• And, I define a tie as …. [having the same color hair] [having met before] [etc]

• Don’t want to over-reify networks
• And yet …



Consider the case of AIDS

Subject 
ID Age Gay

Rare 
Cancer

1 33 0 0
2 27 0 0
3 89 1 1
4 34 0 0
5 56 1 0
6 23 0 0
7 54 0 0
8 12 1 1
9 45 0 0

10 67 0 0
11 43 1 1
12 21 1 0

• 1981 CDC aware of increasing number of
cases of opportunistic illnesses like Kaposi’s
sarcoma

• Virtually all cases were gay men
• Syndrome initially named Gay-Related

Immune Deficiency (GRID)
• Logistic regression of opportunistic illness on

being gay
• Proposed mechanism
• Stigmatized identity causes stress, leading

to weakened immune system

Network logic



Contagion | diffusion | influence 
mechanisms

Subject 
ID Age Gay

Rare 
Cancer

1 33 0 0
2 27 0 0
3 89 0 0
4 34 0 0
5 56 1 0
6 23 0 0
7 54 0 0
8 12 1 1
9 45 0 0

10 67 0 0
11 43 1 1
12 21 1 0
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Network structure provides 
backcloth that enables and 
constrains flows

Network logic



Network models of style

• Why do people …?
• Wear the clothes they do
• Speak the way they do
• Believe the things they do
• Do things the way they do
• Etc.

• Partly individual reasons (maximize utility function), but partly
contagion/influence from people they know
• Contagion, diffusion, adoption of innovation, common fate

Network logic

http://www.scholarpedia.org/article/Image:Inphase.gif


Modeling achievement

• Why some individuals/organizations are more successful than others
• Standard answer is human capital
• Motivation, education, intelligence, etc

• Network answer is social capital
• Position in the network

• Bridging/Brokering positions
• Access to non-redundant info
• Freedom of action
• Combine knowledge from one

group to that of another



Levels of analysis --

• Dyad level – O(n2)
• Units are pairs of persons
• Variables are things like presence of absence of a certain kind

of tie between each pair of persons in network
• Node level – O(n)

• Units are persons
• Variables are things like the number of friends each person

has
• Group/network level – O(1)

• Units are whole networks (e.g., teams, firms or countries)
• Variables are things like the density of trust ties, or the

average number of degrees of separation between members
of the group

Organized by most to least number of units



Dyad level

• Raw network data are dyadic
• for each pair of persons we measure
• whether they have a tie or not (are they friends?)
• How strong the relationship is (how close are they?)
• Other aspects of the tie

• How long have they been friends?
• How often do they talk?

• Measurement can undirected or directed
• Undirected: are they co-workers? If A is coworker of B, then B is coworker of A
• Directed: advice. Does A give advice to B? If so, maybe B does not give advice to A



Dyad level : antecedents and consequences

• Consequences
• If A has tie to B, and A knows something, they may tell B, and now both know

it
• So, a consequence of the tie is similarity/homogeneity

• I have same info as you
• I adopt same shoes as you

• Antecedents
• What determines which pair are friends are which are not?
• Often look to attributes of the individuals
• So, an antecedent of the tie is similarity



Node level: antecedents and consequents

• Consequences
• Employees with more friends in the higher levels of the organization get

promoted earlier and have better raises
• In management the canonical hypothesis is that

managers with more structural holes perform
better and get rewarded better

• Antecedents
• Individuals with more outgoing personalities

tend to be more central in the organizational network
• People with ability to interact productively with diverse kinds of people are

more likely to ties to people who are not tied to each other

Structural hole



Group level

• Consequences
• Teams with more centralized communication networks solve problems more

quickly

• Antecedents
• Teams with greater demographic homogeneity more likely to have

core/periphery network structures rather than clumpy structures



Antecedents and consequences

Antecedents
• Socio/cultural/psychological

processes that give rise to social
ties, interactions, exchanges
• What determines who is

connected to whom?
• Why do some people have more

ties than others?
• Why does the network have the

structure it does?
• Theory of networks

Consequences
• Mechanisms that translate ties,

positions, structure into outcomes
• How does the tie between two actors

affect what happens between them?
• How does centrality translate into

power?
• How does network structure

determine diffusion speed?

• Network theory



Types of studies

Dyad Level Node Level Group Level
Theory of Networks
(Antecedents)

Understanding who 
becomes friends with 
whom

Explaining why some 
people are more liked 
than others

Explaining why some 
groups have more 
centralized network 
structures

Network Theory
(Consequences)

Predicting similarity of 
opinion as a function of 
friendship

Explaining why some 
employees rise through 
the ranks faster than 
others as a function of 
social ties

Predicting team 
performance as a 
function of structure of 
trust network within 
team



Characteristics of network 
thinking
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Structure matters

• This is a fragile structure
easily broken up

� whites
S african-american
T puerto-rican

Paulo Serodio



Which networks are good for what?

• Consequences of these structures for the organization and for nodes



Position matters: the emergence of Moscow

• Pitts (1979) study of 12th

century Russia and the later
emergence of Moscow
• Why did Moscow

come to dominate?
• Great man theory
• Resource richness

Paulo Serodio



Position matters

• Rivers enable trade between city-
states
• System of rivers creates network

of who can trade directly and
indirectly with whom
• What happens in the network is a

function of global paths and
position
• Moscow very high in betweenness

centrality
Nodes have high betweenness to the extent they are 
along the shortest paths between pairs of nodes



SNA as open systems perspective

• Importance of an individual’s environment
• To explain individual outcomes, must take into account

the node’s social environment in addition to internal
characteristics
• In SNA, the environment is conceptualized as network
• An emphasis on structure relative to agency
• Consistent with an open systems perspective

• The contrast is with an essentialist/dispositional
perspective
• Predict individual’s outcomes using other

characteristics of the individual
• Employee’s success a function of ability and motivation

Environment

Individual

We are all embedded in 
a thick web of relations



Environment as location in network

• Many fields have concept of environment affecting the individual
• Turbulent/differentiated environments in organizational theory

• In networks, the environment is conceptualized as other agents
• And these agents are connected to each other and to ego in a

particular pattern/structure

a b

c d

e f
g h

i j



Traits versus environment

• Traditionally, social science has focus on attributes of individuals to
predict individual outcomes
• Income as a function of education
• Essentialist, dispositional, closed system

perspective

• SNA looks not only at your own
attributes, but also the attribs
of the people in your life

Age Sex Education Income
1001
1002
1003
1004
1005
…

Variables
(attributes)

Cases
(entities)
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Kinds of Network Data

Complete Ego
1-
mode

Bill

Bo
b

Betsy

Biff

Bonni
e

Be
t

ty

2-
mode

Merc
k 
manu
al

Dr.
Jones

Jane

Web MD

Patient

Bill

Mo
m

PDR



1-mode Complete Network

Data collected by Cross

1-mode Complete Network

Information 
flow within 
virtual group



2-mode Complete Network

Data compiled from newspaper 
society  pages by Davis, Gardner &
Gardner



Complete Network Data vs.
Complete Graph

• The term “Complete Network Data” refers to
collecting data for/from all actors (vertices)
on  the graph
– The opposite if Ego-Network or Ego-Centric

Network data, in which data is collected only
from  the perspective an individual (the ego)

• The term “Complete Graph” refers to a
graph  where every edge that could exist in
the  graph, does:
– For all i, j (j>i), v(i,j) = 1



BRAZEY
LEE

GER
Y

STEVE

BERT

RUSS

Complete
Network  

Data

BRAZEY

LEE

GERY

STEVE

BERT

RUSS

Complete  
Graph



Ego Network AnalysisEgo Network Analysis

• Combine the perspective of network analysis 
with the data of mainstream social science

Network
Analysis

Mainstream
Social Science

Ego
Networks

perspectivedata

• Combine the perspective of network
analysis  with the data of mainstream social
science



1-mode Ego Network
Carter Administration
meetings

Data courtesy of Michael
LinkYear 1 Year 4



2-mode Ego Network



Research designs



Whole network / sociocentric design

• Start with a set of people (typically a “natural” group such as a gang or a
department)
• Collect data on the presence/absence (or strength) of ties of various kinds

among all pairs of members of the set
• Who doesn’t like whom; How frequently each pair of persons have a conversation
• Typically collected via survey: respondent presented with roster of people to

select/rate
• Issues

• The set of persons needs to be some kind of census – can’t randomly pick sample of
100 persons from the population of all Americans

• The set can’t be too big
• Problems with inferential validity – how to generalize results?



Personal network / egocentric design

• Select random sample of respondents/subjects
• Call them egos

• For each subject, identify the set of persons in that subject’s
life
• Call them alters

• For each alter, determine their individual characteristics
• E.g., ask ego how old the alter is, whether they use drugs, etc.

• For each alter, determine the nature of the relationship with
ego
• E.g., ask ego how often they talk to alter, whether alter is a

neighbor, etc.
• For pairs alters, determine their relationships to each other

• E.g., ask ego whether alter 1 is friends with alter 2, etc.

Ego 1

Alter1
(swf)

Alter2
(sbm)

Alter3
(mwf)

Alter4
(swf)

Ego 2

Alter1

Alter2

Alter3



Issues with personal network design

• Can use random samples, enabling generalizability of findings
• Can study very large populations
• Can’t say anything about network structure, or position of nodes

within the structure
• Typically collected via survey, so all of the information about alters is

obtained from ego’s perceptions
• May be inaccurate
• But maybe it is ego’s perception that matters …



Cognitive social structures (CSS) design

• A blend of whole network and personal network designs
• Start with natural group of persons as in whole network design
• Ask each person to indicate not only their own relationship with each

other person, but also their perception of the relationships among all
pairs of persons
• Result is a perceived network from each member of the network
• Issues

• Tedious for the respondent – can only be used with small groups
• Extremely rich data. Can calculate accuracy of each person’s perceptions.

Study effects of social perceptions



Friendship network -- ilas

Blue nodes are installers

"Who would this person consider to be a personal friend? Please place a check next to all the names of those people who that 
person would consider to be a friend of theirs"

Node Indeg
Chris 10
Ken 8
Tom 8
Gerry 7
Steve 6
Hugh 6
Bob 5
Dale 5
Nan 5
Fred 4
Ovid 4
Upton 4
Ivo 3
Pat 3
Robin 3
Alex 3
Carl 2
Gary 2
Zoe 2
Dan 2© David Krackhardt



Chris’s perception of the friendship network

Blue nodes are installers

"Who would this person consider to be a personal friend? Please place a check next to all the names of those people who that 
person would consider to be a friend of theirs"

© David Krackhardt



Ev’s perception of the friendship network

"Who would this person consider to be a personal friend? Please place a check next to all the names of those people who that 
person would consider to be a friend of theirs"

© David Krackhardt



Representing Networks
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representing networks –  complex
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storing network data

1. Adjacency matrix

2. Edgelist

3. Adjacency/node list



1(

2(

3(

4(5(

0! 0! 0! 0! 0!
0! 0! 1! 1! 0!
0! 1! 0! 1! 0!
0! 0! 0! 0! 1!
1! 1! 0! 0! 0!

A!=!

Issues:

1. Your dataset will likely contain network data in a non-matrix
format;

2. Large, sparse networks take way too much space if kept in a
matrix format

1. $djacency 0atrix



9/21/15! Jure!Leskovec!and!Lada!Adamic,!Stanford!CS224W:!Social!and!Informa)on!Network!Analysis! 60!

A)'

B)'

C)'

Which adjacency matrix represents this network?

1. $djacency 0atrix



! Edge!list!
! 2,!3!
! 2,!4!
! 3,!2!
! 3,!4!
! 4,!5!
! 5,!2!
! 5,!1!
!

1(

2(

3(

4(5(

2. (dge Oist
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Edgelist Data Format

B A 1 

B E 1 

C A 1 

C E 1 

C D 1 

A 

C B D 

E 

Source Destination Weight 

Note: Weights are optional. 

2. (dge /ist �with weights�



!

!  Adjacency!list!
! is!easier!to!work!with!if!
network!is!
! large!
! sparse!

! quickly!retrieve!all!neighbors!
for!a!node!
! 1:!
! 2:!3!4!
! 3:!2!4!
! 4:!5!
! 5:!1!2!

1(

2(

3(

4(
5(

3. $dMaFenF\ Oist _ 1ode Oist
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Assessing node’s environment

• Hrs and $ columns of XA give social access to resources
• Lib column gives how liberal the person’s social environment is

a b c d e f hrs $ lib hrs $ lib
a 0 1 0 1 1 1 a 3 50 1 a 22 65 15
b 0 0 1 0 0 0 b 9 10 4 b 3 5 3
c 1 1 0 1 0 0 c 3 5 3 c 19 90 10
d 0 1 1 0 1 1 d 7 30 5 d 18 40 13
e 1 0 0 0 0 0 e 1 20 2 e 3 50 1
f 1 1 0 0 1 0 f 5 5 4 f 13 80 7

X A XA



Boolean matrix multiplication

• Values can be 0 or 1 for all matrices
• Products are dichotomized

Mary Bill John Larry Mary Bill John Larry Mary Bill John Larry

Mary 0 1 0 1 Mary 0 0 1 1 Mary 1 1 1 0

Bill 1 0 1 0 Bill 1 0 1 0 Bill 0 0 0 1

John 0 0 0 1 John 0 0 0 1 John 0 1 0 0

Larry 0 0 0 0 Larry 0 1 0 0 Larry 0 0 0 0

A B AB

Would have been a 2 in 
regular matrix multiplication



Composition of relations

• We represent each social relation (e.g., F= friend of, B = boss of) as a
matrix
• To create the compound relation friend of the boss of (FB), we just

multiply the two matrices

F B FB

a b c d a b c d a b c d

a 0 1 0 1 a 0 0 1 1 a 1 0 0 0

b 1 0 1 0 x b 1 0 0 0 = b 0 1 1 1

c 1 1 0 1 c 0 1 0 0 c 1 0 1 1

d 1 0 1 0 d 0 0 0 0 d 0 1 1 1



Composition of relations

• FB(c,a) = 1 (or cFBa) means that person c is friend of someone (namely b)
who is the boss of a. i.e., c is friends with a’s boss
• FB(a,a) = 1 (or aFBa) means person a is friends with someone (b again) who

is a’s boss. i.e., a is friends with her boss
• FB(b,d) = 1, so person b is friends with someone (a) who is the boss of d

F B FB

a b c d a b c d a b c d

a 0 1 0 1 a 0 0 1 1 a 1 0 0 0

b 1 0 1 0 x b 1 0 0 0 = b 0 1 1 1

c 1 1 0 1 c 0 1 0 0 c 1 0 1 1

d 1 0 1 0 d 0 0 0 0 d 0 1 1 1

Everyone is 
friends with 
their boss

Hard for a to borrow any subordinates



Transitivity

• L = “likes someone”, uLLv means u likes someone who likes v

• If a likes b and b likes c, does that mean a likes c?
• If matrix L = matrix LL, then L is a transitive relation, in keeping with

balance theory

L L LL

a b c d a b c d a b c d

a 0 1 0 1 a 0 1 0 1 a 1 0 2 0

b 0 0 1 0 x b 0 0 1 0 = b 0 1 0 0

c 0 1 0 0 c 0 1 0 0 c 0 0 1 0

d 1 0 1 0 d 1 0 1 0 d 0 2 0 1

Note diagonal of LL is all 1s, so 
everyone is lucky enough to like 
someone who likes them

a

cb

LL(d,b) = 2 indicates d likes 2 
people who like b



Converse of a relation

• In relational terms, the converse of a relation is the reciprocal role
• Converse of “boss of” is “subordinate of”

• In graph terms, we are just reversing the direction of arrows
• In matrix terms, we are transposing matrix

• Construct B’ (reports to) from B (is the boss of)

B B'
a b c d a b c d

a 0 0 1 1 a 0 1 0 0
b 1 0 0 0 b 0 0 1 0
c 0 1 0 0 c 1 0 0 0
d 0 0 0 0 d 1 0 0 0

Boss of Reports to

a

dc

a

dc

“boss of”

“reports to”

To transpose a matrix, 
write each row as a 
column

Paulo Serodio



Composition of relations – with converse

• To create the compound relation friend of the subordinate of (FB’), we just
post-multiply F by the transpose of B
• FB’(c,a) = 1 (or cFB’a) means that person c is friend of someone (namely d)

who is a subordinate of a. i.e., c is friends with a’s subordinate
• FB’(a,a) = 1 (or aFB’a) means person a is friends with someone (d) who is

her subordinate. i.e., a is friends with one of her direct reports.

F B' FB’
a b c d a b c d a b c d

a 0 1 0 1 a 0 1 0 0 a 1 0 1 0
b 1 0 1 0 x b 0 0 1 0 = b 1 1 0 0

c 1 1 0 1 c 1 0 0 0 c 1 1 1 0

d 1 0 1 0 d 1 0 0 0 d 1 1 0 0

Everybody likes 
a’s subordinates



Products of matrices & their transposes

• XX’ =  product of matrix X by its transpose

• Computes sums of products of each pair of rows (cross-products)
• Similarities among rows

∑=
k

jkikij xxXX )'(

X

1 2 3 4 Mary Bill John Larry Tina Mary Bill John Larry Tina
Mary 0 1 1 1 1 0 1 0 0 1 Mary 3 1 1 0 1

Bill 1 0 1 0 2 1 0 0 0 1 Bill 1 2 0 0 1
John 0 0 0 1 3 1 1 0 0 0 John 1 0 1 0 0
Larry 0 0 0 0 4 1 0 1 0 0 Larry 0 0 0 0 0
Tina 1 1 1 0 Tina 2 2 0 0 2

X’ XX’



EVE LAU THE BRE CHA FRA ELE PEA RUT VER MYR KAT SYL NOR HEL DOR OLI FLO
EVELYN 8 6 7 6 3 4 3 3 3 2 2 2 2 2 1 2 1 1
LAURA 6 7 6 6 3 4 4 2 3 2 1 1 2 2 2 1 0 0
THERESA 7 6 8 6 4 4 4 3 4 3 2 2 3 3 2 2 1 1
BRENDA 6 6 6 7 4 4 4 2 3 2 1 1 2 2 2 1 0 0
CHARLOTTE 3 3 4 4 4 2 2 0 2 1 0 0 1 1 1 0 0 0
FRANCES 4 4 4 4 2 4 3 2 2 1 1 1 1 1 1 1 0 0
ELEANOR 3 4 4 4 2 3 4 2 3 2 1 1 2 2 2 1 0 0
PEARL 3 2 3 2 0 2 2 3 2 2 2 2 2 2 1 2 1 1
RUTH 3 3 4 3 2 2 3 2 4 3 2 2 3 2 2 2 1 1
VERNE 2 2 3 2 1 1 2 2 3 4 3 3 4 3 3 2 1 1
MYRNA 2 1 2 1 0 1 1 2 2 3 4 4 4 3 3 2 1 1
KATHERINE 2 1 2 1 0 1 1 2 2 3 4 6 6 5 3 2 1 1
SYLVIA 2 2 3 2 1 1 2 2 3 4 4 6 7 6 4 2 1 1
NORA 2 2 3 2 1 1 2 2 2 3 3 5 6 8 4 1 2 2
HELEN 1 2 2 2 1 1 2 1 2 3 3 3 4 4 5 1 1 1
DOROTHY 2 1 2 1 0 1 1 2 2 2 2 2 2 1 1 2 1 1
OLIVIA 1 0 1 0 0 0 0 1 1 1 1 1 1 2 1 1 2 2
FLORA 1 0 1 0 0 0 0 1 1 1 1 1 1 2 1 1 2 2

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14
EVELYN 1 1 1 1 1 1 0 1 1 0 0 0 0 0
LAURA 1 1 1 0 1 1 1 1 0 0 0 0 0 0
THERESA 0 1 1 1 1 1 1 1 1 0 0 0 0 0
BRENDA 1 0 1 1 1 1 1 1 0 0 0 0 0 0
CHARLOTTE 0 0 1 1 1 0 1 0 0 0 0 0 0 0
FRANCES 0 0 1 0 1 1 0 1 0 0 0 0 0 0
ELEANOR 0 0 0 0 1 1 1 1 0 0 0 0 0 0
PEARL 0 0 0 0 0 1 0 1 1 0 0 0 0 0
RUTH 0 0 0 0 1 0 1 1 1 0 0 0 0 0
VERNE 0 0 0 0 0 0 1 1 1 0 0 1 0 0
MYRNA 0 0 0 0 0 0 0 1 1 1 0 1 0 0
KATHERINE 0 0 0 0 0 0 0 1 1 1 0 1 1 1
SYLVIA 0 0 0 0 0 0 1 1 1 1 0 1 1 1
NORA 0 0 0 0 0 1 1 0 1 1 1 1 1 1
HELEN 0 0 0 0 0 0 1 1 0 1 1 1 0 0
DOROTHY 0 0 0 0 0 0 0 1 1 0 0 0 0 0
OLIVIA 0 0 0 0 0 0 0 0 1 0 1 0 0 0
FLORA 0 0 0 0 0 0 0 0 1 0 1 0 0 0

EV LA TH BR CH FR EL PE RU VE MY KA SY NO HE DO OL FL
E1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E3 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
E4 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
E5 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0
E6 1 1 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0
E7 0 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0

E8 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0
E9 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1

E10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0
E11 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1
E12 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0
E13 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
E14 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0

Multiplying a matrix by its transpose
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Graph Theoretic Concepts



Intro to graph terminology

• Nodes
• Aka vertices or points in more mathematical work
• Actors, agents, egos, alters, contacts in more sociological

work
• Nodes can individuals or collective actors, such as countries
• In social network analysis, nodes typically have agency

• Ties
• Aka edges, arcs or lines in more technical work
• Links, bonds, direct connections etc in more sociological

work
• Ties are typically binary: they link exactly two nodes

a
b

c

d

e

f



A graph

• G(V,E) is …

• A set of vertices V, together with …

• A set of edges E

• The edges are binary, meaning they have exactly two endpoints
• They are 2-tuples

• If the edges are k-tuples (where k > 2), they comprise a hyper-graph



Directed and undirected graphs

• Graphs can be directed or undirected*

• Undirected
• In an undirected graph, the ties don’t have direction – two nodes

u and v are connected by a tie, but it doesn’t matter whether you
say u has tie to v or v has tie to u.

• E.g., married, taking same class, siblings

• The ties are called edges

• Directed
• Ties (which are called arcs) have direction. If u has a tie to v, it

may or may not be true that v has a tie to u
• Gives advice to; sends an email to; thinks well of

• Directed graphs often called digraphs

• An undirected graph is like a directed graph in which all
arcs are reciprocated, but technically there is a difference

• In an undirected graph, non-reciprocity is impossible/insensible

*But in some usages graph refers to both, m to the species as a whole, while other times it contrasts�wi�th ‘woman’

Bob 

Betsy 

Bonnie 

Betty 

Biff 



Transpose Adjacency matrix
• In directed graphs, interchanging

rows/columns of adjacency matrix
effectively  reverses the direction &
meaning of ties

Mary  Bill John Larry Mary  Bill  John Larry
Mary 

Bill 
John 
Larry

Mary 
Bill 

John 
Larry

0 1 0 1
1 0 0 1
0 1 0 0
1 0 1 0

0 1 0 1
1 0 1 0
0 0 0 1
1 1 0 0

Gives money to Gets money from

john

bill
mary

larry
john

bill
mary

larry



Valued networks

• We can attach values to ties, representing
quantitative properties of the relationship
• G(V,E,F), where F is a function delivering real

values
• Strength of relationship
• Information capacity of tie
• Rates of flow or traffic across tie
• Distances between nodes
• Probabilities of passing on information
• Frequency of interaction

Jim

Jill

Jen

Joe

3

2

9

1

15
3



Valued Adjacency Matrix
• The diagram below uses solid lines to

represent the adjacency matrix, while
the numbers along the solid line (and
dotted lines where necessary)
represent the proximity matrix.

• In this particular case, one can derive
the adjacency matrix by dichotomizing
the proximity matrix on a condition of
pij <= 3.

Dichotomized
Jim Jill Jen Joe

Jim - 1 0 1
Jill 1 - 1 0
Jen 0 1 - 1
Joe 1 0 1 -

Distances btw offices
Jim Jill Jen Joe

Jim - 3 9 2
Jill 3 - 1 15
Jen 9 1 - 3
Joe 2 15 3 -

Jim

Jill

Jen

Joe

3

2

9

1

15
3



Some well-known graphs

• Line/path
• Circle/cycle
• Clique
• Star



Expressing the presence of a tie

• Suppose you have an undirected graph G(V,E)
• To express that u and v have a tie in this graph we can write (u,v) ϵ E or, if

there multiple graphs under discussion, (u,v) ϵ E(G)
• It is irrelevant whether we write (u,v) ϵ E or (v,u) ϵ E

• If G(V,E) is directed, then
• (u,v) ϵ E means u has a tie to v.
• If it also true that (v,u) ϵ E , we say the u--v tie is reciprocated



Relational terminology

• Suppose B is the relation “is the brother of” and F is the relation “is
the father of”
• uBv means u is the brother of v
• yFx means y is the father of x

• We can define a compound relation BF as “is the brother of someone
who is the father of”
• uBFx means u is the brother of the father of x

• So BF is the uncle relation
• U = BF
• zUx means z is the uncle of x



Relational terminology – cont.

• The relation FF is the father of the father of
• uFFv means that u is the grandfather of v

• We use F‘ to indicate the converse of a relation F
• If F means is the father of, then F’ means is the child of

• uFv if and only if vF’U
• The compound relation F’F means ‘the child of the father of’

• uF’Fv means that u is the child of someone who is the father of v.
• Who are u and v to each other? They are siblings

• The relation FF’ is the father of the child of
• uFF’v means that u is the father of someone who is the son of v
• In other words u and v are co-parents to each other – they have the same children



Node-related concepts
• Degree

– The number of ties incident
upon  a node

– In a digraph, we have indegree
(number of arcs to a node) and
outdegree (number of arcs from
a  node)

• Pendant
– A node connected to a

component through only
one  edge or arc
• A node with degree 1
• Example: John

• Isolate
– A node which is a component

on  its own
• E.g., Evander
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Graph traversals

HOLLY

BRAZEY

CAROL

PAM PAT

JENNIE

PAULINE

ANN

MICHAEL

BILL

LEE

DON

JOHN

HARRY

GERY

STEVE
BERT

RUSS

• Walk
– Any unrestricted traversing of vertices

across edges  (Russ-Steve-Bert-Lee-Steve)

• Trail
– A walk restricted by not repeating an edge

or arc, although vertices can be revisited
(Steve-Bert-Lee-Steve-Russ)

• Path
– A trail restricted by not revisiting any vertex (Steve-

Lee-Bert-Russ)

• Geodesic Path
– The shortest path(s) between two vertices (Steve-

Russ-John is shortest path from Steve to John)

• Cycle
– A cycle is in all ways just like a path except that it

ends where it begins
– Aside from endpoints, cycles do not repeat nodes
– E.g. Brazey-Lee-Bert-Steve-Brazey



Length & Distance
• Length of a path (or

any  walk) is the 
number of  links it has

• The Geodesic Distance
(aka graph-theoretic 
distance) between two 
nodes is the length of
the  shortest path
– Distance from 5 to 8 is 2,

because the shortest 
path  (5-1-8) has two links

1

2

3

4 5

6

7

8
9

10

11

12

Length & Distance

• Length of a path (or any
walk) is the number of
links it has

• The Geodesic Distance 
(aka graph-theoretic
distance) between two
nodes is the length of the 
shortest path
– Distance from 5 to 8 is 2,

because the shortest path
(5-1-8) has two links

1
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Geodesic Distance Matrix

a b c d e f g

a

b

c

d

e

f

g

0 1 2 3 2 3 4
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Subgraphs
• Set of nodes

– Is just a set of nodes
• A subgraph

– Is set of nodes together
with  ties among them

• An induced subgraph
– Subgraph defined by a set

of  nodes
– Like pulling the nodes and

ties out of the original
graph
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Subgraph induced by 
considering  the set {a,b,c,f,e}

Subgraphs

• Set of nodes
– Is just a set of nodes

• A subgraph
– Is set of nodes together with

ties among them

• An induced subgraph
– Subgraph defined by a set of

nodes
– Like pulling the nodes and

ties out of the original graph
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Connected vs disconnected graphs

• A graph is connected if you can reach any node from any other – i.e.,
there exists a path from one to the other
• Directed graphs are often disconnected
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Component

• Maximal sets of nodes in which every node can reach every other by
some path (no matter how long)
• Coherent fragments of a graph

• A graph with a single component is
called a connected graph
• Weak vs strong components

• A weak component is where we
ignore the direction of the arcs

It is relations (types of tie) that define different networks, not components. A network that has two 
components remains one (disconnected) network.

Removing F-E tie would create a 
network with 2 components



Components in Directed Graphs

• Strong component
– There is a directed path from each member of

the  component to every other
• Weak component

– There is an undirected path (a weak path)
from  every member of the component to
every other

– Is like ignoring the direction of ties – driving
the  wrong way if you have to



1 weak component, 4 strong components



A network with 4 weak components

(c) 2020 Stephen P Borgatti

Recent acquisition

Older acquisitions

Original company

Data drawn from Cross, Borgatti & Parker 2001.

Who you go to so that you can say ‘I ran it by ____, and she says ...’
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Cutpoints and Bridges
• Cutpoint

– A node which,
if  deleted,
would
increase the
number of
components

• Bridge
– A tie that, if

removed,  would
increase
the number
of
components

If a tie is a bridge, at least one of 
its  endpoints must be a
cutpoint



Local Bridge of Degree K

• An edge that connects nodes that would otherwise be a minimum of
k steps apart
• The A—B tie is local bridge of degree 5

• Loss of relationship between A and B
would effectively, though not actually,
disconnect A from B

A B



Getting the Data in UCINET
• Four options:
– DL Files

• Text files of various formats that can be created easily by
geeks and nerds

– Excel Files/Grid format– Excel Files/Grid format
• UCINET has a spreadsheet tool that easily interacts with
Excel or can allow manual entry if network is not too large

– VNA Files
• Text files that allow for a single-file that contains both dyadic
and nodal attribute data

– Import Text Via Spreadsheet tool
• A new tool in UCINET that lets you do DL file
formats in a spreadsheet tool



DL Files

• These are the most versatile
• There are multiple formats:
– Full Matrix
– Nodelist– Nodelist
– Edgelist

• Each has its advantages



DL Data Formats
Dl n=5
Format = edgelist
Labels embedded
Data:
billy john 6
john billy 1

Dl n=5
Format = nodelist
Labels embedded
Data:
billy john
john billy jill

Dl n=5
Format = edgelist2
Labels embedded
Data:
billy Essex 4
john Cambridge 2john billy 1

john jill 2
jill mary
mary billy 5
mary jill
mary jill

john billy jill
jill mary
mary billy jill

john Cambridge 2
jill Oxford 3
mary Leeds 6

Best for data coming from a
relational databases or if you
have valued data.

Values are added if repeated
and default to 1

This method is best
for BINARY data

NOTE: This is a
dichotomized version
of the others

This is the same as the
edgelist format, except
the nominating node (the
first column) is of a
different MODE than the
nominated node (the
second column).

There is also nodelist2



VNA Files

• These CAN combine in one file both:
– Nodal (attribute) data and
• e.g., Age, gender, Education Level

– Network/Relational/Dyadic data– Network/Relational/Dyadic data
• E.g., Communicates with, Trusts

• Can have textual data
– NetDraw will preserve the labels
– UCINET will transform them to numbers



Sample VNA File
*Node data
"ID", "Gender", "Role"
"HOLLY" “FEMALE" “STUDENT"
“STEVE" “MALE" “TEACHER"
"CAROL" “FEMALE" “STUDENT"
...
*Tie data
FROM TO "campnet"
"HOLLY" "PAM" 1
"HOLLY" "PAT" 1
"BRAZEY" "STEVE" 1
"BRAZEY" "BERT" 1
"CAROL" "PAM" 1
"PAM" "ANN" 1
"PAT" "HOLLY" 1



Excel/Data Grid

• Excel is the “Universal Translator”
• UCINET has a Data Grid tool that
– Looks like excel
– Reads excel files– Reads excel files
– Works really well with Excel Cut&Paste
• As long as you click in the right place for pasting
your data



Some tricks
• If the network is small (not too many people)
– I use excel
– Create a comma-separated full-matrix-style file and
cut and paste into the data grid

– Manually create attribute file in UCINET (#s only)
• If the network is larger• If the network is larger
– I create an edgelist DL file for the network only
– And a VNA file just with node data (attributes)
– Then I:

• Import the DL file into UCINET (creating ##h & ##d files)
• Open the vna file as an attribute file
• If I want to do attribute-based analyses in UCINET, I export
the Attributes as a UCINET dataset (will translate text to
numbers automatically for me- but I can’t control them)



Where to find the importing
• In UCINET
– Data | import | DL
– Data | Import | VNA
– Data | Spreadsheets | Matrix (Ctrl-S)
– Data | Import via Spreasheet | DL– Data | Import via Spreasheet | DL

• In NetDraw
– File | Open | Ucinet DL Text file
– File | Open | VNA text file
– NetDraw can work with the text files (no
UCINET dataset). UCINET does not.



If you forget the format

• Just Export one of the Sample files
– For DL files
• From UCINET go to

Data | Export | DLData | Export | DL

– For VNA files
• From NetDraw, load the data and go to

File | Save Data as | VNA | Complete



UCINET File Menu 



UCINET Data Menu 



UCINET Transform Menu 



UCINET Tools Menu 



UCINET Network Menu 



UCINET Options Menu 



UCINET Help Menu 



NetDraw 

Open Attributes  
Button 

Open Network Button Icon 
Bar 
 

Redraw the  
Network Button 

“The Lightning Bolt” 

Color  
Palette 

Shape  
Palette 

Relations 
 Tab Nodes  

Tab 



Big 4 or 5 centrality measures
Degree
Closeness
Betweenness
Eigenvector / beta centrality



Graph-theoretic measures

Which vertices are important?

M.Grandjean, 2014

Leonid E. Zhukov (HSE) Lecture 5 10.02.2015 2 / 22

networks are complex

Can we understand them better without a “ridiculogram”?
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describing networks



describing networks 
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What is centrality?

• An aspect of a node’s position in
a network

• Structural prominence
• Contribution to network structure
• Structural reflection of importance

• Direction of a causality in any
context is often unclear

• Does central position come from,
node attribute (e.g., achievement),
or does the node attribute (e.g.,
disease) come from central
position?

• Measures or constructs?

2



describing networks

Paulo Serodio
Algebraic Centrality



Abe
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Degree centrality

• Barely a centrality measure, as you don’t need to
know the structure of the network to calculate it

• Number of ties a node has
• In most cases, this is also number of distinct nodes the node
is adjacent to

• Interpreted as exposure
and capacity to influence

• Depending on the tie
• E.g., negative ties work differently
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describing networks

degree:  
number of connections

describing networks
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describing networks

degree:  
number of connections

describing networks
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describing networksdegree distributions
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Centrality in social context

• Social capital
• The more ties I have, the more potential
help I can get for some problem

• Also the greater the likelihood that some
node close to me has a needed
skill/resource

• Power – influencing others
• Imagine mutual trust ties
• The more ties, the more people you can
influence directly

• Adoption – being influenced by others
• If you have many trust ties, lots of people
have influence on you.

• What if your alters disagree with each
other?

• Role strain/cognitive dissonance

• Reflection of status/visibility in
another context



6
Shamelessly lifted from the dissertation proposal “Influence of Social Relations at Work on the Process of Development of 

Burnout Syndrome: A  Longitudinal Study” by Camila Umaña

Effects of degree depend on the kinds of ties being considered Dark side of centrality?



Directed degree – cont.

• Outdegree and indegree correspond to the row and column sums of
the adjacency matrix

• Outdegree = row sums
• Indegree = column sums

A B C D E F Total
A 0 0 0 0 0 1 1
B 0 0 1 0 0 1 2
C 0 1 0 1 0 1 3
D 1 0 0 0 1 0 2
E 0 0 0 1 0 1 2
F 1 0 0 1 0 0 2

Total 2 1 1 3 1 4 12



Plot indegree vs outdegree

• Suppose the type of tie is
“seeks advice from”

• Outdegree = how many
people you seek help from

• Indegree = how many people
seek advice from you

• Note that flow of
information runs backwards: 
if A seeks advice from B,
then B sends info to A

outdegree

in
de

gr
ee

HIGH INVOLVEMENTEXPERTS

NOVICES

‐>unpack krack‐high‐tec
‐>deg = degree(advice)
‐>excel deg



Centrality: who’s important
based on their network 

It is a local measure!

how popular you are

how many people you know

Best measure if importance means:



Degree Centrality with Valued 
Data

OUTDEGREE

0 100 500 1600 1100 300 2450 1500 0

MT6 MT71 MT72 MT83 MT93 MT210 MT215 MT272

MT6
0 100 500 1600 1100 300 2450 1500 7550

MT71
0 0 0 0 0 0 0 0 0

MT72
0 0 0 0 0 0 0 0 0

MT83
0 0 0 0 0 0 0 0 0

MT93
0 0 0 0 0 0 0 0 0

MT210
0 0 0 0 0 0 0 0 0

MT215
0 0 0 0 0 0 0 0 0

MT272
0 0 0 0 0 0 0 0 0

INDEGREE

NOTE: some software may binarize networks before calculating degree with valued data.



formula for degree (normalized)Degree centrality

CD (i) =
ki

N � 1

M.E.J. Newman. (2010). Networks: An Introduction. Oxford
University Press.



network degrees

spreading processes on networks 
biological (diseases)

• SIS and SIR models

social (information)
• SIS, SIR models
• threshold models

S I

R

S I

susceptible-infected-susceptible

susceptible-infected-recovered

⌃
1

1
0

threshold

describing networks



describing networks

cascade 
epidemic
branching process
spreading process

network degrees

R0 = net reproductive rate
= average degree

R0 = 0.923 . . . caveat: 
ignores network structure, 
dynamics, etc.

hki

R0 is the basic reproduction 
number: the number of 
infected people an infected 
person can reproduce.



describing networks
network degrees

“sub-critical”
small outbreaks

“super-critical”
global epidemics

“critical”
outbreaks of all sizes

R0 < 1 R0 > 1R0 = 1



describing networks 



describing networks

how could we halt the spread? 
• break network into disconnected pieces

network degrees



describing networks

what promotes spreading? 
• high-degree vertices*
• centrally-located vertices

network degrees
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free

ba

Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free
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Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.

© 2000 Macmillan Magazines Ltd

homogeneous in degree heterogeneous in degree



describing networks 



Who’s Important in this network?
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Turbo‐charging degree

• Degree is a count of the number of nodes you are connected to
• Treats all nodes equally

• What if you wanted to weight the nodes by how many nodes they
were connected to?

a
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Turbo‐charging degree

• Degree is a count of the number
of nodes you are connected to

• Treats all nodes equally
• What if you wanted to weight the
nodes by how many nodes they
were connected to?

• But why stop there? Can keep
iterating … a

b

c

d

e

f

23 55

48

56

30

13

¦ 
j

jiji datd

23

a b c d e f deg
wtd
deg

a 0 1 0 0 0 0 1 3
b 1 0 1 1 0 0 3 6
c 0 1 0 1 0 0 2 6
d 0 1 1 0 1 0 3 7
e 0 0 0 1 0 1 2 4
f 0 0 0 0 1 0 1 2



a b c d e f D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
a 0 1 0 0 0 0 1 3 6 16 35 86 195 465 1071 2524

b 1 0 1 1 0 0 3 6 16 35 86 195 465 1071 2524 5854

c 0 1 0 1 0 0 2 6 13 32 73 173 401 940 2190 5117

d 0 1 1 0 1 0 3 7 16 38 87 206 475 1119 2593 6086

e 0 0 0 1 0 1 2 4 9 20 47 107 253 582 1372 3175
f 0 0 0 0 1 0 1 2 4 9 20 47 107 253 582 1372

12 28 64 150 348 814 1896 4430 10332 24128

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

A 8.3 10.7 9.4 10.7 10.1 10.6 10.3 10.5 10.4 10.5

B 25.0 21.4 25.0 23.3 24.7 24.0 24.5 24.2 24.4 24.3

C 16.7 21.4 20.3 21.3 21.0 21.3 21.1 21.2 21.2 21.2

D 25.0 25.0 25.0 25.3 25.0 25.3 25.1 25.3 25.1 25.2

E 16.7 14.3 14.1 13.3 13.5 13.1 13.3 13.1 13.3 13.2

F 8.3 7.1 6.3 6.0 5.7 5.8 5.6 5.7 5.6 5.7

Iterated Degree

ab
c

d
e

f

ratio of 
differences 
stabilizes in latter 
iterations

fractions (1/12 = 0.83)



Eigenvector

• Eigenvector of a matrix is a non-zero vector that, when multiplied by the
matrix, changes only in magnitude (not direction).

• The matrix A scales the vector v by the factor l. The principal eigenvector
corresponds to the largest eigenvalue of the matrix A.

v is the eigenvector, l is the associated eigenvalue (a proportionality constant)

• A node has high eigenvector score to the extent it is connected to many nodes who 
themselves have high scores

• Often interpreted as popularity or status –  have ties not just to many others but many 
well-connected others

• Mathematically, iterative degree centrality (iteratively summing the influences of
nodes neighbours) converges on principal eigenvector of the adjacenty matrix.

Paulo Serodio



eigenvector centrality

position = centrality:  
PageRank, Katz, eigenvector 
centrality

importance = sum of 
importances of nodes that 
point at you

or, the left eigenvector of

describing networks

Ii =
X

j!i

Ij
kj

*

*modulo several technical details

Ax = �x

   Boldi & Vigna, arxiv:1308.2140 (2013)
   Borgatti, Social Networks 27, 55–71 (2005)



Eigenvector

• Node d has the highest eigenvector centrality in the land

a
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a b c d e f D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
a 0 1 0 0 0 0 1 3 6 16 35 86 195 465 1071 2524

b 1 0 1 1 0 0 3 6 16 35 86 195 465 1071 2524 5854

c 0 1 0 1 0 0 2 6 13 32 73 173 401 940 2190 5117

d 0 1 1 0 1 0 3 7 16 38 87 206 475 1119 2593 6086

e 0 0 0 1 0 1 2 4 9 20 47 107 253 582 1372 3175
f 0 0 0 0 1 0 1 2 4 9 20 47 107 253 582 1372

12 28 64 150 348 814 1896 4430 10332 24128

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

A 8.3 10.7 9.4 10.7 10.1 10.6 10.3 10.5 10.4 10.5

B 25.0 21.4 25.0 23.3 24.7 24.0 24.5 24.2 24.4 24.3

C 16.7 21.4 20.3 21.3 21.0 21.3 21.1 21.2 21.2 21.2

D 25.0 25.0 25.0 25.3 25.0 25.3 25.1 25.3 25.1 25.2

E 16.7 14.3 14.1 13.3 13.5 13.1 13.3 13.1 13.3 13.2

F 8.3 7.1 6.3 6.0 5.7 5.8 5.6 5.7 5.6 5.7

Eigenvector can (usually) be computed as iterated degree*

ab
c

d
e

f

Node D10 Eigen
a 10.5 0.234
b 24.3 0.545
c 21.2 0.475
d 25.2 0.564
e 13.2 0.296
f 5.7 0.127

r = 0.999992 


7KLV LV FDOOHG WKH SRZHU PHWKRG �+RWHOOLQJ� ������ 5HTXLUHV PDWUL[ WR KDYH XQLTXH GRPLQDQW HLJHQYDOXH WR FRQYHUJH�



Applications

• Playground status
• You may have many friends, but if they are them‐
selves outcasts, it will not improve your status

• You could have just one friend, but if this is the most popular kid in the
school, your status will be good

• Being connected to those in the know – could be valuable
• In principle, a better measure of exposure to what is flowing (cf r and s)

• Feeling well‐grounded or anchored by circle of friends
• A measure of being in an in‐crowd, a core, or dominant coalition
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Issues with eigenvector

• Can’t use with disconnected networks
• In clumpy networks, it favors the nodes in the larger cliques
• It can fail as a measure of risk/exposure because it doesn’t take into
account the fact that an alter’s high degree might be because of ties
with nodes that ego is already connected to

• So shouldn’t give that alter any weight, because they are not adding to
exposure

• Many issues with directed data



Directed Eigenvector

• In principle, similar to degree:
• Out‐eigenvector (known as right eigenvector) gives a high score to those who
send to many people who themselves send to many people who …

• If the relation is influences, then high score means you influence the influencers
• In‐eigenvector (left eigenvector) gives high score to those who receive from
people who receive from many people who receive from …

• For the respects relation, a high score indicates you are respected by the well respected

• In practice, is often not calculable or gives wacky answers

¦ 
i

iijj ral O
1

right left

𝑙௝ ൌ
1
𝜆
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Beta centrality (aka Bonacich�power, Bonacich�1987)

• Defined as: 𝒑 ൌ 𝐼 െ 𝛽𝑅 ିଵ𝑅1
• R is the adjacency matrix;  𝐼 െ 𝛽𝑅 ିଵ is a new matrix derived from R
• 𝛽 is a parameter chosen by the user

• When ‐1/O < 𝛽 < 1/O, where O is largest eigenvalue of R, p can be
seen as the row sums of this sum of matrices:

• R2 gives the number of walks of exactly 2 steps between every pair of nodes
• R3 gives the number of walks length 3 between all pairs of nodes, etc.

• Beta centrality measures # of walks of all lengths, weighted inversely
by length, that emanate from a node

1
...43322110

�

�

 

���� 

RP
RbRbRbRbR

R+ is no. of walks, wtd inversely by length, 
btw each pair of nodes

R+1 is a column vector giving the 
sum of each row of R+
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The parameter in beta centrality

• When 𝛽 is 0, beta centrality equals degree
• Only paths of length 1 (direct connections) matter

• As 𝛽 increases from 0, longer paths are given increasing weight
• When 𝛽 is as close to 1/O as possible, beta centrality equals
eigenvector centrality

• When 𝛽 gets larger than 1/O, beta centrality becomes uninterpretable

1
...43322110
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Degree Eigenvector
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Issues with beta centrality

• Often highly related to degree
• How to choose beta?
• But … it works great with directed graphs



Eigenvector

Eigenvector: The extent to  
which a given node is connected 
to other well-connected nodes

Data courtesy of David Krackhardt
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Closeness

• Sum of distances from node to all
others

• Inverse measure of centrality
• Often interpreted as index of
time‐until‐arrival of stuff flowing
through network

• In gossip network, persons strong in
closeness centrality hear things
early

Paulo Serodio



describing networks

position = centrality: 
harmonic, closeness 
centrality

importance = being in 
“center” of the network

describing networks

ci =
1

n� 1

X

j 6=i

1

dij

dij =

⇢
`ij if j reachable from i
1 otherwise

distance:

length of shortest path

harmonic

 Boldi & Vigna, arxiv:1308.2140 (2013)
 Borgatti, Social Networks 27, 55–71 (2005)



closeness centrality formulaCloseness centrality

X Y

C̃C (i) =

2

4
NX

j=1

d (i, j)

3

5
�1

Closeness centrality

X Y

C̃C (i) =

2

4
NX

j=1

d (i, j)

3

5
1

CC (i) =
C̃C (i)

N � 1

All other nodes in the network

Normalized

M.E.J. Newman. (2010). Networks: An Introduction. Oxford
University Press.

What happens to isolates?

Paulo Serodio



Closeness as marginals of distance matrix
ID a b c d e f g h i j k l m n o p q r s sum
a 0 1 2 1 2 1 2 2 3 4 5 5 5 4 5 4 6 3 7 62
b 1 0 2 1 1 2 1 2 3 4 5 5 5 4 5 4 6 3 7 61
c 2 2 0 1 2 2 2 1 2 3 4 4 4 3 4 3 5 2 6 52
d 1 1 1 0 1 1 1 2 3 4 5 5 5 4 5 4 6 3 7 59
e 2 1 2 1 0 2 1 2 3 4 5 5 5 4 5 4 6 3 7 62
f 1 2 2 1 2 0 1 1 2 3 4 4 4 3 4 3 5 2 6 50
g 2 1 2 1 1 1 0 1 2 3 4 4 4 3 4 3 5 2 6 49
h 2 2 1 2 2 1 1 0 1 2 3 3 3 2 3 2 4 1 5 40
i 3 3 2 3 3 2 2 1 0 1 2 2 2 1 2 1 3 2 4 39
j 4 4 3 4 4 3 3 2 1 0 1 1 1 1 1 1 2 3 3 42
k 5 5 4 5 5 4 4 3 2 1 0 1 2 2 2 1 3 4 4 57
l 5 5 4 5 5 4 4 3 2 1 1 0 1 2 2 2 2 4 3 55
m 5 5 4 5 5 4 4 3 2 1 2 1 0 2 2 2 1 4 2 54
n 4 4 3 4 4 3 3 2 1 1 2 2 2 0 1 2 3 3 4 48
o 5 5 4 5 5 4 4 3 2 1 2 2 2 1 0 2 3 4 4 58
p 4 4 3 4 4 3 3 2 1 1 1 2 2 2 2 0 3 3 4 48
q 6 6 5 6 6 5 5 4 3 2 3 2 1 3 3 3 0 5 1 69
r 3 3 2 3 3 2 2 1 2 3 4 4 4 3 4 3 5 0 6 57
s 7 7 6 7 7 6 6 5 4 3 4 3 2 4 4 4 1 6 0 86

sum 62 61 52 59 62 50 49 40 39 42 57 55 54 48 58 48 69 57 86 1048
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s Node i has the best closeness

Average distance would be more interpretable
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Reciprocal Distance

a b c d e f g h i j
a 0.00 1.00 1.00 1.00 0.50 0.33 0.25 0.20 0.25 0.20
b 1.00 0.00 1.00 0.50 1.00 0.50 0.33 0.25 0.33 0.25
c 1.00 1.00 0.00 1.00 0.50 0.33 0.25 0.20 0.25 0.20
d 1.00 0.50 1.00 0.00 1.00 0.50 0.33 0.25 0.33 0.25
e 0.50 1.00 0.50 1.00 0.00 1.00 0.50 0.33 0.50 0.33
f 0.33 0.50 0.33 0.50 1.00 0.00 1.00 0.50 1.00 0.50
g 0.25 0.33 0.25 0.33 0.50 1.00 0.00 1.00 0.50 1.00
h 0.20 0.25 0.20 0.25 0.33 0.50 1.00 0.00 1.00 1.00
i 0.25 0.33 0.25 0.33 0.50 1.00 0.50 1.00 0.00 1.00
j 0.20 0.25 0.20 0.25 0.33 0.50 1.00 1.00 1.00 0.00

a b c d e f g h i j
a 0 1 1 1 2 3 4 5 4 5
b 1 0 1 2 1 2 3 4 3 4
c 1 1 0 1 2 3 4 5 4 5
d 1 2 1 0 1 2 3 4 3 4
e 2 1 2 1 0 1 2 3 2 3
f 3 2 3 2 1 0 1 2 1 2
g 4 3 4 3 2 1 0 1 2 1
h 5 4 5 4 3 2 1 0 1 1
i 4 3 4 3 2 1 2 1 0 1
j 5 4 5 4 3 2 1 1 1 0

For undefined distances, we can define the reciprocal distance to be 0
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Closeness Centrality: Toy Example 

A B C E D 

closeness centrality example



Closeness in directed networks
!  choose a direction 

!  in-closeness (e.g. prestige in citation networks) 
!  out-closeness 

!  usually consider only vertices from which the 
node i in question can be reached 

 

 
 



Applications

• Any situation where the value of information (or the cost of infection)
is a function of time

• Getting a disease before there is any treatment available
• Getting gossip before most people have already heard it
• Getting market information before other investors have heard it

• Nodes with the best closeness scores are often the ones to tap to
learn what the network knows

• Picking a snitch/key informant/potential spy



Closeness



Issues & variants of closeness

• Only looks at shortest paths
• When graphs are disconnected, distances between some nodes are
undefined

• What to do?
• One approach is average reciprocal distance (ARD)

• Replace entries dij of distance matrix with 1/dij, and set 1/dij to zero when dij
is undefined

• Take the average across all other nodes  𝐴𝑅𝐷 𝑖 ൌ 𝑗 ∑ ଵ
ௗ೔ೕ

• Another approach is k‐reach: the proportion of other a node can
reach within k steps



Geodesic distance matrix

• How to get row
or col sums
when you have
undefined
distances?

HOLLY BRAZEYCAROL PAM PAT JENNIE PAULINE ANNMICHAEL BILL LEE DON JOHN HARRY GERY STEVE BERT RUSS
HOLLY 0 2 1 1 2 2 2 2 1 2
BRAZEY 5 0 7 6 6 7 7 7 4 1 5 5 3 1 1 2
CAROL 2 0 1 1 2 1 2 4 3 4
PAM 3 2 0 2 1 1 1 5 4 5
PAT 1 1 2 0 1 2 2 3 2 3
JENNIE 2 2 1 1 0 2 1 4 3 4
PAULINE 2 1 1 1 2 0 2 4 3 4
ANN 3 2 1 2 1 1 0 5 4 5
MICHAEL 1 3 2 2 3 3 3 0 1 1
BILL 2 4 3 3 4 4 4 1 0 1 1
LEE 5 1 7 6 6 7 7 7 4 0 5 5 3 1 1 2
DON 1 3 2 2 3 3 3 1 0 1
JOHN 3 4 2 2 2 3 1 3 2 3 3 0 3 1 2 2 1
HARRY 1 3 2 2 3 3 3 1 1 0
GERY 2 3 4 3 3 4 4 4 1 2 2 2 0 1 2 1
STEVE 4 2 6 5 5 6 6 6 3 1 4 4 2 0 1 1
BERT 4 2 6 5 5 6 6 6 3 1 4 4 2 1 0 1
RUSS 3 3 5 4 4 5 5 5 2 2 3 3 1 1 1 0

%P�UIF�SFDJQSPDBM�	��JOGJOJUZ��
�
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I1 I3 W1 W2 W3 W4 W5 W6 W7 W8 W9 S1 S2 S4 I1 I3 W1 W2 W3 W4 W5 W6 W7 W8 W9 S1 S2 S4
I1 0 1 1 1 1 2 4 3 4 4 2 4 I1 0 1 1 1 1 0.5 0.25 0.33 0.25 0.25 0.5 0 0.25
I3 0 I3 0 0 0 0 0 0 0 0 0 0 0 0 0
W1 1 0 1 1 1 1 3 2 3 3 1 3 W1 1 0 1 1 1 1 0.33 0.5 0.33 0.33 1 0 0.33
W2 1 1 0 1 1 2 4 3 4 4 1 4 W2 1 0 1 1 1 0.5 0.25 0.33 0.25 0.25 1 0 0.25
W3 1 1 1 0 1 1 3 2 3 3 1 3 W3 1 0 1 1 1 1 0.33 0.5 0.33 0.33 1 0 0.33
W4 1 1 1 1 0 1 3 2 3 3 1 3 W4 1 0 1 1 1 1 0.33 0.5 0.33 0.33 1 0 0.33
W5 2 1 2 1 1 0 2 1 2 2 1 2 W5 0.5 0 1 0.5 1 1 0.5 1 0.5 0.5 1 0 0.5
W6 4 3 4 3 3 2 0 1 1 1 3 2 W6 0.25 0 0.33 0.25 0.33 0.33 0.5 1 1 1 0.33 0 0.5
W7 3 2 3 2 2 1 1 0 1 1 2 1 W7 0.33 0 0.5 0.33 0.5 0.5 1 1 1 1 0.5 0 1
W8 4 3 4 3 3 2 1 1 0 1 3 1 W8 0.25 0 0.33 0.25 0.33 0.33 0.5 1 1 1 0.33 0 1
W9 4 3 4 3 3 2 1 1 1 0 3 1 W9 0.25 0 0.33 0.25 0.33 0.33 0.5 1 1 1 0.33 0 1
S1 2 1 1 1 1 1 3 2 3 3 0 3 S1 0.5 0 1 1 1 1 1 0.33 0.5 0.33 0.33 0 0.33
S2 0 S2 0 0 0 0 0 0 0 0 0 0 0 0 0
S4 4 3 4 3 3 2 2 1 1 1 3 0 S4 0.25 0 0.33 0.25 0.33 0.33 0.5 0.5 1 1 1 0.33 0

For undefined distances, we can define the reciprocal distance to be 0



K‐Reach centrality

• Proportion of others that ego can
reach by a path of k or less

• 1‐reach is just normalized degree
centrality

• Highly interpretable. Holly can
reach 65% of the network in 2
steps, so she is a good influencer

Node-by-Distance Proportion of Nodes Reached Matrix

1    2    3    4    5    6
d1   d2   d3   d4   d5   d6

---- ---- ---- ---- ---- ----
1    HOLLY  0.29 0.65 0.82 1.00 1.00 1.00
2   BRAZEY  0.18 0.29 0.41 0.71 0.94 1.00
3    CAROL  0.18 0.41 0.71 0.88 1.00 1.00
4 PAM  0.29 0.59 0.76 0.88 1.00 1.00
5 PAT  0.24 0.59 0.76 0.88 1.00 1.00
6   JENNIE  0.18 0.35 0.59 0.76 0.88 1.00
7  PAULINE  0.29 0.53 0.82 1.00 1.00 1.00
8 ANN  0.18 0.41 0.71 0.88 1.00 1.00
9  MICHAEL  0.29 0.59 1.00 1.00 1.00 1.00

10     BILL  0.18 0.29 0.59 1.00 1.00 1.00
11 LEE  0.18 0.29 0.41 0.71 0.94 1.00
12 DON  0.24 0.41 0.82 1.00 1.00 1.00
13     JOHN  0.18 0.59 1.00 1.00 1.00 1.00
14    HARRY  0.24 0.41 0.82 1.00 1.00 1.00
15     GERY  0.24 0.71 0.94 1.00 1.00 1.00
16    STEVE  0.29 0.41 0.71 0.94 1.00 1.00
17     BERT  0.24 0.35 0.47 0.94 1.00 1.00
18     RUSS  0.24 0.47 0.94 1.00 1.00 1.00‐>tcamp = symmet(campnet)

Network|Centrality|Reach ~tcamp



Betweenness

• Loosely, the extent to which a node is along the shortest paths of
between all pairs of nodes

• More correctly, bk is the share of geodesics between pairs of
nodes that pass through k

• Often interpreted as control over flows (gatekeeping), correlated with power
• Also seen as index of frequency something reaches node

¦ 
ji ij

ikj
k g

g
b

,

gij is number of geodesic paths from i to j
gikj is number of geodesics from i to j that pass through k
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Paulo Serodio



Betweenness centrality

C̃B (i) =
X

j<k

djk(i)

djk

CB (i) =
C̃B

(N � 1) (N � 2) /2

Number of pairs of vertices excluding i

Normalized

M.E.J. Newman. (2010). Networks: An Introduction. Oxford
University Press.

# of shortest paths between j and k
djk(i)

djk
# of shortest paths between j and k that go 
through i 

formula

For directed graphs: when normalizing, we have (N-1)*(N-2) instead of 
(N-1)*(N-2)/2, because we have twice as many ordered pairs as 
unordered pairs.



Betweenness

• Node h has the highest betweenness

a

b

c

d

e

f

g
h

ij
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I1

W1

W2

W3

W4

W5

W6

W7
W8

W9

S1

S4

Betweenness – cont.

• Often discussed in terms of identifying liaisons, gatekeepers,
“secretary power”

• Global network cohesion is highly dependent on high betweenness
nodes.

• (But) networks that contain high betweenness nodes are brittle

• Nodes with high betweenness and low degree are often overlooked
by network members themselves

• Degree is highly visible,
betweenness may not be



Betweenness

• With betweenness, there is no need for separate in and out versions
• A node is between two others if it is along a directed path from one to the
other

F gets no points for being between E 
and B, because there is no directed 
path from E to B
• B has only outgoing arrows, so no

way to get to B



Betweenness in directed networks

An example I

1

2

3
4

5

6 The node betweenness for the
graph on the left:

Node Betwenness
1 0
2 1.5
3 1
4 4
5 3
6 0

Donglei Du (UNB) Social Network Analysis 20 / 85



Betweenness in directed networks
How to find the betweeness in the example?

For example: for node 2, the (n � 1)(n � 2)/2 = 5(5 � 1)/2 = 10
terms in the summation in the order of 13, 14, 15, 16, 34, 35, 36, 45,
46, 56 are

1
1
+

0
1
+

0
1
+

0
1
+

0
1
+

1
2
+

0
1
+

0
1
+

0
1
+

0
1
= 1.5.

Here the denominators are the number of shortest paths between pair of
edges in the above order and the numerators are the number of shortest
paths passing through edge 2 between pair of edges in the above order.

Donglei Du (UNB) Social Network Analysis 21 / 85



Applications

• Often associated with power (Brass, 1984)
• High betweenness nodes (if they know they are in that position) can
extract rents for passing things along or introducing people

• Betweenness works best with hard‐to‐form ties, like roads or trust
ties

• Otherwise nodes can bypass the high betweenness node by connecting
directly with others

• At a crossroads in the network. Paths may not be short, but flows are
fairly certain to pass through the node

(c) 2020 Stephen P Borgatti 46

e.g., Mehra, A., Kilduff, M. and Brass, D.J., 2001. The social networks of high and low self-monitors:
Implications for workplace performance. Administrative science quarterly, 46(1), pp.121-146.



Duality of closeness & betweenness

• Dependency matrix D, where dij = number of times* that i
needs to go through j to reach someone via a shortest path

• Column totals of D equal betweenness times 2
• Row totals of D equal closeness minus
n‐1

1 2 3 4 5 6 7 8 9 10 11 Clo
1 0.00 9.00 7.00 1.50 2.00 2.00 3.50 1.00 0.00 0.00 26.00
2 0.00 9.00 7.00 1.50 2.00 2.00 3.50 1.00 0.00 0.00 26.00
3 0.00 0.00 7.00 1.50 2.00 2.00 3.50 1.00 0.00 0.00 17.00
4 0.00 0.00 2.00 1.50 2.00 2.00 3.50 1.00 0.00 0.00 12.00
5 0.00 0.00 2.00 3.83 4.17 2.33 0.67 0.00 0.00 0.00 13.00
6 0.00 0.00 2.00 3.00 2.00 2.50 2.50 0.00 0.00 0.00 12.00
7 0.00 0.00 2.00 3.00 1.33 4.17 2.67 1.83 0.00 0.00 15.00
8 0.00 0.00 2.00 3.50 0.00 2.00 2.00 1.50 0.00 0.00 11.00
9 0.00 0.00 2.00 3.33 0.00 0.67 2.83 5.17 0.00 0.00 14.00
10 0.00 0.00 2.00 3.00 1.33 4.17 9.00 2.67 1.83 0.00 24.00
11 0.00 0.00 2.00 3.00 1.33 4.17 9.00 2.67 1.83 0.00 24.00

Bet 0.00 0.00 34.00 43.67 12.00 27.33 35.67 30.33 11.00 0.00 194.00

Closen Betwee
------ ------

1  36.000  0.000
2  36.000  0.000
3  27.000 17.000
4  22.000 21.833
5  23.000  6.000
6  22.000 13.667
7  25.000 17.833
8  21.000 15.167
9  24.000  5.500
10  34.000  0.000
11  34.000  0.000

0.00



Betweenness of edges



Betweenness Closeness

Eigenvector Degree

Summarizing

Centrality indices are 
answers to the question 
"What characterizes an 
important node?”
The word "importance" 
has a wide number of 
meanings, leading to 
many di!erent definitions 
of centrality.

Source: http://en.wikipedia.org/wiki/Centrality



Measures and type of network

Graph Degree Eigenvector Beta Centrality Closeness Betweenness

Undirected Ok Ok Ok Ok Ok

Directed Ok Very problematic Ok Problematica Ok

Valued Ok Ok Ok Nob Noc

Disconnected Ok No No No Ok

a only a problem because directed graphs are often disconnected ‐‐ have unreachable nodes
b there are ways to do it in ucinet, but not commonly accepted
c not possible in Ucinet, but in principle can be done easily with values that represent costs or distances

Network|Centrality|multiple measures ~borg4cent



• generally different centrality metrics will be positively correlated
• when they are not, there is likely something interesting about the network
• suggest possible topologies and node positions to fit each square

Low  
Degree

Low  
Closeness

Low 
 Betweenness

High Degree 

High Closeness 

High 
Betweenness 

Centrality: Check Your Understanding 

adapted from a slide by James Moody 

check your understanding



• generally different centrality metrics will be positively correlated
• when they are not, there is likely something interesting about the network
• suggest possible topologies and node positions to fit each square

Centrality: Check Your Understanding 

adapted from a slide by James Moody 

High Degree Embedded in cluster 
that is far from the 
rest of the network 

Ego's connections 
are redundant - 
communication 
bypasses him/her 

 High Closeness Key player tied to 
important/active 
players 

Probably multiple 
paths in the 
network, ego is near 
many people, but so 
are many others 

High 
Betweenness 

Ego's few ties are 
crucial for network 
flow 

Very rare cell.  
Would mean that 
ego monopolizes 
the ties from a small 
number of people to 
many others.  

Low  
Degree

Low  
Closeness

Low 
 Betweenness



“model in which opinion flows only from the media to influentials, and then only 
from influentials to the larger populace is deprecated”



“large cascades of influence are driven not by influentials, but by a critical 
mass of easily influenced individuals.”



“influence is not really about the influencer as much about the susceptibles”


