
Web Scraping & Text Mining

Paulo Serôdio

Postdoctoral Researcher
School of Economics

Universitat de Barcelona

May 14, 2018

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 1 / 80

Introduction

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 2 / 80

Introduction

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 2 / 80

Introduction

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 2 / 80

Introduction

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 2 / 80

Introduction

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 2 / 80

Your background

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 3 / 80

Course Materials & Structure

http://www.pauloserodio.com/eui2018

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 4 / 80

http://www.pauloserodio.com/eui2018

WEB SCRAPING I

Ethics

On the ethics of web scraping and data journalism

- If an institution publishes data on its website, this data should
automatically be public

- If a regular user can’t access the data, we shouldn’t try to get it (that
would be hacking)

- Always read the user terms and conditions

- Always check the robots.txt file, which states what is allowed to
be scraped

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 6 / 80

Disclaimer

1 you take all the responsibility for your web scraping work

2 take all copyrights of a country’s jurisdiction into account

3 if you publish data, do not commit copyright fraud

4 if in doubt, ask the author/creator/provider of data for permission – if
your interest is entirely scientific, chances aren’t bad that you get data

5 consult current jurisdiction, e.g. on http://blawgsearch.justia.com or
from a laywer specialized on internet law

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 7 / 80

http://blawgsearch.justia.com

Basic rules

1 You should check a site’s terms and conditions before you scrape
them. It’s their data and they likely have some rules to govern it.

2 Be nice - A computer will send web requests much quicker than a
user can. Make sure you space out your requests a bit so that you
don’t hammer the site’s server.

3 Scrapers break - Sites change their layout all the time. If that
happens, be prepared to rewrite your code.

4 Web pages are inconsistent - There’s sometimes some manual clean
up that has to happen even after you’ve gotten your data.

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 8 / 80

Robots.txt rules

1. Allow full access
User-agent: *
Disallow:

2. Block all access
User-agent: *
Disallow:/

3. Partial Access
User-agent: *
Disallow:/folder/
User-agent: *
Disallow:/file.html

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 9 / 80

Robots.txt rules

4. Crawl rate limiting
Crawl-delay: 11

5. Visit time
Visit-time: 0400-0845

6. Request Rate (pages per second)
Request-rate: 1/10

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 9 / 80

Scraping the web: two approaches

Two different approaches:

1. Screen scraping: extract data from source code of website, with html
parser and/or regular expressions (rvest package in R);

2. Web APIs (application programming interfaces): a set of structured
http requests that return JSON or XML data

- httr package to construct API requests
- Packages specific to each API: weatherData, WDI, Rfacebook...
- Check CRAN Task View on Web Technologies and Services for

examples

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 10 / 80

good scraping practices

1. Respect the hosting site’s wishes:

- Check if an API exists or if data are available for download
- Keep in mind where data comes from and give credit (and respect

copyright if you want to republish the data!)

2. Limit your bandwidth use:

- Wait one or two seconds after each hit
- Scrape only what you need, and just once (e.g. store the html file in

disk, and then parse it)

3. When using APIs, read documentation

4. Is there a batch download option?

- Are there any rate limits?
- Can you share the data?

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 11 / 80

Workflow

(1) Learn about structure of website

(2) Choose your strategy

(3) Build prototype code: extract, prepare, validate

(4) Generalize: functions, loops, debugging

(5) Data cleaning

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 12 / 80

Scenarios

(1) Data in table format: rvest

(2) Data in unstructured format: selectorGadget + rvest

(3) Data behind web forms: selenium

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 13 / 80

Technology and Packages

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 14 / 80

Technology and Packages

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 14 / 80

Technology and Packages

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 14 / 80

Reads

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 15 / 80

HTTP
HyperText Transfer Protocol

URL
Uniform Resource Locator

APIs

URL
http://www.host.com:80/path/to/resource?a=1&b=2#id

Protocol PortDomain Path Query parameters Fragment ID

APIs

Client Server

HTTP

Request

Response

HTTP message structure
<Initial line different for request vs. response>
Header1: value1
Header2: value2
HeaderN: valueN

<Message body (optional). If contents are returned
in a response, they will be contained in the body,
perhaps as binary data>

Initial line

Optional headers

Blank Line

Optional body

APIs

Sample Response

HTTP/1.1 200 OK
Server: nginx
Date: Wed, 09 Nov 2016 14:14:47 GMT
Content-Type: application/json

<body with content as raw data>

English
explanationStatus codeHTTP version

APIs

APIs

Status codes
Cute dictionary at http://http.cat

APIs

Status

r$status_code
200
http_status(r)
$category
[1] "Success"
$reason
[1] "OK"
$message
[1] "Success: (200) OK"

Extract status with $status_code or http_status()

APIs

r2 <- r
r2$status_code <- 404
warn_for_status(r2)
Warning message:
Not Found (HTTP 404).

stop_for_status(r2)
Error: Not Found (HTTP 404).

Program defensively with warn_for_status() and
stop_for_status()

APIs

HTMl, XML & CSS

Dissemination I – HTML

Hypertext Markup Language (HTML): hidden standard behind every
website.
HTML is text with marked-up structure, defined by tags:

What you see in your browser is an interpretation of the HTML document;

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 17 / 80

Dissemination I – HTML

Hypertext Markup Language (HTML): hidden standard behind every
website.
HTML is text with marked-up structure, defined by tags:

What you see in your browser is an interpretation of the HTML document;

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 17 / 80

Dissemination I – HTML

Hypertext Markup Language (HTML): hidden standard behind every
website.
HTML is text with marked-up structure, defined by tags:

What you see in your browser is an interpretation of the HTML document;

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 17 / 80

Dissemination I – HTML

Hypertext Markup Language (HTML): hidden standard behind every
website.
HTML is text with marked-up structure, defined by tags:

What you see in your browser is an interpretation of the HTML document;

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 17 / 80

Dissemination I – HTML

Some common tags:

- Document elements: <head>, <body>, <footer>...

- Document components: <title>,<h1>, <div>...

- Text style: , <i>, ...

- Hyperlinks/Anchor: <a>

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 18 / 80

HTML (Review)
<html>
 <head>
 <title>Title</title>
 <link rel="icon" type="icon" href="http://a" />
 <link rel="icon" type="icon" href="http://b" />
 <script type="text/javascript">
 var ue_t0=window.ue_t0||+new Date();
 </script>
 </head>
 <body>
 <div>
 <p>Click here now.</p>
 Frozen
 </div>
 <table style="width:100%">
 <tr>
 <td>Kristen</td>
 <td>Bell</td>
 </tr>
 <tr>
 <td>Idina</td>
 <td>Menzel</td>
 </tr>
 </table>

 </body>
</html>

html

head

body

title
link

link

script

div

table

img

p b

span
td
td
td

td

tr

tr

HTML (Review)

GitHub

Each element in the page is created by a tag.

tag name attribute
(name) contentattribute

(value)

HTML (Review)
<html>
 <head>
 <title>Title</title>
 <link rel="icon" type="icon" href="http://a" />
 <link rel="icon" type="icon" href="http://b" />
 <script type="text/javascript">
 var ue_t0=window.ue_t0||+new Date();
 </script>
 </head>
 <body>
 <div>
 <p>Click here now.</p>
 Frozen
 </div>
 <table style="width:100%">
 <tr>
 <td>Kristen</td>
 <td>Bell</td>
 </tr>
 <tr>
 <td>Idina</td>
 <td>Menzel</td>
 </tr>
 </table>

 </body>
</html>

html

head

body

title
link

link

script

div

table

img

p b

span
td
td
td

td

tr

tr

Beyond HTML

- Cascading Style Sheets (CSS): describes formatting of HTML
components (e.g. <h1>, <div>,...), useful to
scraping.

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 19 / 80

Beyond HTML

- Cascading Style Sheets (CSS): describes formatting of HTML
components (e.g. <h1>, <div>,...), useful to
scraping.

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 19 / 80

Beyond HTML

- Javascript: adds functionalities to the website (e.g.change
content/structure after website has been loaded).

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 19 / 80

Extraction I – Parsing HTML code

First step in webscraping: read HTML code in R and parse it

- Parsing = understanding structure

- How? rvest package in R:

- read html: parse HTML code into R
- html text: extract text from HTML code
- html table: extract tables in HTML code
- html nodes: extract components with CSS selector
- html attrs: extract attributes of nodes

- How to identify relevant CSS selectors? selectorGadget
extension for Chrome and Firefox.

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 20 / 80

Extraction II - CSS Selectors

- Css selectors are widely used by frontend developers to associate css
properties with their html elements: it styles the webpages;

- scrapers can use it to navigate in the structure of an html file.

- Xpath are far more powerful compared to CSS selectors because we
can put a logic into a single XPath statement to precisely identify the
right element on a web page;

- to reach elements via CSS selectors is conditional on the consistency
of the webpage styling

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 21 / 80

CSS (Review)
Cascading Style Sheets (CSS) are a framework for customizing the
appearance of elements in a web page.

+

CSS (Review)

+

CSS (Review)

+

span {
 color: #ffffff;
}

.num {
 color: #a8660d;
}

table.data {
 width: auto;
}

#firstname {
 background-color: yellow;
}

styling

styling

styling

styling

selector

selector

selector

selector

Shiny

tag name

CSS (Review)
A CSS script describes an element by its tag, class, and/or ID.

class
(optional)

id
(optional)

Shiny

CSS (Review)
A CSS script describes an element by its tag, class, and/or ID.

span

CSS selector for ALL elements with:
• the span tag

Shiny

CSS (Review)
A CSS script describes an element by its tag, class, and/or ID.

.bigname

CSS selector for ALL elements with:
• the bigname class

Shiny

CSS (Review)
A CSS script describes an element by its tag, class, and/or ID.

span.bigname

CSS selector for ALL elements with:
• the span tag
AND
• the bigname class

Shiny

CSS (Review)
A CSS script describes an element by its tag, class, and/or ID.

#shiny

CSS selector for ALL elements with:
• the shiny id

CSS (Review)

Prefix Matches

none tag

. class

id

selectorGadget
A GUI tool to identify CSS selector combinations

CSS selector to use start over move gadget show XPath help close gadget

Dissemination II – XML

- Short for Extensible Markup Language

- while HTML was designed to display data, XML was designed to transport and
store data;

- XML separates data from HTML, simplifies it and stored in plain text format;

- From web scraping perspective, XML tree structure is its most important features;

- XML contain root element – called parent of all other elements

- Terms parent, child, sibling are used to describe relationships between elements;

- All elements can have text content and attributes;

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 22 / 80

Extraction II - Xpath

- XPath (XML Path Language) is a syntax for defining parts of an XML
document.

- XPath is a query language for identifying and selecting nodes or elements in
an XML document using a tree like representation of the document.

- XPaths are one of the few ways in which you can select some content from a
big blob of XML or HTML (properly structured HTML is similarly structured
as an XML document) content. A Xpath tells you the location of an
element, just like a catalog card does for books.

- Xpaths change when a website changes the way the HTML is structured. It
is just like rearranging a library. Every time a library is rearranged the
location of a book might change.

- in a well established scraping environment, the only things that often need
changing are the selectors;

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 23 / 80

Extraction II - Xpath

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 23 / 80

Extraction II - Xpath

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 23 / 80

Dissemination III - JSON/APIs

Application Programming Interface

Pro

- instant access to clean, structured data

- frees us from building manual scrapers

- forces us to understand the API/data architecture

- de facto automatic agreement of data owner

- Easy to process automatically; robustness of calls

- Can be directy embedded in your script

Con

- Often limitations (requests per minute, sampling, . . .)

- You have to trust the provider that he delivers the right (free?) content

- Some APIs won’t allow you to go back in time!

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 24 / 80

Dissemination III - JSON/APIs

Application Programming Interface steps. . .

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 24 / 80

Dissemination III - JSON/APIs

REST API

- A REpresentational State Transfer API is a web service that follows a
request-response pattern;

- Use makes individual request for info from the REST API and receive data
in single response;

- After response is sent, connection closes only to be re-opened when another
request is made by the user;

- Great for snapshopts of the data;

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 24 / 80

Dissemination III - JSON/APIs

Streaming API

- Streaming APIs maintain persistent connection that continuously sends
updated data to the user until terminated;;

- Great for constant flow of rapidly updating live data;

- The server repeatedly sends responses back with updated information;

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 24 / 80

Dissemination III - JSON/APIs

JSON: Javascript Object Notation

- a text format that facilitates structured data interchange between all programming
languages.

- it’s open, lightweight, and text-based data-interchange format

- Widely used in web APIs

- Becoming standard for online data format

- Great if we have nested data structure (items within feeds; personal data within
authors within books; tweets within followers within users)

- Read into R with jsonlite, rjson and rjsonio package

- JSON files can carry huge amounts of data from the web; however, since R stores
and processes all data in the memory, power of JSON is bounded by the limit of
specific R machines

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 24 / 80

Dissemination III - JSON/APIs

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 24 / 80

Dissemination III - JSON/APIs

API Examples:

- Early Day Motions

- API search

- Search XML

- EDM JSON

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 24 / 80

http://www.data.parliament.uk/dataset/19#545b52a3-58f8-4996-9ace-a2d11f67e14a
http://explore.data.parliament.uk/?endpoint=edms
http://lda.data.parliament.uk/edms.xml?_view=EDMs+List&_pageSize=100&_page=0
http://lda.data.parliament.uk/edms/902875.json

Extraction III - JSON parsers

- JSON files also come as a massive concatenation of characters (one
huge string) with encoded strings or arrays inside it which cannot be
easily consumed by other programming languages;

- the job of parser which takes this huge string and break it up into
data structure comes in place in order to let other programming
language work with it smoothly

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 25 / 80

Extraction III - JSON parsers

Three R packages:

- RJSON: fromJSON, toJSON, newJSONParser

- RJSONIO: fromJSON, toJSON, asJSVars

- JSONLITE: fromJSON(), toJSON() to convert between JSON
data and R objects. It can also interact with web APIs, building
pipelines and streaming data between R and JSON.

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 25 / 80

Dissemination IV - Asynchronous JavaScript and XML

What is AJAX?

- HTML/HTTP are used for static display of content

- in order to display dynamic content, they lack

1. mechanisms to detect user behavior in the browser (and not only on
the server)

2. a scripting engine that reacts on this behavior
3. a mechanism for asynchronous queries

- Asynchronous JavaScript and XML is a set of technologies that serve
these purposes

- massively used in modern webpage design and architecture

- makes classical screen scraping more difficult

Example: Integrated Census Microdata (GB 1851-1911)

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 26 / 80

http://icem.data-archive.ac.uk/#step1

Extraction IV - Selenium

The problem reconsidered

- dynamic data requests are not stored in the static HTML page

- therefore, we cannot access them with classical methods and
packages (httr, XML, download.file(), etc.)

The solution

- initiate and control a web browser session with R

- let the browser do the JavaScript interpretation work and the
manipulations in the live DOM tree

- access information from the web browser session

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 27 / 80

Extraction IV - Selenium

What’s Selenium?

- http://www.seleniumhq.org

- free software environment for automated web application testing

- several modules for different tasks; most important for our purposes:
Selenium WebDriver

- Selenium WebDiver starts a server instance (as proxy) and passes
commands (posed in R in our case) to the browser

- automated browsing via scripts

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 27 / 80

http://www.seleniumhq.org

Extraction IV - Selenium

Software requirements

- Java, https://www.java.com/de/download/

- Selenium server, http://selenium-release.storage.googleapis.com/3.
12/selenium-server-standalone-3.12.0.jar or via RSelenium and
checkForServer()

- Firefox browser, https://www.mozilla.org/en-US/firefox/new/

- RSelenium package

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 27 / 80

https://www.java.com/de/download/
http://selenium-release.storage.googleapis.com/3.12/selenium-server-standalone-3.12.0.jar
http://selenium-release.storage.googleapis.com/3.12/selenium-server-standalone-3.12.0.jar
https://www.mozilla.org/en-US/firefox/new/

Regex - when NOT to use it

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 29 / 80

String Manipulation & Basic Functions

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 30 / 80

String Manipulation & Basic Functions

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 30 / 80

String Manipulation & Basic Functions

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 30 / 80

String Manipulation & Basic Functions

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 30 / 80

Regular expressions

Regular expressions form a meta-language

Regular expressions can be thought of as a combination of literals and
metacharacters

To draw an analogy with natural language, think of literal text
forming the words of this language, and the metacharacters defining
its grammar

Regular expressions have a rich set of metacharacters

In two words: pattern matching

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 31 / 80

Regex metacharacters & functions in R

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 32 / 80

Regex metacharacters & functions in R

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 32 / 80

Regex metacharacters & functions in R

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 32 / 80

Regex metacharacters & functions in R

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 32 / 80

Regex metacharacters & functions in R

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 32 / 80

Regex metacharacters & functions in R

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 32 / 80

Regex metacharacters & functions in R

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 32 / 80

Literals

Simplest pattern consists only of literals. The literal “nuclear” would
match to the following lines:

Ooh. I just learned that to keep myself alive after a

nuclear blast! All I have to do is milk some rats

then drink the milk. Aweosme. :}

Laozi says nuclear weapons are mas macho

Chaos in a country that has nuclear weapons -- not good.

my nephew is trying to teach me nuclear physics, or

possibly just trying to show me how smart he is

so I’ll be proud of him [which I am].

lol if you ever say "nuclear" people immediately think

DEATH by radiation LOL

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 33 / 80

Literals

The literal “Obama” would match to the following lines

Politics r dum. Not 2 long ago Clinton was sayin Obama

was crap n now she sez vote 4 him n unite? WTF?

Screw em both + Mcain. Go Ron Paul!

Clinton conceeds to Obama but will her followers listen??

Are we sure Chelsea didn’t vote for Obama?

thinking ... Michelle Obama is terrific!

jetlag..no sleep...early mornig to starbux..Ms. Obama

was moving

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 34 / 80

Regular Expressions

Simplest pattern consists only of literals; a match occurs if the
sequence of literals occurs anywhere in the text being tested

What if we only want sentences that end in the word “Clinton”, or
“clinton” or “clinto”?

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 35 / 80

Regular Expressions

We need a way to express

whitespace word boundaries

sets of literals

the beginning and end of a line

alternatives (“war” or “peace”)

Metacharacters to the rescue!

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 36 / 80

Metacharacters

Some metacharacters represent the start of a line

^i think

will match the lines

i think we all rule for participating

i think i have been outed

i think this will be quite fun actually

i think i need to go to work

i think i first saw zombo in 1999.

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 37 / 80

Metacharacters

$ represents the end of a line

morning$

will match the lines

well they had something this morning

then had to catch a tram home in the morning

dog obedience school in the morning

and yes happy birthday i forgot to say it earlier this morning

I walked in the rain this morning

good morning

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 38 / 80

Character Classes with []

We can list a set of characters we will accept at a given point in the match

[Bb][Uu][Ss][Hh]

will match the lines

The democrats are playing, "Name the worst thing about Bush!"

I smelled the desert creosote bush, brownies, BBQ chicken

BBQ and bushwalking at Molonglo Gorge

Bush TOLD you that North Korea is part of the Axis of Evil

I’m listening to Bush - Hurricane (Album Version)

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 39 / 80

Character Classes with []

^[Ii] am

will match

i am so angry at my boyfriend i can’t even bear to

look at him

i am boycotting the apple store

I am twittering from iPhone

I am a very vengeful person when you ruin my sweetheart.

I am so over this. I need food. Mmmm bacon...

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 40 / 80

Character Classes with []

Similarly, you can specify a range of letters [a-z] or [a-zA-Z]; notice that
the order doesn’t matter

^[0-9][a-zA-Z]

will match the lines

7th inning stretch

2nd half soon to begin. OSU did just win something

3am - cant sleep - too hot still.. :(

5ft 7 sent from heaven

1st sign of starvagtion

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 41 / 80

Character Classes with []

When used at the beginning of a character class, the “^” is also a
metacharacter and indicates matching characters NOT in the indicated
class

[^?.]$

will match the lines that do not end in “?” or “.”

i like basketballs

6 and 9

dont worry... we all die anyway!

Not in Baghdad

helicopter under water? hmmm

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 42 / 80

More Metacharacters

“.” is used to refer to any character. So

9.11

will match the lines

its stupid the post 9-11 rules

if any 1 of us did 9/11 we would have been caught in days.

NetBios: scanning ip 203.169.114.66

Front Door 9:11:46 AM

Sings: 0118999881999119725...3 !

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 43 / 80

More Metacharacters: |

This does not mean “pipe” in the context of regular expressions; instead it
translates to “or”; we can use it to combine two expressions, the
subexpressions being called alternatives

flood|fire

will match the lines

is firewire like usb on none macs?

the global flood makes sense within the context of the bible

yeah ive had the fire on tonight

... and the floods, hurricanes, killer heatwaves, rednecks, gun nuts, etc.

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 44 / 80

More Metacharacters: |

We can include any number of alternatives...

flood|earthquake|hurricane|coldfire

will match the lines

Not a whole lot of hurricanes in the Arctic.

We do have earthquakes nearly every day somewhere in our State

hurricanes swirl in the other direction

coldfire is STRAIGHT!

’cause we keep getting earthquakes

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 45 / 80

More Metacharacters: |

The alternatives can be real expressions and not just literals

^[Gg]ood|[Bb]ad

will match the lines

good to hear some good knews from someone here

Good afternoon fellow american infidels!

good on you-what do you drive?

Katie... guess they had bad experiences...

my middle name is trouble, Miss Bad News

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 46 / 80

More Metacharacters: (and)

Subexpressions are often contained in parentheses to constrain the
alternatives

^([Gg]ood|[Bb]ad)

will match the lines

bad habbit

bad coordination today

good, becuase there is nothing worse than a man in kinky underwear

Badcop, its because people want to use drugs

Good Monday Holiday

Good riddance to Limey

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 47 / 80

More Metacharacters: ?

The question mark indicates that the indicated expression is optional

[Gg]eorge([Ww]\.)? [Bb]ush

will match the lines

i bet i can spell better than you and george bush combined

BBC reported that President George W. Bush claimed God told him to invade Iraq

a bird in the hand is worth two george bushes

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 48 / 80

One thing to note...

In the following

[Gg]eorge([Ww]\.)? [Bb]ush

we wanted to match a “.” as a literal period; to do that, we had to
“escape” the metacharacter, preceding it with a backslash In general, we
have to do this for any metacharacter we want to include in our match

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 49 / 80

More metacharacters: * and +

The * and + signs are metacharacters used to indicate repetition; * means
“any number, including none, of the item” and + means “at least one of
the item”

\(.*\)

will match the lines

anyone wanna chat? (24, m, germany)

hello, 20.m here... (east area + drives + webcam)

(he means older men)

()

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 50 / 80

More metacharacters: * and +

The * and + signs are metacharacters used to indicate repetition; * means
“any number, including none, of the item” and + means “at least one of
the item”

[0-9]+ (.*)[0-9]+

will match the lines

working as MP here 720 MP battallion, 42nd birgade

so say 2 or 3 years at colleage and 4 at uni makes us 23 when and if we finish

it went down on several occasions for like, 3 or 4 *days*

Mmmm its time 4 me 2 go 2 bed

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 51 / 80

More metacharacters: { and }

{ and } are referred to as interval quantifiers; the let us specify the
minimum and maximum number of matches of an expression

[Bb]ush(+[^]+ +){1,5} debate

will match the lines

Bush has historically won all major debates he’s done.

in my view, Bush doesn’t need these debates..

bush doesn’t need the debates? maybe you are right

That’s what Bush supporters are doing about the debate.

Felix, I don’t disagree that Bush was poorly prepared for the debate.

indeed, but still, Bush should have taken the debate more seriously.

Keep repeating that Bush smirked and scowled during the debate

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 52 / 80

More metacharacters: { and }

{m,n} means at least m but not more than n matches

{m} means exactly m matches

{m,} means at least m matches

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 53 / 80

More metacharacters: (and) revisited

In most implementations of regular expressions, the parentheses not
only limit the scope of alternatives divided by a “|”, but also can be
used to “remember” text matched by the subexpression enclosed

We refer to the matched text with \1, \2, etc.

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 54 / 80

More metacharacters: (and) revisited

So the expression

+([a-zA-Z]+) +\1 +

will match the lines

time for bed, night night twitter!

blah blah blah blah

my tattoo is so so itchy today

i was standing all all alone against the world outside...

hi anybody anybody at home

estudiando css css css css.... que desastritooooo

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 55 / 80

More metacharacters: * revisited

The * is “greedy” so it always matches the longest possible string that
satisfies the regular expression. So

^s(.*)s

matches

sitting at starbucks

setting up mysql and rails

studying stuff for the exams

spaghetti with marshmallows

stop fighting with crackers

sore shoulders, stupid ergonomics

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 56 / 80

More metacharacters: (and) revisited

The greediness of * can be turned off with the ?, as in

^s(.*?)s$

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 57 / 80

Summary

Regular expressions are used in many different languages; not unique
to R.

Regular expressions are composed of literals and metacharacters that
represent sets or classes of characters/words

Text processing via regular expressions is a very powerful way to
extract data from “unfriendly” sources (not all data comes as a CSV
file)

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 58 / 80

Regular Expression Functions

The primary R functions for dealing with regular expressions are

grep, grepl: Search for matches of a regular expression/pattern in
a character vector; either return the indices into the character vector
that match, the strings that happen to match, or a TRUE/FALSE
vector indicating which elements match

regexpr, gregexpr: Search a character vector for regular
expression matches and return the indices of the string where the
match begins and the length of the match

sub, gsub: Search a character vector for regular expression matches
and replace that match with another string

regexec, rematches: Easier to explain through demonstration.

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 59 / 80

grep

Here is an excerpt of the Baltimore City homicides dataset obtained from
http://data.baltimoresun.com/homicides/

> homicides <- readLines("homicides.txt")

> homicides[1]

[1] "39.311024, -76.674227, iconHomicideShooting, ’p2’, ’<dl><dt>Leon

Nelson</dt><dd class=\"address\">3400 Clifton Ave.
Baltimore, MD

21216</dd><dd>black male, 17 years old</dd>

<dd>Found on January 1, 2007</dd><dd>Victim died at Shock

Trauma</dd><dd>Cause: shooting</dd></dl>’"

> homicides[1000]

[1] "39.33626300000, -76.55553990000, icon_homicide_shooting, ’p1200’,...

How can I find the records for all the victims of shootings (as opposed to
other causes)?

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 60 / 80

http://data.baltimoresun.com/homicides/

grep

> length(grep("iconHomicideShooting", homicides))

[1] 228

> length(grep("iconHomicideShooting|icon_homicide_shooting", homicides))

[1] 1003

> length(grep("Cause: shooting", homicides))

[1] 228

> length(grep("Cause: [Ss]hooting", homicides))

[1] 1003

> length(grep("[Ss]hooting", homicides))

[1] 1005

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 61 / 80

grep

> i <- grep("[cC]ause: [Ss]hooting", homicides)

> j <- grep("[Ss]hooting", homicides)

> str(i)

int [1:1003] 1 2 6 7 8 9 10 11 12 13 ...

> str(j)

int [1:1005] 1 2 6 7 8 9 10 11 12 13 ...

> setdiff(i, j)

integer(0)

> setdiff(j, i)

[1] 318 859

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 62 / 80

grep

> homicides[859]

[1] "39.33743900000, -76.66316500000, icon_homicide_bluntforce,

’p914’, ’<dl><dt><a href=\"http://essentials.baltimoresun.com/

micro_sun/homicides/victim/914/steven-harris\">Steven Harris

</dt><dd class=\"address\">4200 Pimlico Road
Baltimore, MD 21215

</dd><dd>Race: Black
Gender: male
Age: 38 years old</dd>

<dd>Found on July 29, 2010</dd><dd>Victim died at Scene</dd>

<dd>Cause: Blunt Force</dd><dd class=\"popup-note\"><p>Harris was

found dead July 22 and ruled a shooting victim; an autopsy

subsequently showed that he had not been shot,...</dd></dl>’"

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 63 / 80

grep

By default, grep returns the indices into the character vector where the
regex pattern matches.

> grep("^New", state.name)

[1] 29 30 31 32

Setting value = TRUE returns the actual elements of the character
vector that match.

> grep("^New", state.name, value = TRUE)

[1] "New Hampshire" "New Jersey" "New Mexico" "New York"

grepl returns a logical vector indicating which element matches.

> grepl("^New", state.name)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[25] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

[37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[49] FALSE FALSE

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 64 / 80

regexpr

Some limitations of grep

The grep function tells you which strings in a character vector
match a certain pattern but it doesn’t tell you exactly where the
match occurs or what the match is (for a more complicated regex).

The regexpr function gives you the index into each string where
the match begins and the length of the match for that string.

regexpr only gives you the first match of the string (reading left to
right). gregexpr will give you all of the matches in a given string.

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 65 / 80

regexpr

How can we find the date of the homicide?

> homicides[1]

[1] "39.311024, -76.674227, iconHomicideShooting, ’p2’, ’<dl><dt>Leon

Nelson</dt><dd class=\"address\">3400 Clifton Ave.
Baltimore,

MD 21216</dd><dd>black male, 17 years old</dd>

<dd>Found on January 1, 2007</dd><dd>Victim died at Shock

Trauma</dd><dd>Cause: shooting</dd></dl>’"

Can we just ’grep’ on “Found”?

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 66 / 80

regexpr

The word ’found’ may be found elsewhere in the entry.

> homicides[954]

[1] "39.30677400000, -76.59891100000, icon_homicide_shooting, ’p816’,

’<dl><dd class=\"address\">1400 N Caroline St
Baltimore, MD 21213</dd>

<dd>Race: Black
Gender: male
Age: 29 years old</dd>

<dd>Found on March 3, 2010</dd><dd>Victim died at Scene</dd>

<dd>Cause: Shooting</dd><dd class=\"popup-note\"><p>Wheeler\\’s body

was found on the grounds of Dr. Bernard Harris Sr. Elementary

School</p></dd></dl>’"

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 67 / 80

regexpr

Let’s use the pattern

<dd>[F|f]ound(.*)</dd>

What does this look for?

> regexpr("<dd>[F|f]ound(.*)</dd>", homicides[1:10])

[1] 177 178 188 189 178 182 178 187 182 183

attr(,"match.length")

[1] 93 86 89 90 89 84 85 84 88 84

attr(,"useBytes")

[1] TRUE

> substr(homicides[1], 177, 177 + 93 - 1)

[1] "<dd>Found on January 1, 2007</dd><dd>Victim died at Shock

Trauma</dd><dd>Cause: shooting</dd>"

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 68 / 80

regexpr

The previous pattern was too greedy and matched too much of the string.
We need to use the ? metacharacter to make the regex “lazy”.

> regexpr("<dd>[F|f]ound(.*?)</dd>", homicides[1:10])

[1] 177 178 188 189 178 182 178 187 182 183

attr(,"match.length")

[1] 33 33 33 33 33 33 33 33 33 33

attr(,"useBytes")

[1] TRUE

> substr(homicides[1], 177, 177 + 33 - 1)

[1] "<dd>Found on January 1, 2007</dd>"

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 69 / 80

regmatches

One handy function is regmatches which extracts the matches in the
strings for you without you having to use substr.

> r <- regexpr("<dd>[F|f]ound(.*?)</dd>", homicides[1:5])

> regmatches(homicides[1:5], r)

[1] "<dd>Found on January 1, 2007</dd>" "<dd>Found on January 2, 2007</dd>"

[3] "<dd>Found on January 2, 2007</dd>" "<dd>Found on January 3, 2007</dd>"

[5] "<dd>Found on January 5, 2007</dd>"

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 70 / 80

sub/gsub

Sometimes we need to clean things up or modify strings by matching a
pattern and replacing it with something else. For example, how can we
extract the data from this string?

> x <- substr(homicides[1], 177, 177 + 33 - 1)

> x

[1] "<dd>Found on January 1, 2007</dd>"

We want to strip out the stuff surrounding the “January 1, 2007” piece.

> sub("<dd>[F|f]ound on |</dd>", "", x)

[1] "January 1, 2007</dd>"

> gsub("<dd>[F|f]ound on |</dd>", "", x)

[1] "January 1, 2007"

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 71 / 80

sub/gsub

sub/gsub can take vector arguments

> r <- regexpr("<dd>[F|f]ound(.*?)</dd>", homicides[1:5])

> m <- regmatches(homicides[1:5], r)

> m

[1] "<dd>Found on January 1, 2007</dd>" "<dd>Found on January 2, 2007</dd>"

[3] "<dd>Found on January 2, 2007</dd>" "<dd>Found on January 3, 2007</dd>"

[5] "<dd>Found on January 5, 2007</dd>"

> d <- gsub("<dd>[F|f]ound on |</dd>", "", m)

[1] "January 1, 2007" "January 2, 2007" "January 2, 2007" "January 3, 2007"

[5] "January 5, 2007"

> as.Date(d, "%B %d, %Y")

[1] "2007-01-01" "2007-01-02" "2007-01-02" "2007-01-03" "2007-01-05"

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 72 / 80

regexec

The regexec function works like regexpr except it gives you the
indices for parenthesized sub-expressions.

> regexec("<dd>[F|f]ound on (.*?)</dd>", homicides[1])

[[1]]

[1] 177 190

attr(,"match.length")

[1] 33 15

> regexec("<dd>[F|f]ound on .*?</dd>", homicides[1])

[[1]]

[1] 177

attr(,"match.length")

[1] 33

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 73 / 80

regexec

Now we can extract the string in the parenthesized sub-expression.

> regexec("<dd>[F|f]ound on (.*?)</dd>", homicides[1])

[[1]]

[1] 177 190

attr(,"match.length")

[1] 33 15

> substr(homicides[1], 177, 177 + 33 - 1)

[1] "<dd>Found on January 1, 2007</dd>"

> substr(homicides[1], 190, 190 + 15 - 1)

[1] "January 1, 2007"

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 74 / 80

regexec

Even easier with the regmatches function.

> r <- regexec("<dd>[F|f]ound on (.*?)</dd>", homicides[1:2])

> regmatches(homicides[1:2], r)

[[1]]

[1] "<dd>Found on January 1, 2007</dd>" "January 1, 2007"

[[2]]

[1] "<dd>Found on January 2, 2007</dd>" "January 2, 2007"

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 75 / 80

regexec

> homicides[1]

[1] "39.311024, -76.674227, iconHomicideShooting, ’p2’, ’<dl><dt>Leon

Nelson</dt><dd class=\"address\">3400 Clifton Ave.
Baltimore, MD

21216</dd><dd>black male, 17 years old</dd>

<dd>Found on January 1, 2007</dd><dd>Victim died at Shock

Trauma</dd><dd>Cause: shooting</dd></dl>’"

Let’s make a plot of monthly homicide counts

> r <- regexec("<dd>[F|f]ound on (.*?)</dd>", homicides)

> m <- regmatches(homicides, r)

> dates <- sapply(m, function(x) x[2])

> dates <- as.Date(dates, "%B %d, %Y")

> hist(dates, "month", freq = TRUE)

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 76 / 80

regexec

Histogram of dates

dates

F
re

qu
en

cy

0
5

10
15

20
25

30
35

2006 2007 2008 2009 2010 2011 2011

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 77 / 80

Summary

The primary R functions for dealing with regular expressions are

grep, grepl: Search for matches of a regular expression/pattern in
a character vector

regexpr, gregexpr: Search a character vector for regular
expression matches and return the indices where the match begins;
useful in conjunction with regmatches

sub, gsub: Search a character vector for regular expression matches
and replace that match with another string

regexec, rematches: Gives you indices of parethensized
sub-expressions.

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 78 / 80

LAB EXERCISE

You will work with data from www.ipaidabribe.com. This is a crowdsourced
attempt to measure corruption in India. The idea is simple: Every time you pay a
bribe, you upload the amount, details of the transaction, and location. This data
thus provides an alternative to official government statistics of corruption.

From their website:

I Paid a Bribe is a site that focuses on crowdsourced reports of corruption and bribery
from India and all over the world.

The site lays emphasis on the various kinds of Retail Corruption. This is kind of

corruption that confronts ordinary citizens in their daily lives when they’re not able to

avail of services they are legitimately entitled to from the government – getting a

driver’s license, a birth certificate, registering a purchase of property.

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 80 / 80

www.ipaidabribe.com

Their most recent report can be found here . You shall scrape the latest
200 reports from the website and include the following information in a
data frame:

- title

- amount

- name of department

- transaction detail

- number of views

- city

- date

Paulo Serôdio (Universitat de Barcelona) Web Scraping & Text Mining May 14, 2018 80 / 80

http://www.ipaidabribe.com/reports/paid

