Start from clean slate and free up memory

Load R packages

  • Novel network dataset on all 275 interest groups that coauthored amicus curiae briefs for 2000–2009 Supreme Court cases on natural resources and environmental protection.
  • Ties are determined by whether two groups have cosigned a brief on the same case at least once;
  • A reviewer noted that this is naturally a value-edged network as groups can coauthor on multiple briefs during the 2000–2009 period. We make the decision to binarize this network;
  • Amicus curiae briefs, or ``friend of the court briefs’’, reflect the public position of a particular entity not involved in a court case with respect to the issues being heard.
  • Their purpose is to provide evidence, opinion, and testimony that the parties directly involved in the case may not provide. Amicus curiae partic- ipation requires a statement on the position of a group, and cosign- ing the same brief indicates coordinated efforts with a shared purpose.
  • This novel dataset where interest groups are tied to one another through coauthoring the same brief captures a purposive and coordinated network of interest groups lobbying collectively on environmental policy issues. Once the network is assembled, our first step is to focus on the roles of actors within a network.
## [1] 2185
## [1] 275
##  [1] 1690  650 1629 3967 3520 3489 3248 1494 3572 4469

Convert network object into edgelist

Check for attributes

## [1] "bipartite" "directed"  "hyper"     "loops"     "mnext"     "multiple" 
## [7] "n"
## [1] 2186
##  [1] "annualSales"      "birthYear"        "budget"          
##  [4] "city"             "conferences"      "currentEmployees"
##  [7] "dbName"           "deathType"        "deathYear"       
## [10] "degreeCentrality" "dues"             "dunsno"          
## [13] "eigenCentrality"  "email"            "employees"       
## [16] "foundingYear"     "galeName"         "googleWebAddress"
## [19] "googlName"        "lexNexName"       "lineOfBusiness"  
## [22] "localGroups"      "locationType"     "matrixName"      
## [25] "members"          "na"               "naics1"          
## [28] "naics10"          "naics11"          "naics12"         
## [31] "naics2"           "naics3"           "naics4"          
## [34] "naics5"           "naics6"           "naics7"          
## [37] "naics8"           "naics9"           "nationalGroups"  
## [40] "orgID"            "ownership"        "ownsOrRents"     
## [43] "plantSize"        "products"         "properName"      
## [46] "refUSAName"       "regionalGroups"   "salesAll"        
## [49] "salesIndividual"  "sic1"             "sic10"           
## [52] "sic11"            "sic12"            "sic13"           
## [55] "sic2"             "sic3"             "sic4"            
## [58] "sic5"             "sic6"             "sic7"            
## [61] "sic8"             "sic9"             "staff"           
## [64] "state"            "stateGroups"      "subjCategory"    
## [67] "subjDescription"  "subsidized"       "vertex.names"    
## [70] "webaddress"       "zipcode"
##  [1] "case1"     "case2"     "case3"     "case4"     "case5"    
##  [6] "case6"     "case7"     "case8"     "case9"     "caseName1"
## [11] "caseName2" "caseName3" "caseName4" "caseName5" "caseName6"
## [16] "caseName7" "caseName8" "caseName9" "na"
##    [1]  4006  4006  4006  4536  4536  4491  6318  6318  6377  8230  8698
##   [12]  8703  9142  6977  9142  9226  9226  9226  9226  9226 11571  7437
##   [23]  7930  7930  7930  9226  9226  9376  9226  9226  9226  9226  8230
##   [34]  8230  9030  9301  9301  4006  4006  4006  4006  9158  6977  9158
##   [45]  9158  9142  6977  9142  4006  4006  4491  4491  6318  6318  6377
##   [56]  7930  7930  7930  7930  8230  9158  6977  4006  8230  4491  8230
##   [67]  8230  8230  8698 11488  9189 11488  4491  9376  7930  6377  7930
##   [78]  7930  7930  9376  8698  9376  9189  9189  9189  9189  9189  9189
##   [89]  9189  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [100]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [111]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [122]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [133]  9376  9376  6977  9376  8230  6318  6318  8230  7930  7930  7930
##  [144]  7930  8230  9158 11689  9158  9158  9158  9158  6318  6318  8230
##  [155]  9158  9376  9376  8230  8698  9376  9189 11670 11670  9189  9189
##  [166]  9189  9189  9189  9189  9376  9376  9376  9376  9376  9376  9376
##  [177]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [188]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [199]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [210]  9376  9376  9376  9376  9376  6977  9376  9505  9505  9505  9505
##  [221]  9505  9505  9505  9505  9505 11488  9454  9454  9454  8537 11624
##  [232] 11624 11624 11612 11488  9142  9142  9142 11624  9226  9226  9226
##  [243] 11624 11488  9226 11612  6318  8230  7930  7930  7930  7930  8230
##  [254]  9158  9158  9158  9158  9376  9376  9376  9376  9376  9376  9158
##  [265]  9158  9158  6369  6369  6369  6369  6369  8698  6369  6369  6369
##  [276]  6369  9158  6369  6369  6369  8698  6369  6369  8698  6369  8698
##  [287]  8698  9376  9376  8230  9376  9376  9376  9376  9376  9376  9376
##  [298]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [309]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [320]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [331]  9376  9376  9376  9376  9376  9376  9390  9390  9390  9390  9390
##  [342]  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390
##  [353]  9376  9390  9376  9602  7922  7930  7930  7930  9376  9376  9376
##  [364]  9376  9376  9376  7930  7930  9158  7930  9376  9376  9376  9376
##  [375]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [386]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [397]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [408]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [419]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [430]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [441]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [452]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [463]  9376  9376  9158  9158  9158  9505  9505  9505  7930  7930  9602
##  [474]  9602  9602  9142  9142  9142  9376  9602  7930  9376  9376 11624
##  [485] 11624  8230 11624  9390  9390  9390  9390  9390 11624  9390  8230
##  [496]  9602  9602  9602  9030 11624  9390 11624  8230 11624 11612  8698
##  [507]  9376 11624 11624  8230 11624 11612  8230 11571  9602  9158 11612
##  [518]  9602 11488 11488 11488 11488 11488 11488  9158 11488  9390  9390
##  [529]  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390
##  [540]  9390  9390  9390  9390  9165  9165 11612  9767  9767  9767  9767
##  [551]  9767  9767  9767  9767  9767  9767 11612  9767  9158  9158  9602
##  [562] 11612  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [573]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [584]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [595]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [606]  9376  9376  8703  9376  9186  9186  9454  9454  9454  9454  9158
##  [617]  9189  9189  9189  9189  9189  9189  9142  9142  9142  9226  9226
##  [628]  9226  9226  9142  9226  9226  9226  9226  9158  9158  9158 11670
##  [639]  9158 11670  9158  9158  9158  9158  9158 11670  9158  9158  9158
##  [650]  9158  9158  9158  9158  9158  9158  9158 11624 11624  9165  9165
##  [661]  9165  9165  9165  9165  9165  9165  9165  9165  9390  9390  9390
##  [672]  9390  9165  9390  9186  9189  9189  9189  9189  9189 11488  9189
##  [683]  9189  9189  9189  9189  9189  9189  9189  9189  9189  9226  9226
##  [694]  9226  9226  9226  9226  9226  9226  9226  9226  9226  9226  9226
##  [705]  9226  9226  9226  9301  9301  9376  9376  9376  9376  9376  9376
##  [716]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [727]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [738]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [749]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [760]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [771]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [782]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [793]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [804]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [815]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [826]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [837]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [848]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [859]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [870]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [881]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [892]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [903]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [914]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [925]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [936]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [947]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [958]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [969]  9376  9376  9376  9376  9376 11612  9376  9376  9376  9376  9376
##  [980]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
##  [991]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1002]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1013]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1024]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1035]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1046]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1057]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1068]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1079]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1090]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1101]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1112]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1123]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1134]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1145]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1156]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1167]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1178]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1189]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1200]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1211]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1222]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1233]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1244]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1255]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1266]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1277]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1288]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1299]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1310]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1321]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1332]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1343]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1354]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1365]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1376]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1387]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1398]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1409]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1420]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1431]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1442]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1453]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1464]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1475]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1486]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1497]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1508]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1519]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1530]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1541]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1552]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1563]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1574]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1585]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1596]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1607]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1618]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1629]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1640]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1651]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1662]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1673]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1684]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1695]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1706]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1717]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1728]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1739]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376
## [1750]  9376  9376  9376  9376  9376  9376  9376  9376  9376  9376  9390
## [1761]  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390
## [1772]  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390
## [1783]  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390
## [1794]  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390
## [1805]  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390
## [1816]  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390
## [1827]  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390
## [1838]  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390
## [1849]  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390
## [1860]  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390
## [1871]  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390
## [1882]  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390  9390
## [1893]  9390  9390  9390  9390  9390  9390 11624  9390  9390  9390  9390
## [1904]  9390  9390  9390  9454  9454  9454  9454  9454  9454  9454  9454
## [1915]  9454  9505  9505  9505  9602  9602  9602  9602  9602  9602  9602
## [1926]  9767  9767  9767  9767  9767  9767  9767  9767  9767  9767  9767
## [1937]  9767  9767  9767  9767  9767  9767  9767  9767  9767  9767  9767
## [1948]  9767  9767  9767  9767  9767  9767  9767  9767  9767  9767  9767
## [1959]  9767  9767  9767  9767  9767  9767  9767  9767  9767  9767  9767
## [1970]  9767  9767  9767  9767  9767  9767  9767  9767  9767  9767  9767
## [1981] 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488
## [1992] 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488
## [2003] 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488
## [2014] 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488
## [2025] 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488
## [2036] 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488
## [2047] 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488
## [2058] 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488
## [2069] 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488
## [2080] 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488
## [2091] 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488
## [2102] 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488
## [2113] 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488
## [2124] 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488
## [2135] 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488
## [2146] 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488
## [2157] 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488
## [2168] 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488 11488
## [2179] 11488 11488 11488 11488 11488 11488 11488

Retrieve all node attributes and store in data.frame

Retrieve all edge attributes and store in data.frame (these are essentially multiple edgelists)

source target edge_value
1 6 3
1 7 6
1 8 5
1 9 6
1 10 6
1 12 5
1 18 2
1 19 1
1 27 2
1 47 1
annualSales birthYear budget city conferences currentEmployees dbName deathType deathYear degreeCentrality dues dunsno eigenCentrality email employees foundingYear galeName googleWebAddress googlName lexNexName lineOfBusiness localGroups locationType matrixName members na naics1 naics10 naics11 naics12 naics2 naics3 naics4 naics5 naics6 naics7 naics8 naics9 nationalGroups orgID ownership ownsOrRents plantSize products properName refUSAName regionalGroups salesAll salesIndividual sic1 sic10 sic11 sic12 sic13 sic2 sic3 sic4 sic5 sic6 sic7 sic8 sic9 staff state stateGroups subjCategory subjDescription subsidized vertex.names webaddress zipcode node_id
NA 1967 7.4e+07 New York annual symposium 100 Environmental Defense Inc NA NA 15 individual, $25-$5,000 annual. 07-982-2748 0.0912861889789961 275 1967 Environmental Defense NA NA NA Civic/Social Association Business Consulting Services NA HEADQUARTERS ENVIRONMENTAL DEFENSE 500000 FALSE 813410 NA NA NA 541618 NA NA NA NA NA NA NA NA 1690 PRIVATE RENTS 33000 CONSULTING SVC: Business, NEC MEMBERSHIP ORGS, CIVIC, SOCIAL & FRATERNAL: Protection ENVIRONMENTAL DEFENSE NA 8 122811000 122811000 86419903 NA NA NA NA 8748 8399 8699 NA NA NA NA NA 300 NY 19 Environmental and Agricultural Organizations Environment; Environmental Education; Environmental Law; Law; Pollution Control NON-SUBSIDIARY 1690 http://www.environmentaldefense.org 10010 1690
NA 1866 NA La Palma NA 80 Atlantic Richfield Co Inc NA NA 5 NA 04-542-6723 8.57065140860854e-17 NA NA 1870 NA NA NA NA Professional Organization NA HEADQUARTERS ATLANTIC RICHFIELD NA FALSE 813920 NA NA NA NA NA NA NA NA NA NA NA NA 650 PRIVATE OWNS NA ORGANIZATIONS: Professional ATLANTIC RICHFIELD CO NA NA 9400000 NA 8621 NA NA NA NA NA NA NA NA NA NA NA NA NA CA NA NA NA NON-SUBSIDIARY 650 www.richfieldco.com 90623-253190623-2531 650
NA 1933 5e+07 Washington annual convention (exhibits) - every June. 197 Edison Electric Institute Inc NA NA 12 associate (with less than $50 million annual revenues), $4,000 annual; associate (with more than $50 million annual revenues), $6,000 annual 06-496-8670 2.6936332998484e-16 197 1933 Edison Electric Institute (EEI) NA NA NA Business Association NA SINGLE LOCATION EDISON ELECTRIC INSTITUTE 200 FALSE 813910 NA NA NA NA NA NA NA NA NA NA NA NA 1629 PRIVATE RENTS 115000 ASSOCIATIONS: Trade EDISON ELECTRIC INSTITUTE NA NA 20700000 20700000 8611 NA NA NA NA 4911 86110100 NA NA NA NA NA NA 200 DC NA Trade, Business, and Commercial Organizations Utilities NON-SUBSIDIARY 1629 http://www.eei.org 20004-2696 1629
NA 1973 5e+06 Sacramento NA 55 PACIFIC LEGAL FOUNDATION NA NA 5 NA 07-153-9878 1.10194089539253e-16 55 1973 Pacific Legal Foundation (PLF) NA NA NA Legal Services Office NA HEADQUARTERS PACIFIC LEGAL FOUNDATION NA FALSE 541110 NA NA NA NA NA NA NA NA NA NA NA NA 3967 PRIVATE NA 14000 LEGAL OFFICES & SVCS PACIFIC LEGAL FOUNDATION NA NA 7400000 7400000 8641 NA NA NA NA 8111 8111 NA NA NA NA NA NA 54 CA NA Legal, Governmental, Public Administration, and Military Organizations Public Interest Law NON-SUBSIDIARY 3967 http://www.pacificlegal.org 95834-2918 3967
NA 1942 8.7e+07 Arlington annual meeting (exhibits) 497 NATIONAL RURAL ELECTRIC COOPERATIVE ASSOCIATION NA NA 2 silver (associate), $1,250 annual; gold (associate), $6,500 annual; platinum (associate), $12,000 annual 04-549-7427 4.28532570430427e-17 885 1942 National Rural Electric Cooperative Association (NRECA) NA NA NA Business Association NA HEADQUARTERS NATIONAL RURAL ELECTRIC COOPERATIVE ASSOCIATION 1000 FALSE 813910 NA NA NA NA NA NA NA NA NA NA NA NA 3520 PRIVATE OWNS 248000 ASSOCIATIONS: Trade NATIONAL RURAL ELECTRIC COOPERATIVE ASSOCIATION NA 10 162671000 162671000 8611 NA NA NA NA 4911 86110100 NA NA NA NA NA NA 650 VA NA Trade, Business, and Commercial Organizations Electrical NON-SUBSIDIARY 3520 http://www.nreca.org 22203-1867 3520
NA 1919 1.7e+07 Washington annual dinner, for fundraising 85 National Parks & Conservation Association NA NA 11 individual, $25 annual 07-484-5157 0.0511892566815803 102 1919 National Parks Conservation Association (NPCA) NA NA NA Civic/Social Association NA HEADQUARTERS NATIONAL PARKS CONSERVATION ASSOCIATION 300000 FALSE 813410 NA NA NA NA NA NA NA NA NA NA NA NA 3489 PRIVATE RENTS 2100 MEMBERSHIP ORGS, CIVIC, SOCIAL & FRATERNAL: Protection NATIONAL PARKS CONSERVATION ASSOCIATION NA 10 60423400 60423400 8699 NA NA NA NA 9512 86419903 NA NA NA NA NA NA 110 DC NA Legal, Governmental, Public Administration, and Military Organizations Parks and Recreation NON-SUBSIDIARY 3489 http://www.npca.org 20036-1628 3489

1 Embeddedness and bridging

Breiger & Pattison (1986), in their discussion of local role analysis, use a subset of data on the social relations among Renaissance Florentine families (person aggregates) collected by John Padgett in 1994 from historical documents. The two relations are business ties (flobusiness - specifically, recorded financial ties such as loans, credits and joint partnerships) and marriage alliances (flomarriage).

As Breiger & Pattison point out, the original data are symmetrically coded. This is acceptable perhaps for marital ties, but is unfortunate for the financial ties (which are almost certainly directed). To remedy this, the financial ties can be recoded as directed relations using some external measure of power - for instance, a measure of wealth. Both networks provide vertex information on (1) wealth each family’s net wealth in 1427 (in thousands of lira); (2) priorates the number of priorates (seats on the civic council) held between 1282- 1344; and (3) totalties the total number of business or marriage ties in the total dataset of 116 families (see Breiger & Pattison (1986), p 239).

Substantively, the data include families who were locked in a struggle for political control of the city of Florence in around 1430. Two factions were dominant in this struggle: one revolved around the infamous Medicis (9), the other around the powerful Strozzis (15).

##  [1] "gold"   "gray70" "gray70" "blue"   "blue"   "gold"   "blue"  
##  [8] "blue"   "gold"   "gold"   "blue"   "gold"   "gold"   "gray70"
## [15] "blue"   "gold"

1.2 Weak ties & Reachability

We will look at the neighbourhood of a node, two or three steps out. Below, we generate a function to count the number of neighbours at two and three steps out:

To see how many weak ties each node has, we first need to calculate how many nodes are in each node’s neighborhood at two steps out (reach2). Then, we need only subtract the number of nodes that are ajacent to the node (`degree).

##   Acciaiuoli      Albizzi    Barbadori     Bischeri   Castellani 
##            6            8            8            6            4 
##       Ginori     Guadagni Lamberteschi       Medici        Pazzi 
##            3            6            4            6            2 
##      Peruzzi        Pucci      Ridolfi     Salviati      Strozzi 
##            4            1            9            6            5 
##   Tornabuoni 
##            8

2 Roles & Positions

  • Examining roles through the a networks-based lens can explain why actors select into a network, how certain organizations benefit the larger collective, and the dynamics that influence successful lobbying.
  • Roles emerge from structural features of a community and reflect commonalities in behavior.
  • detecting the structural position of nodes within a network allows for statements about the roles that actors adopt.
  • Take for example, the roles that states may adopt in international politics. Many theories of interna- tional politics are intrinsically about the roles that states may adopt when interacting with one another. Consider balance of power the- ory, a hallmark of international relations describing how states at- tempt to preserve their security by balancing stronger states. This the- ory is intrinsically about the roles that states may adopt as aggres- sors, defenders, or balancers
  • these roles greatly influence their behavior and broader sys- tem-level dynamics, making them more prone to war or peace, or more influential in the development of international norms.

2.1 Burt’s Structural Holes (Topological)

Burt’s (1992) measures of structural holes are supported by iGraph and ego network variants of these measures are supported by egonet; this package is compatable with the sna package.

However, egonet has been removed from CRAN. So, we install it locally from an older version.

A small tool for Social Network Analysis, dealing with ego-centric network measures, including Burt’s effective size and aggregate constraint and an import code suitable for a large number of adjacency matrices.

The Egonet package is also available as free web application on http://www.egonet.associazionerospo.org (and an example of output can be seen here: http://www.egonet.associazionerospo.org/egonetdata/EgonetOutput.htm)

  • Using data from grant applications made between 2012 and 2013 by faculty in a a major US university
## 
##  1  2  3  4  5  6  7  8  9 10 11 12 14 15 16 17 18 19 20 21 23 24 
## 24  8  5  5 12  2  2  6  2  1  1  1  1  1  1  2  1  4  1  1  1  1
## 
##  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 24 28 30 38 
## 47 29 20 21  8  7  6  5  6  5  4  4  7  5  6  3  4  4  1  2  2  1  1  1

2.2 Brokerage (Gould & Fernandez topology+attributes)

The brokerage measure included in the sna package (hint: it needs a network object) builds on past work on borkerage (Marsden 1982), but is a more explicitly group oriented measure. Unlike Burt’s (1992) measure, the Gould-Fernandez measure requires specifying a group variable based on an attribute. We will use race in the example below.

**Brokerage Roles*: a group-based concept

  • w_I: Coordinator, mediates Within Group Contact (\(A \rightarrow A \rightarrow A\))
    • w_O: Itinerant Broker/Consultant, mediates contact between individuals in a group to which the actor does not belong (\(A \rightarrow B \rightarrow A\))
    • b_{IO}: Representative, mediates incoming contact from out-group members (\(A \rightarrow B \rightarrow B\))
    • b_{OI}: Gatekeeper, mediates outgoing contact from in-group members, (\(A \rightarrow A \rightarrow B\))
    • b_O: Liason Role, mediates contact between individuals of two differnt groups, neither of which the actor belongs, (\(A \rightarrow B \rightarrow C\))
    • t: Total or Cumulative Brokerage (total number of time a node fills any of the above roles)

If you run the function without $raw.nli appended to the end, you will see that it produces fourteen different forms of output. It is worth mentioning that you can also produce a normalized score that will give the magnitude of the differences between nodes, rather than the raw number of times. Use this approach if you prefer to simplify the table by displaying how the nodes differ by order of magnitude.

The brokerage function does this by providing normalized output that is scaled on the z distribution, referred to “z scores”. Z scores are calculated by comparing each number to the average for the distribution and dividing by the standard deviation.

\[z = \frac{x - \bar{x}}{s}\] In the results you’ll encounter both positive and negative valyes (the scale is cetered at 0). Consider that anything grater than 1.96 or less than -1.96 (2 sd away from the mean) is significantly different from the “typical” at p=0.05 level of significance. This is helpful to identify the nodes that stand out by being statistically significantly greater/less than the average for the network.

To produce normalized scores add z.nli to the function. Use round() to reduce number of digits.

Type ?brokerage for more information

  • Using faculty grant application data

  • ** Using Add Health data **

##   w_I w_O b_IO b_OI b_O  t
## 1   1   9    5    4  19 38
## 2   0   0    0    0   0  0
## 3   0   8    0    0  18 26
## 4   0   0    2    0   1  3
## 5   0   0    0    2   0  2
## 6   0   0    0    0  13 13
##   w_I w_O b_IO b_OI b_O    t
## 1 Inf Inf  Inf  Inf Inf 1.02
## 2  NA  NA   NA   NA  NA   NA
## 3  NA  NA   NA   NA  NA   NA
## 4  NA  NA   NA   NA  NA   NA
## 5  NA  NA   NA   NA  NA   NA
## 6  NA  NA   NA   NA  NA   NA

3 Homophily & Heterogeneity

3.1 E-I index

\[ \textbf{E-I Index} = \frac{E - I}{E + I} \] E-I Index was proposed by Krackhard and Stern (1988) to capture relative prevalence of between- and within-group ties. From that perspective it can be interpreted as a measure of network segregation.

The E-I Index is not common to many R packages, and it is not as simple as it seems to program. To make your life simpler, it is necessary to first install a package called isnar, written and maintained by Michal Bojanowski as a supplement to igraph. It is only available through Git Hub, as it’s an R package in development.

The generic method for using the E-I Index in isnar is ei(g, "attribute") , where g is an igraph object, with a qualitative attribute (attribute) assigned to each of the vertices.

## [1] -0.2586946

3.2 Index of Qualitative Variation

The index of qualitative variation (IQV) is a measure of variation among the categories of a qualitative variable. It is calculated as

\[ 1 - \sum p_2 * (\frac{k}{k-1})\] ,

where \(p\) is the proportion in each category, and K is the number of categories. The variable ranges from 0 to 1, where 0 represents a completely homogeneous group, and 1 represents a group with equal parts in each category.

The function below also returns Blau’s index. It takes as input a matrix and an attribute vector.

If you prefer to use an igraph object, use the following function. Warning: it will deploy igraph into the environment. Prepare for conflicts. TAKE SHELTER!

  • IQV using grant activity data

4 Equivalences

4.1 Structural Equivalence with CONCOR

The original CONCOR algorithm was developed by Ron Breiger, Scott Boorman, and Phipps Arabie. If you are interested, you can check out their original (1975) paper: “An Algorithm for Clustering Relational Data with Applications to Social Network Analysis and Comparison with Multidimensional Scaling. Journal of Mathematical Psychology, 12: 328– 383.. The original version was written in Fortran. Since then, Adam Slez has rewritten the program in R.

Although it was developed with structural equivalence in mind, CONCOR is used for equivalence in general, since we rarely expect to see true structrual equivalence in a network. Because Adam Slez has not committed his concoR package to CRAN, we will have to install it from his github site. You will only have to do this once.

CONCOR requires a matrix, or stack of matrices to make its calculations. So, start by loading concoR and extracting a matrix from an igraph network.

  • Using Roethlisberger & Dickson Bank Wiring Room

  • These are the observational data on 14 Western Electric (Hawthorne Plant) employees from the bank wiring room first presented in Roethlisberger & Dickson (1939). The data are better known through a scrutiny made of the interactions in Homans (1950), and the CONCOR analysis presented in Breiger et al (1975).

  • The employees worked in a single room and include two inspectors (I1 and I3), three solderers (S1, S2 and S3), and nine wiremen or assemblers (W1 to W9). The interaction categories include: RDGAM, participation in horseplay; RDCON, participation in arguments about open windows; RDPOS, friendship; RDNEG, antagonistic (negative) behavior; RDHLP, helping others with work; and RDJOB, the number of times workers traded job assignments.

## $Liking
##    I1 I3 W1 W2 W3 W4 W5 W6 W7 W8 W9 S1 S2 S4
## I1  0  0  0  0  1  0  0  0  0  0  0  0  0  0
## I3  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## W1  0  0  0  0  1  1  0  0  0  0  0  1  0  0
## W2  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## W3  1  0  1  0  0  1  0  0  0  0  0  1  0  0
## W4  0  0  1  0  1  0  0  0  0  0  0  1  0  0
## W5  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## W6  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## W7  0  0  0  0  0  0  0  0  0  1  1  1  0  0
## W8  0  0  0  0  0  0  0  0  1  0  1  0  0  1
## W9  0  0  0  0  0  0  0  0  1  1  0  0  0  1
## S1  0  0  1  0  1  1  0  0  1  0  0  0  0  0
## S2  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## S4  0  0  0  0  0  0  0  0  0  1  1  0  0  0
## 
## $Games
##    I1 I3 W1 W2 W3 W4 W5 W6 W7 W8 W9 S1 S2 S4
## I1  0  0  1  1  1  1  0  0  0  0  0  0  0  0
## I3  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## W1  1  0  0  1  1  1  1  0  0  0  0  1  0  0
## W2  1  0  1  0  1  1  0  0  0  0  0  1  0  0
## W3  1  0  1  1  0  1  1  0  0  0  0  1  0  0
## W4  1  0  1  1  1  0  1  0  0  0  0  1  0  0
## W5  0  0  1  0  1  1  0  0  1  0  0  1  0  0
## W6  0  0  0  0  0  0  0  0  1  1  1  0  0  0
## W7  0  0  0  0  0  0  1  1  0  1  1  0  0  1
## W8  0  0  0  0  0  0  0  1  1  0  1  0  0  1
## W9  0  0  0  0  0  0  0  1  1  1  0  0  0  1
## S1  0  0  1  1  1  1  1  0  0  0  0  0  0  0
## S2  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## S4  0  0  0  0  0  0  0  0  1  1  1  0  0  0
## 
## $Antagonism
##    I1 I3 W1 W2 W3 W4 W5 W6 W7 W8 W9 S1 S2 S4
## I1  0  1  0  1  0  0  0  0  0  0  0  0  0  0
## I3  1  0  0  0  0  0  1  1  1  1  1  0  0  1
## W1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## W2  1  0  0  0  0  0  0  0  1  1  1  0  0  0
## W3  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## W4  0  0  0  0  0  0  1  0  0  0  0  0  0  0
## W5  0  1  0  0  0  1  0  1  1  1  1  1  1  0
## W6  0  1  0  0  0  0  1  0  1  0  0  0  0  0
## W7  0  1  0  1  0  0  1  1  0  0  0  0  0  0
## W8  0  1  0  1  0  0  1  0  0  0  0  0  0  0
## W9  0  1  0  1  0  0  1  0  0  0  0  0  0  0
## S1  0  0  0  0  0  0  1  0  0  0  0  0  0  0
## S2  0  0  0  0  0  0  1  0  0  0  0  0  0  0
## S4  0  1  0  0  0  0  0  0  0  0  0  0  0  0
## 
## $Helping
##    I1 I3 W1 W2 W3 W4 W5 W6 W7 W8 W9 S1 S2 S4
## I1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## I3  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## W1  0  0  0  0  1  0  0  0  0  0  1  1  0  0
## W2  0  0  0  0  1  1  0  0  0  0  0  1  0  0
## W3  0  0  0  1  0  0  0  0  0  0  0  0  0  0
## W4  0  0  1  0  1  0  0  1  0  0  0  0  0  0
## W5  0  0  0  0  1  0  0  0  0  0  0  0  0  0
## W6  0  0  0  0  1  0  0  0  1  1  1  0  0  0
## W7  0  0  0  0  0  0  0  0  0  0  0  0  0  1
## W8  0  0  0  0  0  0  0  1  1  0  1  0  0  0
## W9  0  0  0  0  0  0  0  0  0  0  0  0  0  1
## S1  0  0  0  0  0  0  0  0  1  0  0  0  0  0
## S2  0  0  0  0  0  0  0  1  0  0  0  0  0  0
## S4  0  0  0  0  0  1  0  0  0  1  0  0  0  0
## 
## $Windows
##    I1 I3 W1 W2 W3 W4 W5 W6 W7 W8 W9 S1 S2 S4
## I1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## I3  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## W1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## W2  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## W3  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## W4  0  0  0  0  0  0  1  1  1  0  1  0  0  0
## W5  0  0  0  0  0  1  0  1  0  0  0  1  0  0
## W6  0  0  0  0  0  1  1  0  1  1  1  1  0  1
## W7  0  0  0  0  0  1  0  1  0  1  1  0  0  1
## W8  0  0  0  0  0  0  0  1  1  0  1  1  0  1
## W9  0  0  0  0  0  1  0  1  1  1  0  1  0  0
## S1  0  0  0  0  0  0  1  1  0  1  1  0  0  1
## S2  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## S4  0  0  0  0  0  0  0  1  1  1  0  1  0  0

Next, run the concoR algorithm to identify the various structrual equivalence “blocks”.

Functional note: The list() function in concor_hca is necessary if you are using only one matrix. The program was developed to work with arrays (lists of matrices), so it doesn’t play well with single matrices without this command.

block vertex
1 1 I1
6 2 I3
2 1 W1
7 2 W2
3 1 W3
4 1 W4
8 2 W5
9 3 W6
11 4 W7
12 4 W8
13 4 W9
5 1 S1
10 3 S2
14 4 S4

The output gives the vertex names, as well as the “blocks” or classes that each vertex was classified into. We can visualize this information in one of two ways: as a block matrix, or as a network visualization. We’ll do each below.

First, we can plot the network in statnet, using the blockmodel function. Note: we input the network object for the Florentine network along with the output of the concor_hca function.

## 
## Network Blockmodel:
## 
## Block membership:
## 
## I1 I3 W1 W2 W3 W4 W5 W6 W7 W8 W9 S1 S2 S4 
##  1  2  1  2  1  1  2  3  4  4  4  1  3  4 
## 
## Reduced form blockmodel:
## 
##   Liking 
##         Block 1 Block 2 Block 3   Block 4
## Block 1    0.70       0       0 0.0500000
## Block 2    0.00       0       0 0.0000000
## Block 3    0.00       0       0 0.0000000
## Block 4    0.05       0       0 0.8333333
## 
##   Games 
##         Block 1    Block 2 Block 3    Block 4
## Block 1     0.9 0.60000000   0.000 0.00000000
## Block 2     0.6 0.00000000   0.000 0.08333333
## Block 3     0.0 0.00000000   0.000 0.37500000
## Block 4     0.0 0.08333333   0.375 1.00000000
## 
##   Antagonism 
##           Block 1   Block 2 Block 3   Block 4
## Block 1 0.0000000 0.2666667   0.000 0.0000000
## Block 2 0.2666667 0.3333333   0.500 0.8333333
## Block 3 0.0000000 0.5000000   0.000 0.1250000
## Block 4 0.0000000 0.8333333   0.125 0.0000000
## 
##   Helping 
##           Block 1    Block 2 Block 3   Block 4
## Block 1 0.2000000 0.06666667   0.100 0.1000000
## Block 2 0.2666667 0.00000000   0.000 0.0000000
## Block 3 0.1000000 0.00000000   0.500 0.3750000
## Block 4 0.0500000 0.00000000   0.125 0.4166667
## 
##   Windows 
##           Block 1   Block 2   Block 3   Block 4
## Block 1 0.0000000 0.1333333 0.2000000 0.2500000
## Block 2 0.1333333 0.0000000 0.1666667 0.0000000
## Block 3 0.2000000 0.1666667 0.0000000 0.5000000
## Block 4 0.2500000 0.0000000 0.5000000 0.8333333
  • Plot as a blockmodel matrix

  • Plot as a network

4.1.1 Optimization

Aleš Žiberna has written the blockmodeling package on R.

The “optimization”" approach is where you assign some number of random partitions and require the algorithm to re-sort the network to a point where the various blocks contain a best fit to the network. There are a number of possible options for soting the network under the command. Here, we use the sum of squares methods. Also, the command asks the algorithm to find “complete” blocks (all 1s, and no 0s) if possible. Try it with and without this.

For more information see ŽIBERNA, Aleš (2007): Generalized Blockmodeling of Valued Networks. Social Networks, Jan. 2007, vol. 29, no. 1, 105-126.

## 
## 
## Starting optimization of the partiton 1 of 10 partitions.
## Starting partition: 2 1 2 1 1 2 2 2 1 2 1 2 1 1 1 2 
## Final error: 29.33333 
## Final partition:    2 1 1 1 1 2 1 2 1 2 1 2 1 2 1 1 
## 
## 
## Starting optimization of the partiton 2 of 10 partitions.
## Starting partition: 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 
## Final error: 29.33333 
## Final partition:    2 1 1 1 1 2 1 2 1 2 1 2 1 2 1 1 
## 
## 
## Starting optimization of the partiton 3 of 10 partitions.
## Starting partition: 2 1 1 1 1 1 1 1 2 1 2 2 2 2 2 2 
## Final error: 26.92803 
## Final partition:    1 1 1 2 2 1 1 1 1 1 2 1 1 1 2 1 
## 
## 
## Starting optimization of the partiton 4 of 10 partitions.
## Starting partition: 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
## Final error: 29.33333 
## Final partition:    1 2 2 2 2 1 2 1 2 1 2 1 2 1 2 2 
## 
## 
## Starting optimization of the partiton 5 of 10 partitions.
## Starting partition: 1 2 1 1 2 1 2 1 2 2 1 2 1 2 1 2 
## Final error: 29.23636 
## Final partition:    1 2 1 1 1 1 2 1 2 1 1 1 2 1 1 2 
## 
## 
## Starting optimization of the partiton 6 of 10 partitions.
## Starting partition: 1 2 2 1 2 1 1 2 1 2 1 2 1 2 2 1 
## Final error: 29.33333 
## Final partition:    2 1 1 1 1 2 1 2 1 2 1 2 1 2 1 1 
## 
## 
## Starting optimization of the partiton 7 of 10 partitions.
## Starting partition: 1 1 1 2 1 1 2 2 2 1 2 2 2 1 1 1 
## Final error: 29.33333 
## Final partition:    1 2 2 2 2 1 2 1 2 1 2 1 2 1 2 2 
## 
## 
## Starting optimization of the partiton 8 of 10 partitions.
## Starting partition: 2 1 1 1 2 1 2 1 2 2 1 2 1 2 1 2 
## Final error: 29.43304 
## Final partition:    2 2 1 1 1 2 2 2 1 2 1 2 1 2 1 1 
## 
## 
## Starting optimization of the partiton 9 of 10 partitions.
## Starting partition: 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2 2 
## Final error: 29.33333 
## Final partition:    1 2 2 2 2 1 2 1 2 1 2 1 2 1 2 2 
## 
## 
## Starting optimization of the partiton 10 of 10 partitions.
## Starting partition: 2 1 2 1 2 2 2 2 1 2 1 1 2 1 1 1 
## Final error: 29.33333 
## Final partition:    2 1 1 1 1 2 1 2 1 2 1 2 1 2 1 1 
## 
## 
## Optimization of all partitions completed
## 1 solution(s) with minimal error = 26.92803 found.
## 
## 
## Starting optimization of the partiton 1 of 10 partitions.
## Starting partition: 1 4 2 1 2 4 1 2 1 3 3 2 3 4 2 1 
## Final error: 17.83333 
## Final partition:    2 2 2 3 3 1 1 1 4 1 3 1 2 2 3 2 
## 
## 
## Starting optimization of the partiton 2 of 10 partitions.
## Starting partition: 1 2 2 4 4 3 2 4 4 3 3 1 3 1 1 2 
## Final error: 24.14815 
## Final partition:    1 1 1 1 1 2 4 1 4 3 1 2 1 3 4 1 
## 
## 
## Starting optimization of the partiton 3 of 10 partitions.
## Starting partition: 1 3 3 4 2 2 1 4 4 3 1 2 4 2 3 1 
## Final error: 17.83333 
## Final partition:    3 3 3 1 1 2 2 2 4 2 1 2 3 3 1 3 
## 
## 
## Starting optimization of the partiton 4 of 10 partitions.
## Starting partition: 3 1 4 2 4 3 3 1 2 1 4 3 4 1 2 2 
## Final error: 19.47024 
## Final partition:    1 3 1 4 4 1 2 1 2 1 4 1 1 1 4 3 
## 
## 
## Starting optimization of the partiton 5 of 10 partitions.
## Starting partition: 1 1 4 4 4 1 3 3 2 3 3 4 4 2 2 4 
## Final error: 19.08333 
## Final partition:    2 2 2 4 4 1 3 2 3 1 4 1 2 2 4 2 
## 
## 
## Starting optimization of the partiton 6 of 10 partitions.
## Starting partition: 4 2 1 1 2 4 4 3 3 4 1 1 4 3 2 4 
## Final error: 17.83333 
## Final partition:    4 4 4 1 1 3 3 3 2 3 1 3 4 4 1 4 
## 
## 
## Starting optimization of the partiton 7 of 10 partitions.
## Starting partition: 2 1 1 4 4 4 4 2 3 3 2 3 2 1 1 3 
## Final error: 19.08333 
## Final partition:    4 4 4 1 1 3 2 4 2 3 1 3 4 4 1 4 
## 
## 
## Starting optimization of the partiton 8 of 10 partitions.
## Starting partition: 4 4 4 4 4 2 1 4 4 4 4 4 4 3 4 4 
## Final error: 17.83333 
## Final partition:    4 4 4 2 2 1 1 1 3 1 2 1 4 4 2 4 
## 
## 
## Starting optimization of the partiton 9 of 10 partitions.
## Starting partition: 2 2 1 4 2 3 2 2 2 2 2 2 2 2 2 2 
## Final error: 21.94444 
## Final partition:    3 3 3 2 2 2 2 2 1 2 2 2 4 3 2 4 
## 
## 
## Starting optimization of the partiton 10 of 10 partitions.
## Starting partition: 4 2 4 2 1 2 2 4 3 1 3 4 2 3 2 3 
## Final error: 19.08333 
## Final partition:    2 2 2 3 3 1 4 2 4 1 3 1 2 2 3 2 
## 
## 
## Optimization of all partitions completed
## 3 solution(s) with minimal error = 17.83333 found.
## [1] "best"          "call"          "checked.par"   "err"          
## [5] "initial.param" "M"             "nIter"         "Random.seed"
## $best1
## $err
## [1] 17.83333
## 
## $EM
## , , 1
## 
##          [,1] [,2]     [,3] [,4]
## [1,] 1.666667 0.95 1.833333    0
## 
## , , 2
## 
##      [,1] [,2]     [,3] [,4]
## [1,] 0.95  1.8 3.466667    0
## 
## , , 3
## 
##          [,1]     [,2]     [,3] [,4]
## [1,] 1.833333 3.466667 1.866667    0
## 
## , , 4
## 
##      [,1] [,2] [,3] [,4]
## [1,]    0    0    0    0
## 
## 
## $Earr
## , , 1, 1
## 
##          [,1]
## [1,] 1.666667
## 
## , , 2, 1
## 
##      [,1]
## [1,] 0.95
## 
## , , 3, 1
## 
##          [,1]
## [1,] 1.833333
## 
## , , 4, 1
## 
##      [,1]
## [1,]    0
## 
## , , 1, 2
## 
##      [,1]
## [1,] 0.95
## 
## , , 2, 2
## 
##      [,1]
## [1,]  1.8
## 
## , , 3, 2
## 
##          [,1]
## [1,] 3.466667
## 
## , , 4, 2
## 
##      [,1]
## [1,]    0
## 
## , , 1, 3
## 
##          [,1]
## [1,] 1.833333
## 
## , , 2, 3
## 
##          [,1]
## [1,] 3.466667
## 
## , , 3, 3
## 
##          [,1]
## [1,] 1.866667
## 
## , , 4, 3
## 
##      [,1]
## [1,]    0
## 
## , , 1, 4
## 
##      [,1]
## [1,]    0
## 
## , , 2, 4
## 
##      [,1]
## [1,]    0
## 
## , , 3, 4
## 
##      [,1]
## [1,]    0
## 
## , , 4, 4
## 
##      [,1]
## [1,]    0
## 
## 
## $sameErr
## [1] 1
## 
## $IM
## , , 1
## 
##      [,1]  [,2]  [,3]  [,4] 
## [1,] "com" "com" "com" "com"
## 
## , , 2
## 
##      [,1]  [,2]  [,3]  [,4] 
## [1,] "com" "com" "com" "com"
## 
## , , 3
## 
##      [,1]  [,2]  [,3]  [,4] 
## [1,] "com" "com" "com" "com"
## 
## , , 4
## 
##      [,1]  [,2]  [,3]  [,4] 
## [1,] "com" "com" "com" "com"
## 
## 
## $clu
##  [1] 3 3 3 1 1 2 2 2 4 2 1 2 3 3 1 3
## 
## $call
## optParC(M = M, clu = temppar, approaches = approaches, blocks = blocks, 
##     useMulti = useMulti, save.initial.param = save.initial.param.opt)
## 
## $resC
## $resC$nr
## [1] 16
## 
## $resC$nc
## [1] 16
## 
## $resC$nRel
## [1] 1
## 
## $resC$isTwoMode
## [1] 0
## 
## $resC$isSym
## [1] 1
## 
## $resC$diag
## [1] 1
## 
## $resC$nColClus
## [1] 4
## 
## $resC$nRowClus
## [1] 4
## 
## $resC$nUnitsRowClu
## [1] 4 5 6 1
## 
## $resC$nUnitsColClu
## [1] 4 4 4 4
## 
## $resC$rowParArr
##       [,1] [,2] [,3] [,4]
##  [1,]    4    9    1    8
##  [2,]    3    5    2    6
##  [3,]   10   11    0    8
##  [4,]   14    7   15   12
##  [5,]   12    6   13    0
##  [6,]    3    6   12    0
##  [7,]   14    0    0    0
##  [8,]    0    0    0    0
##  [9,]    0    0    0    0
## [10,]    0    0    0    0
## [11,]    0    0    0    0
## [12,]    0    0    0    0
## [13,]    0    0    0    0
## [14,]    0    0    0    0
## [15,]    0    0    0    0
## [16,]    0    0    0    0
## 
## $resC$colParArr
##       [,1] [,2] [,3] [,4]
##  [1,]    0    4    1    3
##  [2,]    6    5    2    7
##  [3,]   10   11    9    8
##  [4,]   15   13   14   12
##  [5,]    0    0    0    0
##  [6,]    0    0    0    0
##  [7,]    0    0    0    0
##  [8,]    0    0    0    0
##  [9,]    0    0    0    0
## [10,]    0    0    0    0
## [11,]    0    0    0    0
## [12,]    0    0    0    0
## [13,]    0    0    0    0
## [14,]    0    0    0    0
## [15,]    0    0    0    0
## [16,]    0    0    0    0
## 
## $resC$approaches
## [1] 0
## 
## $resC$maxBlockTypes
## [1] 1
## 
## $resC$nBlockTypeByBlock
## , , 1
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## , , 2
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## , , 3
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## , , 4
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## 
## $resC$blocks
## , , 1, 1
## 
##      [,1]
## [1,]    1
## 
## , , 2, 1
## 
##      [,1]
## [1,]    1
## 
## , , 3, 1
## 
##      [,1]
## [1,]    1
## 
## , , 4, 1
## 
##      [,1]
## [1,]    1
## 
## , , 1, 2
## 
##      [,1]
## [1,]    1
## 
## , , 2, 2
## 
##      [,1]
## [1,]    1
## 
## , , 3, 2
## 
##      [,1]
## [1,]    1
## 
## , , 4, 2
## 
##      [,1]
## [1,]    1
## 
## , , 1, 3
## 
##      [,1]
## [1,]    1
## 
## , , 2, 3
## 
##      [,1]
## [1,]    1
## 
## , , 3, 3
## 
##      [,1]
## [1,]    1
## 
## , , 4, 3
## 
##      [,1]
## [1,]    1
## 
## , , 1, 4
## 
##      [,1]
## [1,]    1
## 
## , , 2, 4
## 
##      [,1]
## [1,]    1
## 
## , , 3, 4
## 
##      [,1]
## [1,]    1
## 
## , , 4, 4
## 
##      [,1]
## [1,]    1
## 
## 
## $resC$IM
## , , 1
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## , , 2
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## , , 3
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## , , 4
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## 
## $resC$EM
## , , 1
## 
##          [,1] [,2]     [,3] [,4]
## [1,] 1.666667 0.95 1.833333    0
## 
## , , 2
## 
##      [,1] [,2]     [,3] [,4]
## [1,] 0.95  1.8 3.466667    0
## 
## , , 3
## 
##          [,1]     [,2]     [,3] [,4]
## [1,] 1.833333 3.466667 1.866667    0
## 
## , , 4
## 
##      [,1] [,2] [,3] [,4]
## [1,]    0    0    0    0
## 
## 
## $resC$Earr
## , , 1, 1
## 
##          [,1]
## [1,] 1.666667
## 
## , , 2, 1
## 
##      [,1]
## [1,] 0.95
## 
## , , 3, 1
## 
##          [,1]
## [1,] 1.833333
## 
## , , 4, 1
## 
##      [,1]
## [1,]    0
## 
## , , 1, 2
## 
##      [,1]
## [1,] 0.95
## 
## , , 2, 2
## 
##      [,1]
## [1,]  1.8
## 
## , , 3, 2
## 
##          [,1]
## [1,] 3.466667
## 
## , , 4, 2
## 
##      [,1]
## [1,]    0
## 
## , , 1, 3
## 
##          [,1]
## [1,] 1.833333
## 
## , , 2, 3
## 
##          [,1]
## [1,] 3.466667
## 
## , , 3, 3
## 
##          [,1]
## [1,] 1.866667
## 
## , , 4, 3
## 
##      [,1]
## [1,]    0
## 
## , , 1, 4
## 
##      [,1]
## [1,]    0
## 
## , , 2, 4
## 
##      [,1]
## [1,]    0
## 
## , , 3, 4
## 
##      [,1]
## [1,]    0
## 
## , , 4, 4
## 
##      [,1]
## [1,]    0
## 
## 
## $resC$err
## [1] 17.83333
## 
## $resC$justChange
## [1] 0
## 
## $resC$rowCluChange
## [1] 2 3
## 
## $resC$colCluChange
## [1] 0 0
## 
## $resC$sameIM
## [1] 0
## 
## $resC$regFun
## , , 1, 1
## 
##      [,1]
## [1,]    0
## 
## , , 2, 1
## 
##      [,1]
## [1,]    0
## 
## , , 3, 1
## 
##      [,1]
## [1,]    0
## 
## , , 4, 1
## 
##      [,1]
## [1,]    0
## 
## , , 1, 2
## 
##      [,1]
## [1,]    0
## 
## , , 2, 2
## 
##      [,1]
## [1,]    0
## 
## , , 3, 2
## 
##      [,1]
## [1,]    0
## 
## , , 4, 2
## 
##      [,1]
## [1,]    0
## 
## , , 1, 3
## 
##      [,1]
## [1,]    0
## 
## , , 2, 3
## 
##      [,1]
## [1,]    0
## 
## , , 3, 3
## 
##      [,1]
## [1,]    0
## 
## , , 4, 3
## 
##      [,1]
## [1,]    0
## 
## , , 1, 4
## 
##      [,1]
## [1,]    0
## 
## , , 2, 4
## 
##      [,1]
## [1,]    0
## 
## , , 3, 4
## 
##      [,1]
## [1,]    0
## 
## , , 4, 4
## 
##      [,1]
## [1,]    0
## 
## 
## $resC$homFun
## [1] 0
## 
## $resC$usePreSpec
## , , 1, 1
## 
##       [,1]
## [1,] FALSE
## 
## , , 2, 1
## 
##       [,1]
## [1,] FALSE
## 
## , , 3, 1
## 
##       [,1]
## [1,] FALSE
## 
## , , 4, 1
## 
##       [,1]
## [1,] FALSE
## 
## , , 1, 2
## 
##       [,1]
## [1,] FALSE
## 
## , , 2, 2
## 
##       [,1]
## [1,] FALSE
## 
## , , 3, 2
## 
##       [,1]
## [1,] FALSE
## 
## , , 4, 2
## 
##       [,1]
## [1,] FALSE
## 
## , , 1, 3
## 
##       [,1]
## [1,] FALSE
## 
## , , 2, 3
## 
##       [,1]
## [1,] FALSE
## 
## , , 3, 3
## 
##       [,1]
## [1,] FALSE
## 
## , , 4, 3
## 
##       [,1]
## [1,] FALSE
## 
## , , 1, 4
## 
##       [,1]
## [1,] FALSE
## 
## , , 2, 4
## 
##       [,1]
## [1,] FALSE
## 
## , , 3, 4
## 
##       [,1]
## [1,] FALSE
## 
## , , 4, 4
## 
##       [,1]
## [1,] FALSE
## 
## 
## $resC$preSpecM
## , , 1, 1
## 
##      [,1]
## [1,]   NA
## 
## , , 2, 1
## 
##      [,1]
## [1,]   NA
## 
## , , 3, 1
## 
##      [,1]
## [1,]   NA
## 
## , , 4, 1
## 
##      [,1]
## [1,]   NA
## 
## , , 1, 2
## 
##      [,1]
## [1,]   NA
## 
## , , 2, 2
## 
##      [,1]
## [1,]   NA
## 
## , , 3, 2
## 
##      [,1]
## [1,]   NA
## 
## , , 4, 2
## 
##      [,1]
## [1,]   NA
## 
## , , 1, 3
## 
##      [,1]
## [1,]   NA
## 
## , , 2, 3
## 
##      [,1]
## [1,]   NA
## 
## , , 3, 3
## 
##      [,1]
## [1,]   NA
## 
## , , 4, 3
## 
##      [,1]
## [1,]   NA
## 
## , , 1, 4
## 
##      [,1]
## [1,]   NA
## 
## , , 2, 4
## 
##      [,1]
## [1,]   NA
## 
## , , 3, 4
## 
##      [,1]
## [1,]   NA
## 
## , , 4, 4
## 
##      [,1]
## [1,]   NA
## 
## 
## $resC$minUnitsRowCluster
## [1] 1
## 
## $resC$minUnitsColCluster
## [1] 1
## 
## $resC$maxUnitsRowCluster
## [1] 9999
## 
## $resC$maxUnitsColCluster
## [1] 9999
## 
## $resC$sameErr
## [1] 1
## 
## $resC$nIter
## [1] 16
## 
## $resC$combWeights
## , , 1, 1
## 
##      [,1]
## [1,]    1
## 
## , , 2, 1
## 
##      [,1]
## [1,]    1
## 
## , , 3, 1
## 
##      [,1]
## [1,]    1
## 
## , , 4, 1
## 
##      [,1]
## [1,]    1
## 
## , , 1, 2
## 
##      [,1]
## [1,]    1
## 
## , , 2, 2
## 
##      [,1]
## [1,]    1
## 
## , , 3, 2
## 
##      [,1]
## [1,]    1
## 
## , , 4, 2
## 
##      [,1]
## [1,]    1
## 
## , , 1, 3
## 
##      [,1]
## [1,]    1
## 
## , , 2, 3
## 
##      [,1]
## [1,]    1
## 
## , , 3, 3
## 
##      [,1]
## [1,]    1
## 
## , , 4, 3
## 
##      [,1]
## [1,]    1
## 
## , , 1, 4
## 
##      [,1]
## [1,]    1
## 
## , , 2, 4
## 
##      [,1]
## [1,]    1
## 
## , , 3, 4
## 
##      [,1]
## [1,]    1
## 
## , , 4, 4
## 
##      [,1]
## [1,]    1
## 
## 
## $resC$exchageClusters
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## [2,]    1    1    1    1
## [3,]    1    1    1    1
## [4,]    1    1    1    1
## 
## 
## attr(,"class")
## [1] "optPar"
## 
## $best2
## $err
## [1] 17.83333
## 
## $EM
## , , 1
## 
##          [,1] [,2] [,3]     [,4]
## [1,] 1.666667    0 0.95 1.833333
## 
## , , 2
## 
##      [,1] [,2] [,3] [,4]
## [1,]    0    0    0    0
## 
## , , 3
## 
##      [,1] [,2] [,3]     [,4]
## [1,] 0.95    0  1.8 3.466667
## 
## , , 4
## 
##          [,1] [,2]     [,3]     [,4]
## [1,] 1.833333    0 3.466667 1.866667
## 
## 
## $Earr
## , , 1, 1
## 
##          [,1]
## [1,] 1.666667
## 
## , , 2, 1
## 
##      [,1]
## [1,]    0
## 
## , , 3, 1
## 
##      [,1]
## [1,] 0.95
## 
## , , 4, 1
## 
##          [,1]
## [1,] 1.833333
## 
## , , 1, 2
## 
##      [,1]
## [1,]    0
## 
## , , 2, 2
## 
##      [,1]
## [1,]    0
## 
## , , 3, 2
## 
##      [,1]
## [1,]    0
## 
## , , 4, 2
## 
##      [,1]
## [1,]    0
## 
## , , 1, 3
## 
##      [,1]
## [1,] 0.95
## 
## , , 2, 3
## 
##      [,1]
## [1,]    0
## 
## , , 3, 3
## 
##      [,1]
## [1,]  1.8
## 
## , , 4, 3
## 
##          [,1]
## [1,] 3.466667
## 
## , , 1, 4
## 
##          [,1]
## [1,] 1.833333
## 
## , , 2, 4
## 
##      [,1]
## [1,]    0
## 
## , , 3, 4
## 
##          [,1]
## [1,] 3.466667
## 
## , , 4, 4
## 
##          [,1]
## [1,] 1.866667
## 
## 
## $sameErr
## [1] 1
## 
## $IM
## , , 1
## 
##      [,1]  [,2]  [,3]  [,4] 
## [1,] "com" "com" "com" "com"
## 
## , , 2
## 
##      [,1]  [,2]  [,3]  [,4] 
## [1,] "com" "com" "com" "com"
## 
## , , 3
## 
##      [,1]  [,2]  [,3]  [,4] 
## [1,] "com" "com" "com" "com"
## 
## , , 4
## 
##      [,1]  [,2]  [,3]  [,4] 
## [1,] "com" "com" "com" "com"
## 
## 
## $clu
##  [1] 4 4 4 1 1 3 3 3 2 3 1 3 4 4 1 4
## 
## $call
## optParC(M = M, clu = temppar, approaches = approaches, blocks = blocks, 
##     useMulti = useMulti, save.initial.param = save.initial.param.opt)
## 
## $resC
## $resC$nr
## [1] 16
## 
## $resC$nc
## [1] 16
## 
## $resC$nRel
## [1] 1
## 
## $resC$isTwoMode
## [1] 0
## 
## $resC$isSym
## [1] 1
## 
## $resC$diag
## [1] 1
## 
## $resC$nColClus
## [1] 4
## 
## $resC$nRowClus
## [1] 4
## 
## $resC$nUnitsRowClu
## [1] 4 1 5 6
## 
## $resC$nUnitsColClu
## [1] 4 3 3 6
## 
## $resC$rowParArr
##       [,1] [,2] [,3] [,4]
##  [1,]    4    8    5    0
##  [2,]   14    6    7   15
##  [3,]   10    7    9    2
##  [4,]    3    0   11   12
##  [5,]    6    0    6   13
##  [6,]    0    0   15    1
##  [7,]    0    0    1    0
##  [8,]    0    0    0    0
##  [9,]    0    0    0    0
## [10,]    0    0    0    0
## [11,]    0    0    0    0
## [12,]    0    0    0    0
## [13,]    0    0    0    0
## [14,]    0    0    0    0
## [15,]    0    0    0    0
## [16,]    0    0    0    0
## 
## $resC$colParArr
##       [,1] [,2] [,3] [,4]
##  [1,]    2    1    7    0
##  [2,]    3    4    8    5
##  [3,]   10   14   13    6
##  [4,]   11    0    0    9
##  [5,]    0    0    0   12
##  [6,]    0    0    0   15
##  [7,]    0    0    0    0
##  [8,]    0    0    0    0
##  [9,]    0    0    0    0
## [10,]    0    0    0    0
## [11,]    0    0    0    0
## [12,]    0    0    0    0
## [13,]    0    0    0    0
## [14,]    0    0    0    0
## [15,]    0    0    0    0
## [16,]    0    0    0    0
## 
## $resC$approaches
## [1] 0
## 
## $resC$maxBlockTypes
## [1] 1
## 
## $resC$nBlockTypeByBlock
## , , 1
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## , , 2
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## , , 3
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## , , 4
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## 
## $resC$blocks
## , , 1, 1
## 
##      [,1]
## [1,]    1
## 
## , , 2, 1
## 
##      [,1]
## [1,]    1
## 
## , , 3, 1
## 
##      [,1]
## [1,]    1
## 
## , , 4, 1
## 
##      [,1]
## [1,]    1
## 
## , , 1, 2
## 
##      [,1]
## [1,]    1
## 
## , , 2, 2
## 
##      [,1]
## [1,]    1
## 
## , , 3, 2
## 
##      [,1]
## [1,]    1
## 
## , , 4, 2
## 
##      [,1]
## [1,]    1
## 
## , , 1, 3
## 
##      [,1]
## [1,]    1
## 
## , , 2, 3
## 
##      [,1]
## [1,]    1
## 
## , , 3, 3
## 
##      [,1]
## [1,]    1
## 
## , , 4, 3
## 
##      [,1]
## [1,]    1
## 
## , , 1, 4
## 
##      [,1]
## [1,]    1
## 
## , , 2, 4
## 
##      [,1]
## [1,]    1
## 
## , , 3, 4
## 
##      [,1]
## [1,]    1
## 
## , , 4, 4
## 
##      [,1]
## [1,]    1
## 
## 
## $resC$IM
## , , 1
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## , , 2
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## , , 3
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## , , 4
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## 
## $resC$EM
## , , 1
## 
##          [,1] [,2] [,3]     [,4]
## [1,] 1.666667    0 0.95 1.833333
## 
## , , 2
## 
##      [,1] [,2] [,3] [,4]
## [1,]    0    0    0    0
## 
## , , 3
## 
##      [,1] [,2] [,3]     [,4]
## [1,] 0.95    0  1.8 3.466667
## 
## , , 4
## 
##          [,1] [,2]     [,3]     [,4]
## [1,] 1.833333    0 3.466667 1.866667
## 
## 
## $resC$Earr
## , , 1, 1
## 
##          [,1]
## [1,] 1.666667
## 
## , , 2, 1
## 
##      [,1]
## [1,]    0
## 
## , , 3, 1
## 
##      [,1]
## [1,] 0.95
## 
## , , 4, 1
## 
##          [,1]
## [1,] 1.833333
## 
## , , 1, 2
## 
##      [,1]
## [1,]    0
## 
## , , 2, 2
## 
##      [,1]
## [1,]    0
## 
## , , 3, 2
## 
##      [,1]
## [1,]    0
## 
## , , 4, 2
## 
##      [,1]
## [1,]    0
## 
## , , 1, 3
## 
##      [,1]
## [1,] 0.95
## 
## , , 2, 3
## 
##      [,1]
## [1,]    0
## 
## , , 3, 3
## 
##      [,1]
## [1,]  1.8
## 
## , , 4, 3
## 
##          [,1]
## [1,] 3.466667
## 
## , , 1, 4
## 
##          [,1]
## [1,] 1.833333
## 
## , , 2, 4
## 
##      [,1]
## [1,]    0
## 
## , , 3, 4
## 
##          [,1]
## [1,] 3.466667
## 
## , , 4, 4
## 
##          [,1]
## [1,] 1.866667
## 
## 
## $resC$err
## [1] 17.83333
## 
## $resC$justChange
## [1] 0
## 
## $resC$rowCluChange
## [1] 2 3
## 
## $resC$colCluChange
## [1] 0 0
## 
## $resC$sameIM
## [1] 0
## 
## $resC$regFun
## , , 1, 1
## 
##      [,1]
## [1,]    0
## 
## , , 2, 1
## 
##      [,1]
## [1,]    0
## 
## , , 3, 1
## 
##      [,1]
## [1,]    0
## 
## , , 4, 1
## 
##      [,1]
## [1,]    0
## 
## , , 1, 2
## 
##      [,1]
## [1,]    0
## 
## , , 2, 2
## 
##      [,1]
## [1,]    0
## 
## , , 3, 2
## 
##      [,1]
## [1,]    0
## 
## , , 4, 2
## 
##      [,1]
## [1,]    0
## 
## , , 1, 3
## 
##      [,1]
## [1,]    0
## 
## , , 2, 3
## 
##      [,1]
## [1,]    0
## 
## , , 3, 3
## 
##      [,1]
## [1,]    0
## 
## , , 4, 3
## 
##      [,1]
## [1,]    0
## 
## , , 1, 4
## 
##      [,1]
## [1,]    0
## 
## , , 2, 4
## 
##      [,1]
## [1,]    0
## 
## , , 3, 4
## 
##      [,1]
## [1,]    0
## 
## , , 4, 4
## 
##      [,1]
## [1,]    0
## 
## 
## $resC$homFun
## [1] 0
## 
## $resC$usePreSpec
## , , 1, 1
## 
##       [,1]
## [1,] FALSE
## 
## , , 2, 1
## 
##       [,1]
## [1,] FALSE
## 
## , , 3, 1
## 
##       [,1]
## [1,] FALSE
## 
## , , 4, 1
## 
##       [,1]
## [1,] FALSE
## 
## , , 1, 2
## 
##       [,1]
## [1,] FALSE
## 
## , , 2, 2
## 
##       [,1]
## [1,] FALSE
## 
## , , 3, 2
## 
##       [,1]
## [1,] FALSE
## 
## , , 4, 2
## 
##       [,1]
## [1,] FALSE
## 
## , , 1, 3
## 
##       [,1]
## [1,] FALSE
## 
## , , 2, 3
## 
##       [,1]
## [1,] FALSE
## 
## , , 3, 3
## 
##       [,1]
## [1,] FALSE
## 
## , , 4, 3
## 
##       [,1]
## [1,] FALSE
## 
## , , 1, 4
## 
##       [,1]
## [1,] FALSE
## 
## , , 2, 4
## 
##       [,1]
## [1,] FALSE
## 
## , , 3, 4
## 
##       [,1]
## [1,] FALSE
## 
## , , 4, 4
## 
##       [,1]
## [1,] FALSE
## 
## 
## $resC$preSpecM
## , , 1, 1
## 
##      [,1]
## [1,]   NA
## 
## , , 2, 1
## 
##      [,1]
## [1,]   NA
## 
## , , 3, 1
## 
##      [,1]
## [1,]   NA
## 
## , , 4, 1
## 
##      [,1]
## [1,]   NA
## 
## , , 1, 2
## 
##      [,1]
## [1,]   NA
## 
## , , 2, 2
## 
##      [,1]
## [1,]   NA
## 
## , , 3, 2
## 
##      [,1]
## [1,]   NA
## 
## , , 4, 2
## 
##      [,1]
## [1,]   NA
## 
## , , 1, 3
## 
##      [,1]
## [1,]   NA
## 
## , , 2, 3
## 
##      [,1]
## [1,]   NA
## 
## , , 3, 3
## 
##      [,1]
## [1,]   NA
## 
## , , 4, 3
## 
##      [,1]
## [1,]   NA
## 
## , , 1, 4
## 
##      [,1]
## [1,]   NA
## 
## , , 2, 4
## 
##      [,1]
## [1,]   NA
## 
## , , 3, 4
## 
##      [,1]
## [1,]   NA
## 
## , , 4, 4
## 
##      [,1]
## [1,]   NA
## 
## 
## $resC$minUnitsRowCluster
## [1] 1
## 
## $resC$minUnitsColCluster
## [1] 1
## 
## $resC$maxUnitsRowCluster
## [1] 9999
## 
## $resC$maxUnitsColCluster
## [1] 9999
## 
## $resC$sameErr
## [1] 1
## 
## $resC$nIter
## [1] 18
## 
## $resC$combWeights
## , , 1, 1
## 
##      [,1]
## [1,]    1
## 
## , , 2, 1
## 
##      [,1]
## [1,]    1
## 
## , , 3, 1
## 
##      [,1]
## [1,]    1
## 
## , , 4, 1
## 
##      [,1]
## [1,]    1
## 
## , , 1, 2
## 
##      [,1]
## [1,]    1
## 
## , , 2, 2
## 
##      [,1]
## [1,]    1
## 
## , , 3, 2
## 
##      [,1]
## [1,]    1
## 
## , , 4, 2
## 
##      [,1]
## [1,]    1
## 
## , , 1, 3
## 
##      [,1]
## [1,]    1
## 
## , , 2, 3
## 
##      [,1]
## [1,]    1
## 
## , , 3, 3
## 
##      [,1]
## [1,]    1
## 
## , , 4, 3
## 
##      [,1]
## [1,]    1
## 
## , , 1, 4
## 
##      [,1]
## [1,]    1
## 
## , , 2, 4
## 
##      [,1]
## [1,]    1
## 
## , , 3, 4
## 
##      [,1]
## [1,]    1
## 
## , , 4, 4
## 
##      [,1]
## [1,]    1
## 
## 
## $resC$exchageClusters
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## [2,]    1    1    1    1
## [3,]    1    1    1    1
## [4,]    1    1    1    1
## 
## 
## attr(,"class")
## [1] "optPar"
## 
## $best3
## $err
## [1] 17.83333
## 
## $EM
## , , 1
## 
##      [,1] [,2] [,3]     [,4]
## [1,]  1.8 0.95    0 3.466667
## 
## , , 2
## 
##      [,1]     [,2] [,3]     [,4]
## [1,] 0.95 1.666667    0 1.833333
## 
## , , 3
## 
##      [,1] [,2] [,3] [,4]
## [1,]    0    0    0    0
## 
## , , 4
## 
##          [,1]     [,2] [,3]     [,4]
## [1,] 3.466667 1.833333    0 1.866667
## 
## 
## $Earr
## , , 1, 1
## 
##      [,1]
## [1,]  1.8
## 
## , , 2, 1
## 
##      [,1]
## [1,] 0.95
## 
## , , 3, 1
## 
##      [,1]
## [1,]    0
## 
## , , 4, 1
## 
##          [,1]
## [1,] 3.466667
## 
## , , 1, 2
## 
##      [,1]
## [1,] 0.95
## 
## , , 2, 2
## 
##          [,1]
## [1,] 1.666667
## 
## , , 3, 2
## 
##      [,1]
## [1,]    0
## 
## , , 4, 2
## 
##          [,1]
## [1,] 1.833333
## 
## , , 1, 3
## 
##      [,1]
## [1,]    0
## 
## , , 2, 3
## 
##      [,1]
## [1,]    0
## 
## , , 3, 3
## 
##      [,1]
## [1,]    0
## 
## , , 4, 3
## 
##      [,1]
## [1,]    0
## 
## , , 1, 4
## 
##          [,1]
## [1,] 3.466667
## 
## , , 2, 4
## 
##          [,1]
## [1,] 1.833333
## 
## , , 3, 4
## 
##      [,1]
## [1,]    0
## 
## , , 4, 4
## 
##          [,1]
## [1,] 1.866667
## 
## 
## $sameErr
## [1] 1
## 
## $IM
## , , 1
## 
##      [,1]  [,2]  [,3]  [,4] 
## [1,] "com" "com" "com" "com"
## 
## , , 2
## 
##      [,1]  [,2]  [,3]  [,4] 
## [1,] "com" "com" "com" "com"
## 
## , , 3
## 
##      [,1]  [,2]  [,3]  [,4] 
## [1,] "com" "com" "com" "com"
## 
## , , 4
## 
##      [,1]  [,2]  [,3]  [,4] 
## [1,] "com" "com" "com" "com"
## 
## 
## $clu
##  [1] 4 4 4 2 2 1 1 1 3 1 2 1 4 4 2 4
## 
## $call
## optParC(M = M, clu = temppar, approaches = approaches, blocks = blocks, 
##     useMulti = useMulti, save.initial.param = save.initial.param.opt)
## 
## $resC
## $resC$nr
## [1] 16
## 
## $resC$nc
## [1] 16
## 
## $resC$nRel
## [1] 1
## 
## $resC$isTwoMode
## [1] 0
## 
## $resC$isSym
## [1] 1
## 
## $resC$diag
## [1] 1
## 
## $resC$nColClus
## [1] 4
## 
## $resC$nRowClus
## [1] 4
## 
## $resC$nUnitsRowClu
## [1] 5 4 1 6
## 
## $resC$nUnitsColClu
## [1]  1  1  1 13
## 
## $resC$rowParArr
##       [,1] [,2] [,3] [,4]
##  [1,]    5   14    8    0
##  [2,]    9    3    0    1
##  [3,]    7   10    0    2
##  [4,]   11    4    0   13
##  [5,]    6   10    0   15
##  [6,]    7    0    0   12
##  [7,]    4    0    0   15
##  [8,]    0    0    0    7
##  [9,]    0    0    0   13
## [10,]    0    0    0   13
## [11,]    0    0    0    5
## [12,]    0    0    0   14
## [13,]    0    0    0   13
## [14,]    0    0    0    0
## [15,]    0    0    0    0
## [16,]    0    0    0    0
## 
## $resC$colParArr
##       [,1] [,2] [,3] [,4]
##  [1,]    6    5   13    0
##  [2,]    0    0    0    1
##  [3,]    0    0    0    2
##  [4,]    0    0    0    3
##  [5,]    0    0    0    4
##  [6,]    0    0    0    7
##  [7,]    0    0    0    8
##  [8,]    0    0    0    9
##  [9,]    0    0    0   10
## [10,]    0    0    0   11
## [11,]    0    0    0   12
## [12,]    0    0    0   14
## [13,]    0    0    0   15
## [14,]    0    0    0    0
## [15,]    0    0    0    0
## [16,]    0    0    0    0
## 
## $resC$approaches
## [1] 0
## 
## $resC$maxBlockTypes
## [1] 1
## 
## $resC$nBlockTypeByBlock
## , , 1
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## , , 2
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## , , 3
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## , , 4
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## 
## $resC$blocks
## , , 1, 1
## 
##      [,1]
## [1,]    1
## 
## , , 2, 1
## 
##      [,1]
## [1,]    1
## 
## , , 3, 1
## 
##      [,1]
## [1,]    1
## 
## , , 4, 1
## 
##      [,1]
## [1,]    1
## 
## , , 1, 2
## 
##      [,1]
## [1,]    1
## 
## , , 2, 2
## 
##      [,1]
## [1,]    1
## 
## , , 3, 2
## 
##      [,1]
## [1,]    1
## 
## , , 4, 2
## 
##      [,1]
## [1,]    1
## 
## , , 1, 3
## 
##      [,1]
## [1,]    1
## 
## , , 2, 3
## 
##      [,1]
## [1,]    1
## 
## , , 3, 3
## 
##      [,1]
## [1,]    1
## 
## , , 4, 3
## 
##      [,1]
## [1,]    1
## 
## , , 1, 4
## 
##      [,1]
## [1,]    1
## 
## , , 2, 4
## 
##      [,1]
## [1,]    1
## 
## , , 3, 4
## 
##      [,1]
## [1,]    1
## 
## , , 4, 4
## 
##      [,1]
## [1,]    1
## 
## 
## $resC$IM
## , , 1
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## , , 2
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## , , 3
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## , , 4
## 
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## 
## 
## $resC$EM
## , , 1
## 
##      [,1] [,2] [,3]     [,4]
## [1,]  1.8 0.95    0 3.466667
## 
## , , 2
## 
##      [,1]     [,2] [,3]     [,4]
## [1,] 0.95 1.666667    0 1.833333
## 
## , , 3
## 
##      [,1] [,2] [,3] [,4]
## [1,]    0    0    0    0
## 
## , , 4
## 
##          [,1]     [,2] [,3]     [,4]
## [1,] 3.466667 1.833333    0 1.866667
## 
## 
## $resC$Earr
## , , 1, 1
## 
##      [,1]
## [1,]  1.8
## 
## , , 2, 1
## 
##      [,1]
## [1,] 0.95
## 
## , , 3, 1
## 
##      [,1]
## [1,]    0
## 
## , , 4, 1
## 
##          [,1]
## [1,] 3.466667
## 
## , , 1, 2
## 
##      [,1]
## [1,] 0.95
## 
## , , 2, 2
## 
##          [,1]
## [1,] 1.666667
## 
## , , 3, 2
## 
##      [,1]
## [1,]    0
## 
## , , 4, 2
## 
##          [,1]
## [1,] 1.833333
## 
## , , 1, 3
## 
##      [,1]
## [1,]    0
## 
## , , 2, 3
## 
##      [,1]
## [1,]    0
## 
## , , 3, 3
## 
##      [,1]
## [1,]    0
## 
## , , 4, 3
## 
##      [,1]
## [1,]    0
## 
## , , 1, 4
## 
##          [,1]
## [1,] 3.466667
## 
## , , 2, 4
## 
##          [,1]
## [1,] 1.833333
## 
## , , 3, 4
## 
##      [,1]
## [1,]    0
## 
## , , 4, 4
## 
##          [,1]
## [1,] 1.866667
## 
## 
## $resC$err
## [1] 17.83333
## 
## $resC$justChange
## [1] 0
## 
## $resC$rowCluChange
## [1] 2 1
## 
## $resC$colCluChange
## [1] 0 0
## 
## $resC$sameIM
## [1] 0
## 
## $resC$regFun
## , , 1, 1
## 
##      [,1]
## [1,]    0
## 
## , , 2, 1
## 
##      [,1]
## [1,]    0
## 
## , , 3, 1
## 
##      [,1]
## [1,]    0
## 
## , , 4, 1
## 
##      [,1]
## [1,]    0
## 
## , , 1, 2
## 
##      [,1]
## [1,]    0
## 
## , , 2, 2
## 
##      [,1]
## [1,]    0
## 
## , , 3, 2
## 
##      [,1]
## [1,]    0
## 
## , , 4, 2
## 
##      [,1]
## [1,]    0
## 
## , , 1, 3
## 
##      [,1]
## [1,]    0
## 
## , , 2, 3
## 
##      [,1]
## [1,]    0
## 
## , , 3, 3
## 
##      [,1]
## [1,]    0
## 
## , , 4, 3
## 
##      [,1]
## [1,]    0
## 
## , , 1, 4
## 
##      [,1]
## [1,]    0
## 
## , , 2, 4
## 
##      [,1]
## [1,]    0
## 
## , , 3, 4
## 
##      [,1]
## [1,]    0
## 
## , , 4, 4
## 
##      [,1]
## [1,]    0
## 
## 
## $resC$homFun
## [1] 0
## 
## $resC$usePreSpec
## , , 1, 1
## 
##       [,1]
## [1,] FALSE
## 
## , , 2, 1
## 
##       [,1]
## [1,] FALSE
## 
## , , 3, 1
## 
##       [,1]
## [1,] FALSE
## 
## , , 4, 1
## 
##       [,1]
## [1,] FALSE
## 
## , , 1, 2
## 
##       [,1]
## [1,] FALSE
## 
## , , 2, 2
## 
##       [,1]
## [1,] FALSE
## 
## , , 3, 2
## 
##       [,1]
## [1,] FALSE
## 
## , , 4, 2
## 
##       [,1]
## [1,] FALSE
## 
## , , 1, 3
## 
##       [,1]
## [1,] FALSE
## 
## , , 2, 3
## 
##       [,1]
## [1,] FALSE
## 
## , , 3, 3
## 
##       [,1]
## [1,] FALSE
## 
## , , 4, 3
## 
##       [,1]
## [1,] FALSE
## 
## , , 1, 4
## 
##       [,1]
## [1,] FALSE
## 
## , , 2, 4
## 
##       [,1]
## [1,] FALSE
## 
## , , 3, 4
## 
##       [,1]
## [1,] FALSE
## 
## , , 4, 4
## 
##       [,1]
## [1,] FALSE
## 
## 
## $resC$preSpecM
## , , 1, 1
## 
##      [,1]
## [1,]   NA
## 
## , , 2, 1
## 
##      [,1]
## [1,]   NA
## 
## , , 3, 1
## 
##      [,1]
## [1,]   NA
## 
## , , 4, 1
## 
##      [,1]
## [1,]   NA
## 
## , , 1, 2
## 
##      [,1]
## [1,]   NA
## 
## , , 2, 2
## 
##      [,1]
## [1,]   NA
## 
## , , 3, 2
## 
##      [,1]
## [1,]   NA
## 
## , , 4, 2
## 
##      [,1]
## [1,]   NA
## 
## , , 1, 3
## 
##      [,1]
## [1,]   NA
## 
## , , 2, 3
## 
##      [,1]
## [1,]   NA
## 
## , , 3, 3
## 
##      [,1]
## [1,]   NA
## 
## , , 4, 3
## 
##      [,1]
## [1,]   NA
## 
## , , 1, 4
## 
##      [,1]
## [1,]   NA
## 
## , , 2, 4
## 
##      [,1]
## [1,]   NA
## 
## , , 3, 4
## 
##      [,1]
## [1,]   NA
## 
## , , 4, 4
## 
##      [,1]
## [1,]   NA
## 
## 
## $resC$minUnitsRowCluster
## [1] 1
## 
## $resC$minUnitsColCluster
## [1] 1
## 
## $resC$maxUnitsRowCluster
## [1] 9999
## 
## $resC$maxUnitsColCluster
## [1] 9999
## 
## $resC$sameErr
## [1] 1
## 
## $resC$nIter
## [1] 22
## 
## $resC$combWeights
## , , 1, 1
## 
##      [,1]
## [1,]    1
## 
## , , 2, 1
## 
##      [,1]
## [1,]    1
## 
## , , 3, 1
## 
##      [,1]
## [1,]    1
## 
## , , 4, 1
## 
##      [,1]
## [1,]    1
## 
## , , 1, 2
## 
##      [,1]
## [1,]    1
## 
## , , 2, 2
## 
##      [,1]
## [1,]    1
## 
## , , 3, 2
## 
##      [,1]
## [1,]    1
## 
## , , 4, 2
## 
##      [,1]
## [1,]    1
## 
## , , 1, 3
## 
##      [,1]
## [1,]    1
## 
## , , 2, 3
## 
##      [,1]
## [1,]    1
## 
## , , 3, 3
## 
##      [,1]
## [1,]    1
## 
## , , 4, 3
## 
##      [,1]
## [1,]    1
## 
## , , 1, 4
## 
##      [,1]
## [1,]    1
## 
## , , 2, 4
## 
##      [,1]
## [1,]    1
## 
## , , 3, 4
## 
##      [,1]
## [1,]    1
## 
## , , 4, 4
## 
##      [,1]
## [1,]    1
## 
## 
## $resC$exchageClusters
##      [,1] [,2] [,3] [,4]
## [1,]    1    1    1    1
## [2,]    1    1    1    1
## [3,]    1    1    1    1
## [4,]    1    1    1    1
## 
## 
## attr(,"class")
## [1] "optPar"
##  [1] 3 3 3 1 1 2 2 2 4 2 1 2 3 3 1 3

We can use the partition the same way we did in concoR . Add the partition to the network and plot it in igraph.

4.1.2 Euclidean Distances

Euclidean distance is a method of calculating similarities by comparing common distances from some nodes to other nodes. It may be used for either structural equivalence or automorphic equivalence. Below is a modification of what Carter Butts wrote into sna.

4.2 Regular Equivalence

4.2.1 REGE

REGE is actually a set of algorithms that compute similarities - or dissimilarities - between vertices that equate to regular equivalence.

REGE, REGE.for - Classical REGE or REGGE, as also implemented in Ucinet. Similarities in terms of regular equivalence are computed. The REGE.for is a wrapper for calling the FORTRAN subrutine written by White (1985a), modified to be called by R. The REGE does the same, however it is written in R. The functions with and without “.for” differ only in whether they are implemented in R of FORTRAN. Needless to say, the functions implemented in FORTRAN are much faster.

REGE.ow, REGE.ow.for - The above function, modified so that a best match is searched for each arc separately (and not for both arcs, if they exist, together).

REGE.ownm.for - The above function, modified so that a best match for an outgoing ties is searched on row-normalized network and for incoming ties on column-normalized network.

5 Practicum: application to militarized interstate disputes

Militarized interstate disputes are widely thought to be less likely among democratic countries that have high levels of trade and extensive participation in international organizations.

Much of the statistical association typically reported in this literature apparently stems from three components: a) geographical proximity, b) dependence among militarized interstate disputes with the same initiator or target, and c) the higher-order dependencies in these dyadic data.

Once these are incorporated, covariates associated with the Kantian peace tripod (democracy, trade, and international governmental organizations) tend to lose most of their statistical power.

Despite high statistical significance and putative substantive importance, none of the variables representing the Kantian tripod is associated with any substantial degree of predictive power.

Using data from Peterson’s 2014 JCR “Dyadic Trade, Exist costs and conflict”

Abstract:

“Most studies of the link between dyadic trade and militarized conflict examine the extent of trade interaction. However, interaction measures do not account for the impact of cutting off trade (i.e., exit costs). In this article, I highlight the link between exit costs, the cost of conflict, and “the spoils of conquest,” arguing that one state’s exit costs are associated with higher incidence of dyadic conflict when its trade partner’s exit costs are low. However, its exit costs become less aggravating—and eventually pacifying—as its trade partner’s exit costs increase. I test this argument by estimating import demand and export supply elasticities, developing yearly exit cost measures for directed dyads, 1984–2000. Statistical tests confirm that unilaterally high exit costs are aggravating, but that jointly high exit costs are pacifying, a pattern most prominent for trade in strategic commodities."

Description of variables

  • ccode1, Correlates of War code number for state 1
  • ccode2, Correlates of War code number for state 2
  • cname1, Name State 1
  • cname2, Name State 2
  • year, Year of observation
  • fcwinit, MID initiation t+1
  • fcwongo, MID ongoing t+1
  • lndist, natural log of distance
  • finctlc, count of low conflict events t+1
  • fincthc, count of high conflict events t+1
  • polity1_adj, polity2 combined score for A (+10)
  • polity2_adj, polity2 combined score for B (+10)
  • polity_int, polity2 interaction of each state’s combined democracy–autocracy score(rescaled from 0 to 20) from the Polity IV project
  • s_wt_glo, alliance similarity using Signorino and Ritter’s (1999) global weighted S score (accounts for similar foreign policy preferences)