
Day 3
SNA Data Collection

Cohesion, Subgroups & Communities
Hypothesis Testing, Inferential Network Models

Social Network Analysis



Collection, Ethics & Entry



Steps to a SNA study

1. Identify the population
• Bounding, sampling, gaining access

2. Determine the data sources
• Archival, interviews, observations, surveys

3. Collect the data
• Survey design



1. Identify the Population: Bounding  
the Study

• Extremely vexing to beginners and outsiders
– Network concept would seem to argue against boundaries

• Empirical research makes clear we are all connected
– Even if distant links don’t matter, some people in the sample will  

be at the edge, no matter where we cut it

• One key is to isolate when bounding matters
– Yes: Interpersonal influence studies
– No: Selection studies



Types of Boundaries

• Attribute-based
– Top management team at Enron
– Drug injectors in Hartford

• Relation-based
– Snowballing out from seed sample until few or no new names  

(i.e., exhaust current component)

• Mixed criteria
– Sexual ties among residents of Nang Rong

• Theoretical criteria



What is the theoretically relevant population?

Local Global

“Realist”
(Boundary from actors’

Point of view)

Nominalist 
(Boundary from researchers’ 

point of view)

Relations within a 
particular setting (“School 
friends” or “Physicians 
serving this hospital”)

All relations relevant to 
social action (“adolescent 
peer network” or 
“Community Health 
Leaders” ) 

Everyone connected to ego 
in the relevant manner (all 
friends, all sex partners)  

Relations defined by a 
name-generator, typically 
limited in number (“5 
closest friends”)

Networks are (generally) treated as bounded systems, what constitutes your bound?

Most of the time….these boundaries are porous

boundary specification…



In practice:
a) set a pragmatic bound that captures the bulk of theoretically relevant data
b) Collect data on boundary crossing.  

a) You might ask “friends in this neighborhood” but also “Other close friends?”
b) Don’t limit nominations to current setting, but only trace within the bounds.

Good prior research, ethnography, informants, etc. should be used to identify the 
bounds as best as possible, but these sorts of data allow one to at least control for 
out-of-sample effects in models.

For adaptive sampling, such as link-trace designs, you might use a capture/recapture 
rule to figure out if you’ve saturated your population.  Once you stop receiving new 
names…you’ve finished.

--but, if you jump to a new population…this can be hard to discern.

boundary specification…



1. The level of analysis implies a perspective on sampling:
1. Local à random probability sampling
2. Adaptive à Link trace, RDS
3. Complete à Census

These are not as dissimilar as they may appear:
a) Local nets imply global connectivity:

a) Every ego-network is a sample from the population-level global 
network, and thus should be consistent with a constrained range of 
global networks.  

b) If you have a clustered setting, many alters in a local network may 
overlap, making partial connectivity information possible.

c) For attribute mixing (proportion of whites with black friends, low 
BMI with high, users with non-usres, etc.), ego-network data is 
sufficient to draw global inference

boundary specification…



Research Design: Network Sample
Social Network Data

Nominalist
(researcher pov)

Realist
(natural groups)

Local • Probability samples

• Clinical samples

• Extracted from 

complete settings

• Family interviews

• Neighbors

• Workplace samples

Adaptive • Fixed diameter chain 

from qualifying 

seed(s)

• Unlimited diameter

chain on qualifying 

relation

Complete • Census within a fixed 

setting (hospital, 

school, etc.)

• Only practical for real 

groups (“Duke 

Faculty” “Crip”).  Get 

list from informant & 

enumerate.

Data collection strategy

(The column distinction is squishy…)



Research Design: Network Sample
Social Network Data

1.  Ego Network Sampling

• Most similar to standard social survey:
• Easily sampled (as any other survey implementation)

• All information comes from the respondent, so very subject to personal 
projection.

• Ask ego to report on characteristics of alter
For k alters and q attributes à adding kq questions

i.e. 5 friends with 10 behaviors adds 50 questions to the survey!

• Ask ego to report on relations amongst alters.
For k alters and j relational features à j(k(k-1)/2) questions

i.e. 5 friends and 2 relation question is 20 questions:  2*((5*4)/2)

Responden
t

Alter 1

Alter 4

Alter 2

Alter 3



2. Snowball and “link trace” designs

Ego-networks Complete Census

Link-Tracing Designs

Basic idea is to use “adaptive sampling” – start with (a) seed node(s), identify 
the network partners, and then interview them.  

Earliest “snowball” samples are of this type.  Most recent work is “respondent 
driven sampling. (RDS)”

-- If done systematically, some inference elements are knowable.  Else, you 
have to try and disentangle the sampling process from the real structure

Research Design: Network Sample
Social Network Data



3. Global network samples: Population Census

• Key issue is to enumerate the population & collect relational 
information on all.

– If dynamic, this can make implementation difficult
– Tends to force case-study style designs (highly clustered 

settings)
– Contrast N of networks with N of respondents
– Because behavior is self-reported (rather than alter 

reported), adding network questions to a census-based 
survey is low cost.

• If you are doing a census anyway….then good to add 
network questions.  

Research Design: Network Sample
Social Network Data



Sampling

• Sampling is not a problem for ego  
networks

• Sampling for complete networks is in its  
infancy



Gaining Access

• A little harder than for ordinary studies
– Strong preference for complete data
– Respondent fears
– Length of interview

• Quid pro quo helps but muddies the  
ethical waters



Step 2: Determine Data Sources

• Archival data
• Interviews
• Observations
• Surveys



Step 3: Collect the Data

• What questions to ask?
– How many questions to ask

• Depends on style (roster v. recall)

• How to format your survey?



What Questions to Ask?

• IT DEPENDS!!!
– A relation is just a variable. “Giving advice” is  

to network analysis what “attitude toward gun-
control” is to survey research.

– It is the researcher who defines the relations  
of interest. What’s relevant for the  
phenomena in question?
• HIV diffusion: sexual ties and needle-sharing are

directly involved, other ties like acquaintanceship
can potentially turn into sex and sharing ties



What information do you want to collect?  

This is ultimately a theory question about how you think the social network matters 
and what social or biological mechanisms matter for the outcome of interest.  This 
is driven by thinking through:

Health Outcome à Mechanism à Relation(s)

Examples:
Sometimes the relations are clear:

STD/HIV à Contagion-carrying contact à Sex, Drug sharing, etc.

Sometimes not so much:
Health Behavior à Information flow à Discussion networks
Health Behavior à Social Conformity Pressure à Admiration nets
Health Behavior à opportunities à Unsupervised interaction

what question to ask?



What information do you want to collect?  

Sometimes the outcome is deliberately unspecified, as when you are collecting data 
for a large common use projects (GSS, Add Health, NHRS).  

Then the design is effectively reversed:  What relations capture the most (general? 
comprehensive? efficacious? Reliable?) social mechanisms that will be of broad 
interest?

Relation(s) Respect

Contact

Information

Pressure

Substance Use

Suicidal Ideation

Treatment adherence

BMI

Disease

Excitement

Social mechanism ambiguity allows broad use, which favors relations that tend to be 
general.  This, of course, makes crisp causal associations more difficult. 

what question to ask?



What information do you want to collect?  

Health Outcome à Mechanism à Relation(s)

Relations themselves are often multi-dimensional…do these matter for 
your question?

- Perception vs. interaction? 
“who do you like?” ßà “who do you talk with?”

- Intensity?
“How often …”, “how much…”  
strong vs. weak

- Dynamics?
Starting & ending dates,  everyday contact or sporadic?

what question to ask?



Ethnographic Sandwich

• Ethnography at front end helps to …
– Select the right questions to ask
– Word the questions appropriately
– Create enough trust to get the questions  

answered
• Ethnography at the back end helps to …

– Interpret the results
– Can sometimes use resps as collaborators

what question to ask?



A Public Service Announcement

• Douglas White has a  
book about the  
intermingling of  
Ethnography and  
Network Analysis
– It’s a couple years old

• Based on reputation, I  
expect it is very good, so  
you might consider  
looking at this if you are  
particularly interested in  
the subject and problem.

• https://goo.gl/eqnJkJ



Survey Elements

a) Informed consent
a) It is important to let people know that their identities matter: network data are confidential 

but (at least in the construction) not anonymous.  

b) Name Generator Questions
a) General term for what relation you are trying to tap.
b) Many extant name generators out there…most evidence suggests that people are very 

sensitive to the questions asked.
a) If you ask multiple relations, be clear whether it is OK to repeat names!

c) Response Format
a) Open List à number of lines suggests “right” answer
b) Check off/select à very simple on/off, might result in over-estimates
c) Limit choice à limiting choice limits degree which affects *every* network statistics.
d) Rank/Rate à asking people to rank each other is difficult (and can backfire!)
e) If multiple name generators – grid or separate questions?

Surveys



If you use surveys to collect data, some general rules of thumb:

a) Network data collection can be time consuming. 
If interests are in network-level structure effects, it is better to have breadth over depth.  Having 
detailed information on <50% of the sample will make it very difficult to draw conclusions about 
the general network structure.

If interest is in detail interpersonal information – social support for example – detailed 
information on one or two key ties might be more important.

Survey time is the crucial resource: never enough to ask everything you want.

b) Question format:
• If you ask people to recall names (an open list format), fatigue will 

result in under-reporting
• If you ask people to check off names from a full list, you can often get 

over-reporting 

c) It is common to limit people to ~5 nominations.  This will bias network stats 
for stars, but is sometimes the best choice to avoid fatigue.  

Surveys



Survey Design Issue

• Paper or Plastic?
• Close-ended (Roster) vs. Open-ended
• Repeated Roster vs. MultiGrid
• Tick vs. Rate



Paper or Plastic?
• Paper medium

– Reliable
– Reassuring to respondents
– Errors in data entry
– Data entry is time-consuming

• Electronic
– Span distances, time zones
– Harder to lose
– Fewer data handling errors
– Lower response rate
– Emailed documents vs survey instruments









Tick or Rate?
• Ask respondent for yes/no decisions or quantitative  

assessment?
– Yes/no are cognitively easier on respondent (therefore

reliable,  believable),
– Yes/no *much* faster to administer
– But yes/no provides no discrimination among levels

• A series of binaries can replace one quant rating:
– Instead of “How often do you see each person?”
– 1 = once a year; 2 = once a month; 3 = once a week;etc.

• Use three questions (in this order):
– Who do you see at least once a year?
– Who do you see at least once a month?
– Who do you see at least once a week?



Question Wording Issues

• “Friendship” does not mean the same  
thing to everyone
– Especially across national cultures

• Some helpful practices
– Use one word label plus two or three  

sentence description, plus have full paragraph  
detailed explanation available

– Use homogeneous samples



Survey Construction Strategies

• Ego Net
• Row-based (for undirected relations)
• Row and Column-based (for directed  

relations)
• Matrix based (Krackhardt CSS)



Ego Networks
• (Random) sample of nodes

– Each sampled node called an  
“ego”

• Each is asked for set of contacts  
called “alters”

• Each is asked about attributes of  
self, and alters

• Ego also asked (usually) about  
ties among alters

• Connections between ego’s or  
between alters of different egos  
are not recorded
– Each ego is a world in itself



Row-Based

• Each informant questionnaire corresponds  
to one row in the network adjacency matrix

• Issues of comparability across  
respondents

• For logically undirected relations, can deal  
with accidental asymmetry and missing  
respondents via symmetrization
– Intersection rule: Xij = 1 if Xij  = 1 and Xji = 1
– Union rule: Xij  = 1 if Xij  = 1 or Xji= 1



Row and Column Based

• Each informant effectively asked to fill out both their row  

and their column of the adjacency matrix (but actually  

stored as separate matrices)

– Aij: Who do you give advice to?

– Bij: Who do you get advice from?

• Handle asymmetry by creating new matrix X = A ∩ BT 

(intersection criterion)

– Xij = 1 iff (Aij = 1) AND (Bji  = 1)

– i.e., i gives advice to j if i says i gives advice to j and j says they  

receive advice from I

• Problem with cognitive & affective relations

• Respondent is the expert



Matrix-based

• Krackardt CSS
• Each respondent asked about relations among  

all pairs of persons in group, not just those  
involving self
– Yields network matrix C(k) for each respondent

• Aggregate respondent matrices using choice of  
rules
– Local: Xij = 1 if C(i)ij  and C(j)ij

– Global: Xij = 1 if C(k)ij = 1 for most k





How Reliable are SNA data?

• Response bias
• Asymmetry
• Missing data
• Accuracy
• Ethics



Response Bias

• Some respondents positively biased
– Give big numbers in general when rating strength of  

tie or frequency
• Row-based approach yields matrices in which  

each row potentially has different measurement  
scale
– Can create asymmetry when none “exists”

• For valued data can normalize by rows
– Z-scores, euclidean norms, maximum, marginals



Unexpected Asymmetry

• A claims to have sex with B, but B does not  
claim to have sex with A
– The relation is logically symmetric, but empirically  

asymmetric
– Errors of recall; strategic response

• Sometimes asymmetry is the point
• Logically symmetric data may be symmetrized

– If either A or B mentions the other, it’s a tie
– Only if each mentions the other is it a tie



Non-symmetric Relations

• Gives advice to
• Can’t symmetrize logically non-symmetric

relations, except by changing meaning of
tie

• Unless you ask question both ways:
– Who do you give advice to?
– Who gives advice to you?

• Two estimates of the A→B tie, and two  
estimates of the A←B tie



Missing Data

• For logically symmetric relations

– if Xij  is missing, substitute Xji

– If whole row missing, substitute corresponding column

• For logically non-symmetric relations, ask  

questions both ways (who do you give advice to,  

who gives advice to you)

– set Aij  = Bji

– i.e., missing row is replaced with column of the  

inverse relation



What to do about missing data?

Easy:
• Do nothing.  If associated error is small ignore it.  This is the default, not particularly satisfying.

Harder: Impute ties
• If the relation has known constraints, use those (symmetry, for example)
• If there is a clear association, you can use those to impute values.
• If imputing and can use a randomization routine, do so (akin to multiple imputation 

routines)
• All ad hoc.

Hardest:
• Model missingness with ERGM/Latent-network models.

• Build a model for tie formation on observed, include structural missing & impute.  
Handcock & Gile have new routines for this.

• Computationally intensive…but analytically not difficult.



Informant Accuracy

• Bernard, Killworth et al compared observed with  
recalled interaction data
– Ham radios, deaf TTYs
– About half of the cells in the adjacency matrix were  

wrong
• Romney & Faust noted that structural analyses  

didn’t seem so far off
– Surface structure vs deep structure

• Freeman, Romney & Freeman
– Respondents biased toward long term patterns



Krackhardt CSS

• Many sources of inaccuracy
– Recall and exaggeration of ties with high  

status people
– Idiosyncratic understanding of the question

• Take “average” of everyone’s perception  
of given dyad’s relationship
– Great for deliberately hidden relationships



Dillman Survey Design Considerations

• Network questionnaires can be fun but are  
usually time-consuming and generate  
anxiety

• Providing value
• Treating respondent with respect
• Attractive formatting
• Cloaked in authority and importance



Ethical issues



Ethical and Strategic Issues

• What makes network research especially  
challenging ethically?

• What are the dangers & to whom?
– In academic setting
– In management setting
– In mixed situations
– In national security setting

• What can we do about it?



Ethical Issues

• Respondents cannot be anonymous
• Non-respondents are still included
• Missing data can be powerful
• Has the potential to be mis-used by  

Management



The Belmont Report: Guiding Ethical 
Principles to Social Science Research
Respect for Persons

Autonomy

Voluntariness
Informed Consent

Beneficen
ce Do not harm

Maximize possible benefits/Minimize Possible Harms

Justice
The risks and benefits of research should be 
equitably distributed

1



Questions of Informed Consent and Privacy

Key Components of Informed Consent
Disclosing to potential research subjects information needed 
to make an informed decision

Facilitating the understanding of what has been disclosed

Promoting the voluntariness of the decision about whether or 
not to participate in the research.

2



Risks in Social Network Studies 

In most social network research, the chief risk to respondents is that 
of being stigmatized as a result of being identified as belonging to a 
stigmatized category or group (e.g., sex workers, drug addicts), or 
from adverse consequences resulting from revealing an individual’s 
role or position in a  social setting (e.g., discovering you are the least 
liked individual in your organization).

Social network research shares these risks with other forms of 
survey-based research that examine the impact of one’s social 
environment on phenomena such as risk taking, mental health, and 
attitudes towards medical providers.

However, there are some unique sources of risk.
3



Potential Risks Associated with Relational Data
Outing People

Minor: Mom Finds Out Mike Smokes

Major: Wife Finds Out that Her Husband Has Been Cheating

Legal Risks
If you trace a relationship between an adult and a child 
that 
would be treated as contributing to the delinquency of a 
minor, are you legally obligated to report the relationship?If a known-to-be STD positive person names a partner, 
do we inform the partner of the respondent’s STD 
status?Detecting Fraud
Network analyses can reveal inconsistencies that 
suggest fraud (very high degree, say, or sharing patients 
in a way that is highly irregular

4











Data Agreements

When collecting data establish: 

Who owns the data 

How will it be collected 

Who stores and processes it

How long will identifying information be retained

Who has access to identifying information
The answers to these questions can help in determining 
whether you believe the study can be conducted in an ethical 
manner.

11



Summary

• There are three steps to getting started on a  
social network study
– Identify the population
– Determine data sources
– Collect data

• In addition there are a number of issues that  
must be considered such as response bias,  
missing data, unexpected asymmetry, and  
ethical considerations



2. Cohesion, Subgroups & Communities



Application
• How do you think network structure  

interacts with the morale of the group?



35

40

45

50

Core/Periphery-ness

n Study by Jeff Johnson of a South  
Pole scientific team over 8 months

n C/P structure seems to affect  
morale

Core-Periphery Structures & Morale

10

15

20

25

30

1 2 3 4 5 6 7 8

Mont
h

GroupMorale

- peripheral individuals would often develop thyroid problems, which is related to 
depression; 
- globally coherent networks were associated with group consensus

Johnson et al. (2003) “Social Roles and the 
Evolution of Networks in Extreme and Isolated 
Environments”;
Palinkas et al. (2004) “Social Support and 
depressed mood in isolated and confined 
environments”

Degree of
coreness



Dyadic & Whole Network Cohesion

• Dyadic cohesion refers to pairwise social  
closeness

• Whole network measures can be
– Averages of dyadic cohesion
– Measures not easily reducible to

dyadic  measures

• We are going to focus on the whole  
network parts of cohesion.



Measures of Group Cohesion
Whole Network Measures
• Density & Average degree
• Average Distance and Diameter
• Component measures (# & Ratio)
• Fragmentation (reachable & distance-

weighted)
• Connectivity
• Centralization
• Core/Peripheriness



Density
• Number of ties, expressed as percentage of the 

number  of ordered/unordered pairs

Low Density (25%)  
Avg. Dist. = 2.27

High Density (39%)  
Avg. Dist. = 1.76



Help With the Rice Harvest

Data from Entwistle et al

Village
1



Help With the Rice Harvest

Which  
village  
is more  
likely 
to  
survive
?

Village
2 Data from Entwistle et al



Average Degree
1
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10

• Average number
of  links per
person

• Is same as
density*(n-1), where
n  is size of network
– Density is just  

normalized avg
degree

– Often more 
intuitive  than
density
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Average Distance

• Average geodesic distance between all  
pairs of nodes

avg. dist. = 1.9 avg. dist. = 2.4



Diameter

• Maximum distance

Diameter = 3 Diameter = 3



Fragmentation Measures

• Component ratio
• F measure of fragmentation
• Distance-weighted fragmentation DF



I3

W8
S2

S4

Component Ratio

• No. of components divided by number of
nodes

W2
W4

W7
W9

S1

W5

W6
W1

I1

W3

Component ratio = 3/14 = 0.21



F Measure of Fragmentation

F = 1- i¹ j

• Proportion of pairs of nodes that
are  unreachable from each other

årij

rij = 1 if node i can reach node j by a path of any length  
rij = 0 otherwise

• If all nodes reachable from all others (i.e., 
one  component), then F = 0

• If graph is all isolates, then F = 1

n(n-1)



Computation Formula for 
F  Measure

• No ties across components, and all  
reachable within components, hence can  
express in terms of size of components

åsk (sk -1)
F = 1 - k

n(n -1)

Sk = size of kth component



Computational Example
Games Data

Comp  
1

2
3

Size Sk(Sk-1)  
1 0

1 0
12 132

I1

I3

W1

W2

W3

W4

W5

W6

W7

W8

W9

S1

S2

S4 = 1 – (132/(14*13)) = F

14 132

0.2747



Distance-Weighted Fragmentation

• Use the reciprocal of
distance
– letting 1/¥ = 0 å 1

i¹ j dijD F =
1-

• Bounds
– lower bound of 0 when every pair is adjacent to 

every  other (entire network is a clique)
– upper bound of 1 when graph is all isolates

n(n
-1)



Connectivity

• Line connectivity l
is  the minimum
number  of lines that 
must be  removed to 
discon- nect
network

• Node/point 
connectivity  κ is 
minimum number  of 
nodes that must be  
removed to discon-
nect  network

S
T



Centralization

• Degree to which network revolves around  
a single node

Carter admin.  
Year 1



Core-Periphery Models

• A core periphery structure has a single  
cohesive subgroup with a set of other  
nodes, loosely connected to the core

• Core members interact with (lots of) other  
core members

• Periphery members interact with (a few)  
core members

• Periphery members rarely interact with  
each other



Finding Core/Periphery Structures

Core-periphery structure in networks

P. Csermely, A. London, L.-Y. Wu, and B. Uzzi, J. Complex Networks 1, 93 (2013);  
M. P. Rombach, M. A. Porter, J. H. Fowler, and P. J. Mucha, SIAM J. App. Math 74, 167 (2014).

SHL, M. Cucuringu, and M. A. Porter, Phys. Rev. E 89, 032810 (2014);  
M. Cucuringu, M. P. Rombach, SHL, and M. A. Porter, e-print arXiv:1410.6572.
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Core Periphery Block Model
Modules and Module Detection

Basic Idea:

A module or community is a collection of nodes defined by how its
edges behave:

Edge Density: For social networks, we expect edge density to be
greater within a community than without. (Assortative Community)
Edge Weight: For coexpression networks, we expect the correlations
to be higher within a functional module than without.
Etc.



Core Periphery Block Model

• Density
Matrix

1 2

----- -----

1 0.451 0.106

2 0.106 0.057



Continuous Core/Periphery

• Calculate a “Coreness” vector C, in which  

ci is the likelihood actor i is in the core

• Run a “Concentration” score to determine  

what is most appropriate core size

– Basically correlate “coreness” values to 

ideal partition of core (1) and periphery (0)

• Runs other measures as well

– Pick the size with the highest correlation

• Create an “expected value” matrix which is  

CCT (product of each dyad’s coreness)



Dyadic Cohesion
• Adjacency

– Strength of tie
– Reciprocity

• Reachability
– A path exists or does not (usually as 1/dij)

• Distance

Average is density

1- f(Average) is fragmentation
Or distance weighted fragmentation

Average is average distance• Distance
– Length of shortest path between two nodes
– # Geodesics (how many paths of this length)

• Multiplexity
– Number of ties of different relations linking two nodes

• Number of paths linking two nodes
– Edge independent
– Node independent

Average is average distance

Minimum is line connectivity

Minimum is point connectivity

rd1



Cohesive Subgroups & Communities

Broadly: “a group of nodes that are relatively densely connected to each other but 

sparsely connected to other dense groups in the network” Porter et al. 2009

No universal definition! But some ideas are:

• A community should be densely connected

• A community should be well-separated from the rest of the network

• Members of a community should be more similar among themselves than with 

the rest

Most common..

nr. of intra-cluster edges > nr. of inter-cluster edges

Typology of network communities

1. Cohesive subgroups

2. Similarity based clustering (agglomerative)

3. Graph partitioning (divisive)



Example(–(Social(Networks(

Imagine!this!Graph!….(

Michael(J.(Bommarito(II,(Daniel(Mar:n(Katz(



Example(–(Social(Networks(

What! factors! might! affect! the! formaJon! of!
friendships!in!a!high!school!social!network?!
!
Ideas:!!Age,((Gender,(Class,(Race,(Interests(

(
How! might! we! assign! communiJes! to! this!
network?!
(

!
!
!
!
(
(

VerJces:(People(
Edges:(Friendship(

Michael(J.(Bommarito(II,(Daniel(Mar:n(Katz(



Example(–(Social(Networks(

What! factors! might! affect! the! formaJon! of!
friendships!in!a!high!school!social!network?!
!
Ideas:!!Age,((Gender,(Class,(Race,(Interests(

(
How! might! we! assign! communiJes! to! this!
network?!
(

!
!
!
!
(
(

Girls!

Boys!

VerJces:(People(
Edges:(Friendship(

Michael(J.(Bommarito(II,(Daniel(Mar:n(Katz(



Example(–(Vo:ng(Coali:ons(

Michael(J.(Bommarito(II,(Daniel(Mar:n(Katz(

VerJces:(People(
Edges:(CoKvoted((
((((((at(least(once(

Now!let�s!look!at!the!same!network!as!if!it!
represented!coPvoJng!in!the!Senate.!
!
Ideas:!Issue(posi:on,(geography,(ethnicity,(gender(
!
How!might!we!assign!communiJes!to!this!
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Example(–(Vo:ng(Coali:ons(

Republicans!

Democrats!

Independents(
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!
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!
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Why look for community structure?

Sawmill network: source Exploratory Social Network Analysis with Pajek

Key, H = hispanic, E = english
P = planing, M = milling, Y = yard

! The management at the sawmill was having difficulty persuading the workers 
to adopt a new plan, even though everyone would benefit. In particular the 
Hispanic workers (H) were reluctant to agree. The management called in a 
sociologist who mapped out who talked to whom regularly. Then they 
suggested that the management talk to Juan and have him talk to the 
Hispanic workers. It was a success, promptly everyone was on board with the 
new plan. Why?



Context!(

Note!that!we!have!assigned!community!membership!differently!!
!!despite!observing!the!same%graph!%
%
Community!detecJon!is!not!a!concept!that!can!be!divorced!from!context.!
(
(

Michael(J.(Bommarito(II,(Daniel(Mar:n(Katz(

context matters



context matters – why do we observe communities at 
all? Affiliation networks

!otherwise known as
! membership network 

! e.g. board of directors
! hypernetwork or hypergraph
! bipartite graphs
! interlocks

1 1

1 2

1

they arise out of an affiliation network! the one-mode projection we observe is 
an embedding of a multidimensional network that exists.



practical aspects
Directedness(

Undirected! Directed!

Michael(J.(Bommarito(II,(Daniel(Mar:n(Katz(Many methods: 
do not incorporate direction;
allow for bidirected edges;
may implement same method with or without support for directed egdes



practical aspects

Computation complexity mainly focused on two resources:

1. Time – how long does it take to perform sequence of operations?
2. Storage – how much space does it take to store our problem?

We tend to communicate both through “Big-O notation”.

Computa:onal(Complexity(Refresher(

In(computa:onal(complexity,(�BigKO(nota:on�(conveys(informa:on((
((about(how(:me(and(storage(costs(scale(with(inputs.(
(
• (O(1):(constant(K(independent(of(input(
• (O(n):(scales(linearly(with(the(size(of(input(
• (O(n^2):(scales(quadra:cally(with(the(size(of(input(
• (O(n^3):(scales(cubically(with(the(size(of(input(

These(terms(ofen(occur(with(log!n!terms(
((and(are(then(given(the(prefix(�quasiK.�(

For(graph(algorithms,(the(input(n(is(typically((
• |V|,(the(number(of(ver:ces(
• |E|,(the(number(of(edges(

((((

Michael(J.(Bommarito(II,(Daniel(Mar:n(Katz(



Cohesive Subgroups:  A Typology

Found by algorithm  
(input data driven)

Found by finding sets  with 
output properties

Network /  
Graph  
theory

Graph-theoretic data  
driven algorithms  
Newman-Girvan

Formal definitions of  
sociological groups
{mathematical ethnography}
Clique, n-clique, n-clan,  n-
club, k-plex, ls-set,  lambda-
set, k-core,  component

Proximities /  
Clustering

Multivariate clustering  
analysis methods
Johnson’s Hierarchical  
clustering; k-means;  MDS

Formal definitions of  abstract
clusters
Combinatorial optimization
Factions (Core-Periphery)



Node-Centric Community Detection 

Community 
Detection 

Node-
Centric 

Group-
Centric 

Network-
Centric 

Hierarchy-
Centric 

Network-Centric Community Detection 

Community 
Detection 

Node-
Centric 

Group-
Centric 

Network-
Centric 

Hierarchy-
Centric 

Hierarchy-Centric Community Detection 

Community 
Detection 

Node-
Centric 

Group-
Centric 

Network-
Centric 

Hierarchy-
Centric 

Hierarchy-Centric Community Detection 

Community 
Detection 

Node-
Centric 

Group-
Centric 

Network-
Centric 

Hierarchy-
Centric 

taxonomy of communities

Each node 
satisfies certain 
properties

Partitions the 
whole network 
into disjoint 
sets

Constructs 
hierarchical 
structure of 
communities



Basics of communities
Section 2     Communities   
 

A.-L. Barabási, Network Science: Communities. 

We focus on the mesoscopic scale of the network

Microscopic Mesoscopic Macroscopic



Fundamental Hypotheses of communities

H1: A network’s community structure is uniquely encoded in its wiring 
diagram

H2: Connectedness Hypothesis – a community corresponds to a 
connected subgraph

H3: Density Hypothesis – communities correspond to locally dense 
neighbourhoods of a network;

H4: Random Hypotheses: randomly wired networks are not 
expected to have a community structure;

H5: Maximal Modularity Hypotheses: the partition with the 
maximum modularity M for a given network offers the optimal 
community structure



Fundamental Hypotheses of communities

Section 3     Basics of Communities   
 

Consider a connected subgraph C of Nc nodes
Internal degree, ki

int : set of links of node i that connects 
to other nodes of the same community C.
External degree ki

ext:  the set of links of node i that 
connects to the rest of the network.  

If ki
ext=0: all neighbors of i belong to C, and C is a good 

community for i.
If ki

int=0, all neighbors of i belong to other communities, 
then i should be assigned to a different community. 

Strong and weak communities kinti = 3

kext
i

= 1

i

A.-L. Barabási, Network Science: Communities. 



Fundamental Hypotheses of communities
Section 3     Basics of Communities   
 

Strong community: 
Each node of C has more links within the 
community than with the rest of the graph. 

k int
i (C ) > kext

i (C )

Weak community: 
The total internal degree of C exceeds its 
total external degree, 

∑
i∈C

k in
i (C ) > ∑

i∈C
kout

i (C )

Clique Strong Weak
A.-L. Barabási, Network Science: Communities. 



Node-Centric | Community Detection (Cohesive subgroups)



Node-Centric | Community Detection

Defined by graph-theoretic characteristics of resultant sets, where nodes must satisfy 
different properties:

• Complete Mutuality [everybody in the group knows everybody else]
• components
• cliques

• Reachability of members [individuals are separated by at most n hops]
• n-clique, n-clan, n-club

• Nodal degrees [everybody in the group has links to at least k others in the 
group]

• k-plex, k-core

• Relative frequency of within-outside ties [subgroup members v non-members]
• LS sets, Lambda sets



• Maximally connected subgraph
– In undirected graphs, it just means 

everyone’s  connected to everyone else
– In digraphs there are strong and 

weak  components:
• Strong components mean everyone can 

reach  everyone else, even when considering
the
one-way streets in the network

• Weak components means, if we ignore the  
directionality of the ties, everyone is reachable 
by  everyone else

complete mutuality | components



Campnet
Colored by Strong Components



• Definition
– Maximal, complete subgraph
– Set S s.t. for all u,v in S, (u,v) in

E
• Properties

– Maximum density (1.0)
– Minimum distances (all 1)
– overlapping
– Strict

a b
c

d

e f

{c,d,e} is the  
only clique

complete mutuality | cliques



Subgraphs

a

b c

d

• Set of nodes
– Is just a set of nodes

• A subgraph
– Is set of nodes together  

with ties among them

• An induced subgraph
– Subgraph defined by a set  

of nodes
– Like pulling the nodes and  

ties out of the original  
graph

ef

a

b c

d

f e

Subgraph induced by {a,b,c,f,e}



Geodesic 

!  Reachability is calibrated by the 
Geodesic distance 

!  Geodesic: a shortest path between 
two nodes (12 and 6) 
!  Two paths: 12-4-1-2-5-6, 12-10-6 
!  12-10-6 is a geodesic 

!  Geodesic distance: #hops in geodesic 
between two nodes 
!  e.g., d(12, 6) = 2, d(3, 11)=5 

!  Diameter: the maximal geodesic 
distance for any 2 nodes in a network 
!  #hops of the longest shortest path 

Diameter = 5 

18 



JENNI

complete mutuality | clique

BILL

DON
HARRY

Clique

• A maximal complete subgraph
– Everyone is adjacent to everyone else
– Distance & Diameter is 1
– Density is 1

HOLLY

BRAZEY CAROL

PAM

PAT

JENNIE

PAULINE

ANN

MICHAEL

LEE

JOHN

HARRY

GERY

STEVE

BERT

RUSS

– Density is 1

• Limitations
– Undirected
– Binary
– 3+ nodes



HOLLY

MICHAEL

BILL

DON

HARRY

10 cliques found.

1:  HOLLY MICHAEL DON HARRY
2:  BRAZEY LEE STEVE BERT
3:  CAROL PATPAULINE
4:  CAROL PAM PAULINE
5:  PAM JENNIE ANN
6:  PAM PAULINE ANN
7:  MICHAEL BILL DON HARRY
8:  JOHN GERY RUSS
9:  GERY STEVE RUSS
10:  STEVE BERT RUSS

BRAZEY CAROL

PAM
JENNIE

PAULINEJOHN

PAT

GERY

LEE
STEVE

BERT

ANN

RUSS



Problems with Cliques

• Very strict

• Not robust: one missing link can disqualify a clique

• Sometimes too many and overlapping;

• Not interesting

• everybody is connected to everybody else

• no core-periphery structure

• no centrality measures apply

• Sometimes too few

– This has lead to many kinds of relaxations.The distinctions between them 

are subtle, and  not generally of practical importance.

• We’ll go through them, but don’t worry about the nuances, just know 

multiple variants exist



Types of Relaxations

• Distance Relaxations (length of paths)
– n-clique
– n-clan
– n-club

• Density Relaxations (number of ties)
– k-plex
– k-core



• n-Clique
– Maximal subset with all

nodes  within n steps of 
each other

BILL

HOLLY

CAROL

PAM

PAT

JENNI

PAULINE

ANN

MICHAEL

LEE

JOHN

DON  
HARRY

GERY

STEVE

BRAZEY

BERT

RUSS

• Path can include  
nodes not in n-
Clique

• A Clique is a 1-
Clique

Is this a 2-Clique?
NO!
What about
now? But so is

this!!!

reachability of members | n-clique



N-cliques

• Definition
– Maximal subset s.t. for all u,v in S, d(u,v) <= n
– Distance among members less than specified
maximum

– When n = 1, we have a clique b c– When n = 1, we have a clique

• Properties
– Relaxes notion of
clique
• Avg distance
can be greater
than 1

a

b c

d

ef
Is {a,b,c,f,e} a 2-clique?
yes

reachability of members | n-clique



HOLLY

MICHAEL

BILL

DON

HARRY

10 2-cliques found.

1:  HOLLY MICHAEL BILL DON HARRYGERY
2:  MICHAEL JOHN GERY STEVE RUSS
3:  PAULINE JOHN GERY RUSS
4:  HOLLY PAULINE GERY
5:  BRAZEY LEE GERY STEVE BERT RUSS
6:  JOHN GERY STEVE BERT RUSS
7:  HOLLY CAROL PAM PAT JENNIE PAULINE ANN
8:  CAROL PAM PAT PAULINE ANN JOHN
9:  HOLLY PAM PAT MICHAEL DON HARRY
10:  PAM PAT MICHAEL JOHN

BRAZEY CAROL

PAM
JEN

PAULINEJOHN

PAT

GERY

LEE
STEVE

BERT

ANN

RUSS



Some are counter-intuitive  
(And not necessarily cohesive)

This is a 2-
Clique

Red Nodes form a  
2-Clique, so do
Blues



Issues with N-Cliques
• Overlapping

– {a,b,c,f,e} and {b,c,d,f,e} are  both 2-cliques
• Membership criterion satisfiable through non-

members
• Diameter may be greater than n
• n-clique may be disconnected (paths go through

nodes not in subgroup)
• Even 2-cliques can be fairly non-cohesive

– Both sets of alternating nodes belong to a different 2-
clique  but none are adjacent

a

b c

d

ef

considerations with n-cliques
!problem

! diameter may be greater than n
! n-clique may be disconnected (paths go through 

nodes not in subgroup)

2 – clique
diameter = 3

path outside the 2-clique

! fix
! n-club: maximal subgraph of diameter 2



Many of these are (too) plentiful
• One way to process the information is to 

look  at CliqueSets as a two-mode network

Many of these are (too) plentiful
• One way to process the information is to look
at CliqueSets as a two-mode network

Red circles are actors
Blue squares are cliques



Or, Look at CliqueOverlap

CliqueOverlap with  
isolates removed



Loosen the density restriction

• n-Cliques (and the attempts to fix them, n-Clans,  and n-Clubs) all 
start from the definition of  Cliques and relax the distance 
requirement (all  distances = 1) in varying ways:
• e.g. n-club: maximal subgraph of diameter 2

• But, Cliques also have maximum density (d = 1),  and we can 
relax that definition instead.

• But for this, we must define the alpha operator,
a, such that a(u,G) is the number of edges from node u to nodes 
in graph G



• k-Plex
– A clique where members don’t have to 

be  connected to everyone else, just all 
but k  members, or…

– a [maximal] subgraph S s.t. for all u in S,
a(u,S)
>= |S|-k, where |S| is size of set S

• All subsets of k-plexes are k-plexes (if non-
maximal)

• Get distance for free based on S, k.
– If k < (|S|+2)/2 then diameter <= 2

• Numerous & Overlapping
• May be more intuitive than distance-based

measures
• A Clique is a 1-plex (We assume it not tied to itself)

nodal degrees | k-plex



K-Plex
a b

c

e d

Is {a,b,d,e} a 2-plex?
Is {a,b,c,d,e} a 2-plex?
Is {a,b,d} a 2-plex?

Is the graph as a whole a 2-plex?  
Is it a 3-plex?



• Sort of opposite approach from k-plex

– Because the size of the group is not taken into account, k-cores 

are more directly about specifying  how many ties MUST be 

present independent of how  many nodes are in the core, 

whereas the k-plex is about how many may be missing.

• A k-Core is maximal subgraph within which all nodes 

have ties to at least k other nodes
– All nodes in a components are at least 1-Cores

– Each nodes is assigned a “core” which is the largest  k-core to 

which it belongs (and it therefore also  belongs to all lower 

cores that exist)

– K-cores are hierarchical and form a partition

– However, they may be disconnected

nodal degrees | k-core



cdgk

• A k-core is a maximal subgraph such that  
for all u in S, a(u,S) >= k

abe

f hil

j

– All nodes are 2-core (and 1-
core)  Red nodes are 3-core.

• Great for analyzing large
networks

formal definition



but still too stringent…

k-cores
! Each node within a group is connected to k other 

nodes in the group

3 core
4 core

! but even this is too stringent of a requirement for 
identifying natural communities

2 core
4 core

node on top right only has 2 edges, so it is excluded from the 4 core group 
identified; the next k-core partition it can join is one that captures the whole 
network…



recap node-centric communities 
(cohesive subgroups)Recap of Node-Centric Communities 

!  Each node has to satisfy certain properties 
!  Complete mutuality 
!  Reachability 
!  Nodal degrees 
!  Within-Outside Ties 

!  Limitations: 
!  Too strict, but can be used as the core of a community 
!  Not scalable, commonly used in network analysis with small-size 

network 
!  Sometimes not consistent with property of large-scale networks 

!  e.g., nodal degrees for scale-free networks  

22 
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Network-Centric | [Agglomerative . Divisive] Community Detection

Quantifying the quality of community structure
Methods for detection of community structure

Hierarchical clustering algorithms
Girvan-Newman algorithm
Modularity optimization algorithms
Graph partitioning algorithms
Clique percolation method

Hierarchical clustering
From hairball to dendogram

Marta Arias & R. Ferrer-i-Cancho Community structure in networks



Hierarchical Clustering 

Section 4       
 



Section 4     Hierarchical Clustering   
 

Agglomerative algorithms merge nodes and communities with high 
similarity. 
Divisive algorithms split communities by removing links that connect 
nodes with low similarity. 

1. Build a similarity matrix for the network

2. Similarity matrix: how similar two nodes are to each other ! we need to 
determine  from the adjacency matrix

3. Hierarchical clustering iteratively identifies groups of nodes with high similarity, 
following one of two distinct strategies:

Hierarchical tree or dendrogram: visualize the history of the merging or splitting 
process the algorithm follows. Horizontal cuts of this tree offer various 
community partitions. 

4.

Hierarchical Clustering - procedure



Network-Centric | [Agglomerative] Community Detection

Similarity based clustering

Similarity based vertex clustering:

Define similarity measure between vertices based on network structure
- Jaccard similarity
- Cosine similarity
- Pearson correlation
- Eucledian distance (dissimilarity)

Calculate similarity between all pairs of vertices in the graph
(similarity matrix)

Group together vertices with high similarities

Leonid E. Zhukov (HSE) Lecture 8 3.03.2015 14 / 30

Quantifying the quality of community structure
Methods for detection of community structure

Hierarchical clustering algorithms
Girvan-Newman algorithm
Modularity optimization algorithms
Graph partitioning algorithms
Clique percolation method

Agglomerative hierarchical clustering [Newman, 2010]

Ingredients

I Similarity measure between nodes

I Similarity measure between sets of nodes

Pseudocode

1. Assign each node to its own cluster

2. Find the cluster pair with highest similarity and join them
together into a cluster

3. Compute new similarities between new joined cluster and
others

4. Go to step 2 until all nodes form a single cluster

Marta Arias & R. Ferrer-i-Cancho Community structure in networks
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Similarity Measures | structural equivalence or vector 
similarity Node Similarity 

!  Node similarity is defined by how similar their interaction 
patterns are 

!  Two nodes are structurally equivalent if they connect to 
the same set of actors 
!  e.g., nodes 8 and 9 are structurally equivalent 

!  Groups are defined over equivalent nodes 
!  Too strict  
!  Rarely occur in a large-scale 
!  Relaxed equivalence class is difficult to compute 

!  In practice, use vector similarity 
!  e.g., cosine similarity, Jaccard similarity 

27 



Similarity Measures | structural equivalence or vector similarity (Cosine v 
Jaccard)

Vector Similarity 

1 2 3 4 5 6 7 8 9 10 11 12 13 
5 1 1 

8 1 1 1 

9 1 1 1 

Cosine Similarity: 

6
1

32
1)8,5( =
×

=sim

4/1)8,5( |}13,6,2,1{|
|}6{| ==J

a vector 

structurally 
equivalent 
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Jaccard Similarity: 



Similarity Measures for nodes | euclidean distance & pearson
correlation

Quantifying the quality of community structure
Methods for detection of community structure

Hierarchical clustering algorithms
Girvan-Newman algorithm
Modularity optimization algorithms
Graph partitioning algorithms
Clique percolation method

Similarity measures wij for nodes II

I n
ij

= |�(i) \ �(j)| =
P

k

A
ik

A
kj

, and
I k

i

=
P

k

A
ik

is the degree of node i

I Another normalization for n
ij

: the idea is to normalize by
the expected number of common neighbors, if neighbors were
chosen uniformly at random. This is approximately k

i

k
j

/n.
And so

w
ij

=
n
ij

k
i

k
j

/n
= n

P
k

A
ik

A
kjP

k

A
ik

P
k

A
jk

I Euclidean distance: (or rather Hamming distance since A is
binary)

d
ij

=
X

k

(A
ik

� A
jk

)2

Marta Arias & R. Ferrer-i-Cancho Community structure in networks

Quantifying the quality of community structure
Methods for detection of community structure

Hierarchical clustering algorithms
Girvan-Newman algorithm
Modularity optimization algorithms
Graph partitioning algorithms
Clique percolation method

Similarity measures wij for nodes III

I Normalized Euclidean distance:2

d
ij

=

P
k

(A
ik

� A
jk

)2

k
i

+ k
j

= 1� 2
n
ij

k
i

+ k
j

I Pearson correlation coe�cient

r
ij

=
cov(A

i

,A
j

)

�
i

�
j

=

P
k

(A
ik

� µ
i

)(A
jk

� µ
j

)

n�
i

�
j

where µ
i

= 1

n

P
k

A
ik

and �
i

=
q

1

n

P
k

(A
ik

� µ
i

)2

1From the equation xy = |x||y| cos ✓
2Uses the idea that the maximum value of d

ij

is when there are no common
neighbors and then d

ij

= k

i

+ k

j
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Decide GROUP SIMILARITY| Agglomerative Hierarchical clustering

Quantifying the quality of community structure
Methods for detection of community structure

Hierarchical clustering algorithms
Girvan-Newman algorithm
Modularity optimization algorithms
Graph partitioning algorithms
Clique percolation method

Similarity measures for sets of nodes

I Single linkage: s
XY

= max
x2X ,y2Y

s
xy

I Complete linkage: s
XY

= min
x2X ,y2Y

s
xy

I Average linkage: s
XY

=

P
x2X ,y2Y s

xy

|X |⇥ |Y |

Marta Arias & R. Ferrer-i-Cancho Community structure in networks

Single linkage: similarity of two 
clusters is the similarity of their most 
similar or closest members; we only 
pay attention to the area where the 
two clusters come closest to each 
other – we’re connecting a point to a 
nearby point. tends to produce long 
chains.
[only wants one point in the cluster to 
be close to another point in a different 
cluster]

Complete linkage: similarity of two 
clusters is the similarity of their most 
dissimilar members. chooses farthest 
elements in clusters.
[makes sure all points in two clusters 
are close to each other]

Quantifying the quality of community structure
Methods for detection of community structure

Hierarchical clustering algorithms
Girvan-Newman algorithm
Modularity optimization algorithms
Graph partitioning algorithms
Clique percolation method

Similarity measures for sets of nodes

I Single linkage: s
XY

= max
x2X ,y2Y

s
xy

I Complete linkage: s
XY

= min
x2X ,y2Y

s
xy

I Average linkage: s
XY

=

P
x2X ,y2Y s

xy

|X |⇥ |Y |
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Quantifying the quality of community structure
Methods for detection of community structure

Hierarchical clustering algorithms
Girvan-Newman algorithm
Modularity optimization algorithms
Graph partitioning algorithms
Clique percolation method

Similarity measures for sets of nodes

I Single linkage: s
XY

= max
x2X ,y2Y

s
xy

I Complete linkage: s
XY

= min
x2X ,y2Y

s
xy

I Average linkage: s
XY

=

P
x2X ,y2Y s

xy

|X |⇥ |Y |

Marta Arias & R. Ferrer-i-Cancho Community structure in networks

Section 4     Agglomerative Algorithms   
 

E. Ravasz et al., Science 297 (2002).
A.-L. Barabási, Network Science: Communities. 

1

xij
=

r12 = 1.59

r12 = 2.84r12 = 3.97

Step 2: Decide Group Similarity 
•  Groups are merged based on their mutual similarity through single, complete or 

average cluster linkage



Clustering on Node Similarities | Agglomerative Hierarchical clusteringHierarchical clustering

Agglomerative clustering:

Assign each vertex to a group of its own
Find two groups with the highest similarity and join them in a single
group
Calculate similarity between groups:
- single-linkage clustering (most similar in the group)
- complete-linkage clustering (least similar in the group)
- average-linkage clustering (mean similarity between groups)
Repeat until all joined into single group

Leonid E. Zhukov (HSE) Lecture 8 3.03.2015 15 / 30



Johnson’s Hierarchical Clustering

• Output is a set of nested partitions, starting with  
identity partition and ending with the complete  
partition
– A “PARTITION” is a vector that associates each node  

with one and only one “group” (mutually exclusive)

• Different flavors based on how distance from a  
cluster to outside point/node is defined
– Single linkage; connectedness; minimum
– Complete linkage; diameter; maximum
– Average, median, etc.



Clustering on Node Similarities | Agglomerative Hierarchical clusteringApplying HiClus to Network Data

• BETTER:
Compute geodesic
distances first,
then cluster the
distance matrix

Geodesic Distances

1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
H B C P P J P A M B L D J H G S B R
- - - - - - - - - - - - - - - - - -

1 HOLLY 0 4 2 1 1 2 2 2 1 2 4 1 3 1 2 3 4 3
2 BRAZEY 4 0 5 5 5 6 4 5 3 4 1 4 3 4 2 1 1 2
3 CAROL 2 5 0 1 1 2 1 2 3 4 5 3 2 3 3 4 4 3
4 PAM 1 5 1 0 2 1 1 1 2 3 5 2 2 2 3 4 4 3

distance matrix
(again using
average method)

• Or cluster the
structural
equivalence
matrix (tomorrow)

4 PAM 1 5 1 0 2 1 1 1 2 3 5 2 2 2 3 4 4 3
5 PAT 1 5 1 2 0 1 1 2 2 3 5 2 2 2 3 4 4 3
6 JENNIE 2 6 2 1 1 0 2 1 3 4 6 3 3 3 4 5 5 4
7 PAULINE 2 4 1 1 1 2 0 1 3 4 4 3 1 3 2 3 3 2
8 ANN 2 5 2 1 2 1 1 0 3 4 5 3 2 3 3 4 4 3
9 MICHAEL 1 3 3 2 2 3 3 3 0 1 3 1 2 1 1 2 3 2
10 BILL 2 4 4 3 3 4 4 4 1 0 4 1 3 1 2 3 4 3
11 LEE 4 1 5 5 5 6 4 5 3 4 0 4 3 4 2 1 1 2
12 DON 1 4 3 2 2 3 3 3 1 1 4 0 3 1 2 3 4 3
13 JOHN 3 3 2 2 2 3 1 2 2 3 3 3 0 3 1 2 2 1
14 HARRY 1 4 3 2 2 3 3 3 1 1 4 1 3 0 2 3 4 3
15 GERY 2 2 3 3 3 4 2 3 1 2 2 2 1 2 0 1 2 1
16 STEVE 3 1 4 4 4 5 3 4 2 3 1 3 2 3 1 0 1 1
17 BERT 4 1 4 4 4 5 3 4 3 4 1 4 2 4 2 1 0 1
18 RUSS 3 2 3 3 3 4 2 3 2 3 2 3 1 3 1 1 1 0



Clustering on Node Similarities | Agglomerative Hierarchical clustering

BILL

DON

HARRY

Hierarchical Clustering
P M
A J I B

C U H E C H R S
A L O N B H A B A T G J R

P R I P L N A I A R D L E Z E E O U
A O N A L I N L E R O E R E V R H S
T L E M Y E N L L Y N E T Y E Y N S

1 1 1 1 1 1 1 1 1
Level 5 3 7 4 1 6 8 0 9 4 2 1 7 2 6 5 3 8

HOLLY

BRAZEY CAROL

PAM

PAT

JENNIE

PAULINE

ANN

MICHAEL

LEE

JOHN

GERY

STEVE

BERT

RUSS

----- - - - - - - - - - - - - - - - - - -
1.000 XXXXX XXX XXX XXXXXXX XXXXXXX XXXXX
1.333 XXXXX XXXXXXX XXXXXXX XXXXXXX XXXXX
1.457 XXXXX XXXXXXX XXXXXXX XXXXXXXXXXXXX
1.481 XXXXXXXXXXXXX XXXXXXX XXXXXXXXXXXXX
2.723 XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX
3.142 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX



Clustering on Node Similarities | Agglomerative Hierarchical clustering
Similarity matrix

Zachary karate club
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Clustering on Node Similarities | Agglomerative Hierarchical clusteringHierarchical clustering

Leonid E. Zhukov (HSE) Lecture 8 3.03.2015 17 / 30

We can decide at what 
level we want to cut. Do 
we want very fine or very 
coarse communities?



Clustering on Node Similarities | Agglomerative Hierarchical clusteringHierarchical clustering
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Clustering on Node Similarities | Agglomerative Hierarchical clustering

Hierarchical clustering
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Clustering on Node Similarities | Agglomerative Hierarchical clusteringHierarchical clustering
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Clustering on Node Similarities | Agglomerative Hierarchical clustering

Hierarchical clustering
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Node Similarity| k-means clustering

Clustering based on Node Similarity 

!  For practical use with huge networks: 
!  Consider the connections as features  
!  Use Cosine or Jaccard similarity to compute vertex similarity 
!  Apply classical k-means clustering Algorithm 

!  K-means Clustering Algorithm 
!  Each cluster is associated with a centroid (center point) 
!  Each node is assigned to the cluster with the closest centroid 

29 



Illustration of k-means clustering 
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Node Similarity| k-means clustering



Node Similarity| Multidimensional ScalingGroups on Latent-Space Models 

!  Latent-space models: Transform the nodes in a network into a 
lower-dimensional space such that the distance or similarity between 
nodes are kept in the Euclidean space 

!  Multidimensional Scaling (MDS) 
!  Given a network, construct a proximity matrix to denote the distance between 

nodes (e.g. geodesic distance) 
!  Let D denotes the square distance between nodes 
!                  denotes the coordinates in the lower-dimensional space 

!  Objective: minimize the difference  
!  Let                                       (the top-k eigenvalues of    ), V the top-k eigenvectors  

!  Solution:    

!  Apply k-means to S to obtain clusters 

)()1()1(
2
1 Dee

n
IDee

n
ISS TTT Δ=−−−=

knRS ×∈

F
TSSD ||)(||min −Δ
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Node Similarity| Multidimensional Scaling
MDS-example 

1! 2! 3! 4! 5! 6! 7! 8! 9! 10! 11! 12! 13!
1! 0! 1! 1! 1! 2! 2! 3! 1! 1! 2! 4! 2! 2!
2! 1! 0! 2! 2! 1! 2! 3! 2! 2! 3! 4! 3! 3!
3! 1! 2! 0! 2! 3! 3! 4! 2! 2! 3! 5! 3! 3!
4! 1! 2! 2! 0! 3! 2! 3! 2! 2! 1! 4! 1! 3!
5! 2! 1! 3! 3! 0! 1! 2! 2! 2! 2! 3! 3! 3!
6! 2! 2! 3! 2! 1! 0! 1! 1! 1! 1! 2! 2! 2!
7! 3! 3! 4! 3! 2! 1! 0! 2! 2! 2! 1! 3! 3!
8! 1! 2! 2! 2! 2! 1! 2! 0! 2! 2! 3! 3! 1!
9! 1! 2! 2! 2! 2! 1! 2! 2! 0! 2! 3! 3! 1!
10! 2! 3! 3! 1! 2! 1! 2! 2! 2! 0! 3! 1! 3!

11! 4! 4! 5! 4! 3! 2! 1! 3! 3! 3! 0! 4! 4!
12! 2! 3! 3! 1! 3! 2! 3! 3! 3! 1! 4! 0! 4!
13! 2! 3! 3! 3! 3! 2! 3! 1! 1! 3! 4! 4! 0!

1, 2, 3, 4, 
10, 12 

5, 6, 7, 8, 
9, 11, 13 

Geodesic Distance Matrix 

MDS 

k-means 

-1.22! -0.12!
-0.88! -0.39!
-2.12! -0.29!
-1.01! 1.07!
0.43! -0.28!
0.78! 0.04!
1.81! 0.02!

-0.09! -0.77!
-0.09! -0.77!
0.30! 1.18!
2.85! 0.00!

-0.47! 2.13!
-0.29! -1.81!

S 
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Node Similarity| Multidimensional Scaling

BOS NY DC MIA CHI SEA SF LA DEN

Closest
distance is NY-

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

-0.61 -0.39 -0.17 0.06 0.28 0.50

BOSTON

NY

DC

MIAMI

CHICAGO

SEATTLE

SF

LA

DENVER

BOS NY DC MIA CHI SEA SF LA DEN

BOS 0 206 429 1504 963 2976 3095 2979 1949

NY 206 0 233 1308 802 2815 2934 2786 1771

DC 429 233 0 1075 671 2684 2799 2631 1616

MIA 1504 1308 1075 0 1329 3273 3053 2687 2037

CHI 963 802 671 1329 0 2013 2142 2054 996

SEA 2976 2815 2684 3273 2013 0 808 1131 1307

SF 3095 2934 2799 3053 2142 808 0 379 1235

LA 2979 2786 2631 2687 2054 1131 379 0 1059

DEN 1949 1771 1616 2037 996 1307 1235 1059 0

distance is NY-
BOS = 206, so
merge these.



Node Similarity| Multidimensional Scaling

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

-0.61 -0.39 -0.17 0.06 0.28 0.50

BOSTON

NY

DC

MIAMI

CHICAGO

SEATTLE

SF

LA

DENVER

BOS
NY

DC MIA CHI SEA SF LA DEN Closest pair
is DC toNY

BOS/ NY 0 233 1308 802 2815 2934 2786 1771

DC 233 0 1075 671 2684 2799 2631 1616

MIA 1308 1075 0 1329 3273 3053 2687 2037

CHI 802 671 1329 0 2013 2142 2054 996

SEA 2815 2684 3273 2013 0 808 1131 1307

SF 2934 2799 3053 2142 808 0 379 1235

LA 2786 2631 2687 2054 1131 379 0 1059

DEN 1771 1616 2037 996 1307 1235 1059 0

is DC to
BOSNY
combo @
233. So
merge these.



Node Similarity| Multidimensional Scaling
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0.00
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BOSTON

NY

DC

MIAMI

CHICAGO

SEATTLE

SF

LA

DENVER

BOS/
NY/D
C/CHI
/DEN MIA

SF/LA
/SEA

BOS/NY/DC/
CHI/DEN 0 1075 1059

MIA 1075 0 2687

SF/LA/SEA 1059 2687 0



Node Similarity| Block-Model Approximation
Block-Model Approximation 

Network Interaction Matrix 

After  
Reordering 

" Objective: Minimize the difference between an interaction 
matrix and a block structure 

" Challenge:  S is discrete, difficult to solve 
" Relaxation: Allow S to be continuous satisfying 
" Solution: the top eigenvectors of A 
" Post-Processing: Apply k-means to S to find the partition 

Block Structure 

S is a 
community 

indicator matrix 
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Hierarchy-Centric | Community Detection Divisive Algorithms



Hierarchy-Centric | Community Detection Divisive Algorithms
Goal is to build a hierarchical structure of communities based on network topology.

This now becomes a graph partitioning problem:

- we now focus on the edges rather than on similarity of the nodes;

- we want to cut as few edges as possible to see the graph split and fall apart 

into the groups of nodes that compose it.

- graph partitioning is NP-hard (Nondeterministic Polynomial time) – a class to 

classify complexity of problems.

e.g. (p) can you sort these cubes by color? sure, easy.

(np-hard) solve this sudoku puzzle; okay; after a long time, it’s solved.

(np) can you check if the solution for the sudoku puzzle is valid/correct? 

yes, easy.

- Number of all possible partitions of a graph (n-th Bell number)

Graph partitioning

Combinatorial problem:

Number of ways to divide network of n nodes in 2 groups
(bi-partition):

n!

n1!n2!
, n = n1 + n2

Dividing into k non-empty groups (Stirling numbers of the second
kind)

S(n, k) =
1

k!

nX

j=0

(�1)jC j

k

(k � j)n

Number of all possible partitions (n-th Bell number):

B
n

=
nX

k=1

S(n, k)

B20 = 5, 832, 742, 205, 057

Leonid E. Zhukov (HSE) Lecture 8 3.03.2015 23 / 30

Graph partitioning

Combinatorial problem:

Number of ways to divide network of n nodes in 2 groups
(bi-partition):
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n1!n2!
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Dividing into k non-empty groups (Stirling numbers of the second
kind)
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Hierarchy-Centric | Heuristic Approach
Heuristic approach

Focus on edges that connect communities.
Edge betweenness -number of shortest paths �

st

(e) going through edge e

C
B

(e) =
X

s 6=t

�
st

(e)

�
st

Construct communities by progressively removing edges
Leonid E. Zhukov (HSE) Lecture 8 3.03.2015 24 / 30

Edge betweenness

Newman-Girvan, 2004

Algorithm: Edge Betweenness

Input: graph G(V,E)

Output: Dendrogram

repeat
For all e 2 E compute edge betweenness C

B

(e);

remove edge e
i

with largest C
B

(e
i

) ;

until edges left;

If bi-partition, then stop when graph splits in two components
(check for connectedness)
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Hierarchy-Centric |Girvan-Newman Edge Betweenness
algorithm betweenness clustering:

! successively remove edges of highest betweenness (the bridges, 
or local bridges), breaking up the network into separate 
components
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Calculate total flow 
over edge 7-8 

how do we calculate edge betweenness?
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147 total units flow 
over 7-8 to get from 1 

to nodes 8-14 
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7 x 7 = 49 total units 
flow over 7-8 from 
nodes 1-7 to 8-14 
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Calculate 
betweenness for edge 

3-7 
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3 units flow from 
1-3 to each 4-14 

node,
so total = 

3 x 11 = 33
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node 1 except from 

node 2,
so betweenness = 
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Section 4     Divisive Algorithms   
 

Step 2: Hierarchical Clustering
a)  Compute of the centrality  of 

each link.
b)  Remove the link with the 

largest centrality; in case of a 
tie, choose one randomly.

c)  Recalculate the centrality of 
each link for the altered 
network.

d)  Repeat until all links are 
removed (yields a 
dendrogram).

M. Girvan & M.E.J. Newman, PNAS 99 (2002).
A.-L. Barabási, Network Science: Communities. 

Hierarchical Clustering: compute centrality of each link; remove link with highest centrality; 
recalculate centrality; build dendrogram; choose communities that maximizes modularity;



quantifying quality of community structure | Modularity 
How to select the number of clusters/evaluate the algorithm?

Quantifying the quality of community structure
Methods for detection of community structure

Hierarchical clustering algorithms
Girvan-Newman algorithm
Modularity optimization algorithms
Graph partitioning algorithms
Clique percolation method

Definition of modularity [Newman, 2010]
Using a null model

Random graphs are not expected to have community structure, so
we will use them as null models.

Q = (nr. of intra-cluster communities)� (expected nr of edges)

In particular:

Q =
1

2m

X

ij

(A
ij

� P
ij

) �(C
i

,C
j

)

where P
ij

is the expected number of edges between nodes i and j
under the null model, C

i

is the community of vertex i , and
�(C

i

,C
j

) = 1 if C
i

= C
j

and 0 otherwise.
Marta Arias & R. Ferrer-i-Cancho Community structure in networks

Graph Modularity 
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# Relational network given by G = (V, A) 
  V : set of n vertices      A : n x n adjacency matrix, m total edges 

# Newman-Girvan (2006) graph modularity 

 
– Measures the global community structure of G: 

– Foundation for a large number of methods (Fortunato, 2010) 

Pij =
didj
2m

Q(C) =
1

2m

X

i,j

(Aij � Pij)�(Ci, Cj)
$ 

Kronecker delta 

Original A Null Model P Modularity (A-P ) 

–  =  

Quantifying the quality of community structure
Methods for detection of community structure

Hierarchical clustering algorithms
Girvan-Newman algorithm
Modularity optimization algorithms
Graph partitioning algorithms
Clique percolation method

Definition of modularity [Newman, 2010]
Using a null model

Random graphs are not expected to have community structure, so
we will use them as null models.

Q = (nr. of intra-cluster communities)� (expected nr of edges)

In particular:

Q =
1

2m
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� P
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where P
ij

is the expected number of edges between nodes i and j
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= C
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and 0 otherwise.
Marta Arias & R. Ferrer-i-Cancho Community structure in networks



How to computer Pij?

Quantifying the quality of community structure
Methods for detection of community structure

Hierarchical clustering algorithms
Girvan-Newman algorithm
Modularity optimization algorithms
Graph partitioning algorithms
Clique percolation method

How do we compute Pij?
Using the “configuration” null model

The “configuration” random graph model choses a graph with the
same degree distribution as the original graph uniformly at random.

I Let us compute P
ij

I There are 2m stubs or half-edges available in the configuration
model

I Let p
i

be the probability of picking at random a stub incident
with i

p
i

=
k
i

2m

I The probability of connecting i to j is then p
i

p
j

=
k

i

k

j

4m

2

I And so P
ij

= 2mp
i

p
j

=
k

i

k

j

2m

Marta Arias & R. Ferrer-i-Cancho Community structure in networks

quantifying quality of community structure | Modularity 

Modularity Maximization 

!  Modularity measures the group interactions compared 
with the expected random connections in the group  

!  In a network with m edges, for two nodes with degree di 
and dj , expected random connections between them are 

!   The interaction utility in a group: 
 
 
!  To partition the group into  

 multiple groups, we maximize 
Expected Number of  

edges between 6 and 9 
is  

5*3/(2*17) = 15/34  
39 

Modularity Maximization 

!  Modularity measures the group interactions compared 
with the expected random connections in the group  

!  In a network with m edges, for two nodes with degree di 
and dj , expected random connections between them are 

!   The interaction utility in a group: 
 
 
!  To partition the group into  

 multiple groups, we maximize 
Expected Number of  

edges between 6 and 9 
is  

5*3/(2*17) = 15/34  
39 



Community ”quality”

Let n
c

- number of classes, c
i

- class label per node
Compare fraction of edges within the cluster to expected fraction if
edges were distributed at random
Modularity:

Q =
1

2m

X

ij

✓
A
ij

�
k
i

k
j

2m

◆
�(c

i

, c
j

), �(c
i

, c
j

)- kronecker delta

The higher the modularity score - the better is community
Modularity score range Q 2 [�1/2, 1)
Single class, �(c

i

, c
j

) = 1, Q = 0

Leonid E. Zhukov (HSE) Lecture 8 3.03.2015 27 / 30

quantifying quality of community structure | Modularity 

Q = (# edges within group s) –
(expected # edges within group 

s)
Positive Q means the number of edges 
within groups exceeds the expected 
number



quantifying quality of community structure | Modularity 

Useful for selecting number of clusters;

Modularity can be optimized directly (e.g. Louvain algorithm, Spectral 
algorithm);� Modularity is useful for selecting the  

number of clusters: 

11/11/2014 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 51 

Next time: Why not optimize Modularity directly? 

Q 

� Modularity is useful for selecting the  
number of clusters: 

11/11/2014 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 51 

Next time: Why not optimize Modularity directly? 

Q 



quantifying quality of community structure | Modularity  
Optimization

� Modularity is useful for selecting the  
number of clusters: 

11/11/2014 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 51 

Next time: Why not optimize Modularity directly? 

Q 

Section 4     Modularity  
 

•  Optimal partition, that 
maximizes the modularity.

•  Sub-optimal  but positive 
modularity.

•  Negative Modularity: If we 
assign each node to a different 
community.

•  Zero modularity: Assigning all 
nodes to the same community, 
independent of the network 
structure. 

•  Modularity is size dependent

{Cc,  c = 1,  nc}Which partition                       ?

A.-L. Barabási, Network Science: Communities. 



quantifying quality of community structure | Modularity  
Optimization

� Modularity is useful for selecting the  
number of clusters: 

11/11/2014 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 51 

Next time: Why not optimize Modularity directly? 

Q 

Section 4     Modularity based community identification   
 

A greedy algorithm, which iteratively joins nodes if the move increases the new 
partition’s modularity. 

Step 1. Assign each node to a community of its own. Hence we start with N 
communities.
Step 2. Inspect each pair of communities connected by at least one link and 
compute the modularity variation obtained if we merge these two communities.
Step 3. Identify the community pairs for which ΔM is the largest and merge them. 
Note that modularity of a particular partition is always calculated from the full 
topology of the network.
Step 4. Repeat step 2 until all nodes are merged into a single community.
Step 5. Record for each step and select the partition for which the modularity is 
maximal.

MEJ Newman, PRE 69  (2004).
A.-L. Barabási, Network Science: Communities. 



quantifying quality of community structure | Modularity  
Optimization

� Modularity is useful for selecting the  
number of clusters: 

11/11/2014 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 51 

Next time: Why not optimize Modularity directly? 

Q 

Section 4     Modularity for the Girvan-Newman   
 

{Cc,  c = 1,  nc}Which partition                       ? M =
nc

∑
c=1

[ lc
L

− ( kc

2L )
2

]M (Cc)

A.-L. Barabási, Network Science: Communities. 





Random Networks



Erdös-Rényi Random Network

The Erdös-Rényi network (a.k.a. Poisson Metwork) is a random graph
G(N, p) with N labeled nodes where each pair of nodes is connected by
a preset probability p:

Fix node number N .

Among all possible edges

�
N

2

�
, include each edge with probability p

independently.

N and p do not uniquely define the network: there are 2

(

N
2 ) di↵erent

realizations of it.
Although the random graph is certainly not a realistic model of most
networks, but simple models of networks like this can give us a feel for
how more complicated real-world systems should behave in general.
Let us see some simulation through NetLogo:

http://ccl.northwestern.edu/netlogo/

Go to File/Model Library/Networks: Erdös-Réni Random Model (choose

Giant Component)

Donglei Du (UNB) Social Network Analysis 29 / 61

RANDOM NETWORK MODEL!

Network Science: Random !

Definition:!

 A random graph is a graph of N nodes where each pair 
of nodes is connected by probability p.!



RANDOM NETWORK MODEL!

p=1/6 
 N=12 

L=8 L=10 L=7 

The number of links is variable 

Section 3.3       



RANDOM NETWORK MODEL!

p=0.03 
 N=100 



Number of links in a random network!

P(L): the probability to have exactly L links in a network of N nodes and probability p:!

Network Science: Random Graphs !

The maximum number of links 
in a network of N nodes.!

Number of different ways we can choose 
L links among all potential links.!

Binomial distribution... 

RANDOM NETWORK MODEL!

P(L): the probability to have a network of exactly L links!

Network Science: Random Graphs !

• The average number of links <L> in a random graph!

• The standard deviation!



DEGREE DISTRIBUTION OF A RANDOM GRAPH!

Network Science: Random Graphs !

As the network size increases, the distribution becomes increasingly narrow—we are 
increasingly confident that the degree of a node is in the vicinity of <k>.!

Select k !
nodes from N-1! probability of !

having k edges!

probability of !
missing N-1-k!
edges!

Insights: we don’t expect large hubs in the network



FACING REALITY: Degree distribution of real networks 

Real Networks are not Poisson 

Section 3.4       



Phase transition of the size of the giant component

in the Erdös-Rényi Random Network

The largest component in the ER random graph has constant
size 1 when p = 0 and extensive size n when p = 1.

An interesting question to ask is how the transition between
these two extremes occurs if we construct random graphs with
gradually increasing values of p, starting at 0 and ending up at
1—this is bond percolation!

It turns out that the size of the largest component undergoes a
sudden change, or phase transition, from constant size to
extensive size at one particular special value of p = 1/n.

Donglei Du (UNB) Social Network Analysis 40 / 61



<k> 

EVOLUTION OF A RANDOM NETWORK 

disconnected nodes !   ! ! !NETWORK. !

How does this transition happen? !



<kc>=1     (Erdos and Renyi, 1959) 

EVOLUTION OF A RANDOM NETWORK 

disconnected nodes !   ! ! !NETWORK. !

The fact that at least one link per node is necessary to have a giant component is 
not unexpected. Indeed, for a giant component to exist, each of its nodes must be 
linked to at least one other node. 

 It is somewhat unexpected, however that one link is sufficient for the emergence of 
a giant component.  

It is equally interesting that the emergence of the giant cluster is not gradual, but 
follows what physicists call a second order phase transition at <k>=1. 



The size of the giant component in the Erdös-Rényi

Random Network (Bollobás et al., 2001)

If p < 1
n

with high probability, there is no giant component, with all

connected components of the graph having size O(log n).

If p > 1
n

with high probability, there is a single giant component, with all

other components having size O(log n).

If p =

1
n

with high probability, the number of vertices in the largest

component of the graph is proportional to n2/3
.

See Appendix for an asymptotic analysis Go

Donglei Du (UNB) Social Network Analysis 41 / 61



I:  
Subcritical 

<k> < 1 

III:  
Supercritical  

<k> > 1 

IV:  
Connected  
<k> >  ln N 

II:  
Critical  
<k> = 1 

<k>=0.5 <k>=1 <k>=3 <k>=5 

N
=1

00
 

<k> 



DISTANCES IN RANDOM GRAPHS!

Random graphs tend to have a tree-like topology with almost constant node degrees.!

Network Science: Random Graphs !



DISTANCES IN RANDOM GRAPHS!

Network Science: Random Graphs !

We will call the small world phenomena the property that the average path 
length or the diameter depends logarithmically on the system size. Hence, 
”small” means that ⟨d⟩ is proportional to log N, rather than N.  

In most networks this offers a better approximation to the average distance 
between two randomly chosen nodes, ⟨d⟩, than to dmax . 

The 1/log⟨k⟩ term implies that denser the network, the smaller will be the 
distance between the nodes.  



Clustering coe�cient distribution for the

Erdös-Rényi Random Network

Clustering coe�cient distribution is hard to find. So we focus on
the expectation.

The average Clustering coe�cient in the random network is
approximately

hCi ⇡ hKi
n

Randomly select a node i, there are k
i

friends, leading to
k
i

(k
i

� 1)/2 maximum possible edges, and each will appear with
probability p. So the average

hCi = p ⇡ hKi
n

Donglei Du (UNB) Social Network Analysis 39 / 61

C decreases with the system size N.!

C is independent of a node’s degree k.!

Network Science: Random Graphs !

CLUSTERING COEFFICIENT!

C decreases with the system size N.!

C is independent of a node’s degree k.!

Network Science: Random Graphs !

CLUSTERING COEFFICIENT!



Characteristics of the random network: summary

and illustration in Netlogo

Sparsity: Average density = p.
Degree distribution: Poisson distribution

P (K = k) =

✓
n

k � 1

◆
pk(1� p)n�k

⇡ e�hKi hKik

k!
.

Average path: small world

hDi ⇡ log n

loghKi

Average clustering coe�cient: low for large
network

hCi = p ⇡ hKi
n

The threshold for the emergence of the giant
component is

p =

1

n
or hKi ⇡ 1

No community structure
No assortative mixing

Donglei Du (UNB) Social Network Analysis 44 / 61

Characteristics of a random network



Real networks are not random 

Section 10       



Introduction to Network Science 4 

Power Laws (aka scale-free) 
Fr

ac
tio

n 
p k

 o
f v

er
tic

es
  

w
ith

 d
eg

re
e 
k 

Internet at the level of  
autonomous systems 

logarithmic scales; bigger range of bins 

possible cut-off 

Newman “Networks, an Introduction” 

area of possible 
fluctuations 

Problem of histograms: statistics is poor at the tail of the distribution 
Solution I: different sizes of bins 



100 102 104 106 108 1010

N
0

5

10

15

l lo
g<

k>

food webs
neural network
power grid
collaboration networks
WWW
metabolic networks
Internet

Real networks have short distances!
like random graphs. !

Prediction: !

PATH LENGTHS IN REAL NETWORKS!

Network Science: Random Graphs !



100 102 104 106 108

N
10-8

10-6

10-4

10-2

100

C/
<k

> food webs
neural network
metabolic networks
power grid
collaboration networks
WWW

Prediction: !

Crand underestimates with orders of magnitudes 
the clustering coefficient of real networks. !

CLUSTERING COEFFICIENT!

Network Science: Random Graphs !



Prediction: !

Data:!

THE DEGREE DISTRIBUTION!

Network Science: Random Graphs !



Characteristics of a REAL networkNetwork characteristics for real network

Sparsity: |E| = O(n) edges.

Degree distribution: Power distribution (scale-free)

Average path: O(log n), small world

Average clustering coe�cient: high for large network (compared
to random network)

Giant component: common

Community structures: common

Assortative mixing: common

Donglei Du (UNB) Social Network Analysis 46 / 61



ER network vs real network

Characteristics ER prediction Real network
Density p =) Sparse Sparse

Degree distribution Poisson (or Normal) Power-law
Clustering coe�cient p =) Low High
Average distance Small world Small world
Giant component Yes Yes

Community structure No Yes
Homophily No Yes

Donglei Du (UNB) Social Network Analysis 49 / 61

Two questions:

1. How to obtain power-law distributions from random network 
models?

2. How to obtain higher cluster coefficients from random network 
models?



Power-law distribution

! linear'scale ! log-log 
scale

! high skew (asymmetry)
! straight line on a log-log plot
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Poisson distribution

0 20 40 60 80 100

0.
00

0.
04

0.
08

0.
12

x

P
(x
)

1 2 5 10 20 501e
-6
4

1e
-3
6

1e
-0
8

x
P
(x
)

! linear'scale ! log-log 
scale

! little skew (asymmetry)
! curved on a log-log plot



2  ingredients in generating power-law 
networks

! nodes'prefer'to'attach' to'nodes'with'many'
connections' (preferential' attachment,' cumulative'
advantage)

2nd ingredient: preferential attachment

!Preferential'attachment:
! new'nodes'prefer'to'attach' to'well=connected'
nodes'over'less=well'connected' nodes

!Process'also'known'as
! cumulative'advantage
! rich=get=richer
!Matthew'effect



Barabasi-Albert model
! First'used'to'describe'skewed'degree'distribution'of'the'World'Wide'
Web

! Each'node'connects'to'other'nodes'with'probability'proportional'to'
their'degree
! the'process'starts'with'some'initial'subgraph
! each'new'node'comes'in'with'm edges
! probability'of'connecting'to'node'i

! Results'in'power=law'with'exponent'α ='3

∑
=Π

j
j

i

k
kmi)(



generating BA graphs – cont�d
! To'start,'each'vertex'has'an'equal'

number'of'edges'(2)
! the'probability'of'choosing'any'

vertex'is'1/3

! We'add'a'new'vertex,'and'it'will'
have'm'edges,'here'take'm=2
! draw'2'random'elements'from'the'

array'– suppose'they'are'2'and'3'

! Now'the'probabilities'of'selecting'
1,2,3,or'4'are'
1/5,'3/10,'3/10,'1/5

! Add'a'new'vertex,'draw'a'vertex'for'
it'to'connect'from'the'array
! etc.

1 2

3
1'1'2'2'3'3

1 2

3
1'1'2'2'2 3'3'3 4'4

4

1 2

3 4

1'1'2'2'2'3'3'3'3 4'4 4'5'5

5
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Small%world%phenomenon:
Milgram�s%experiment



! �Six%degrees%of%separation�

Instructions:
Given%a%target% individual% (stockbroker% in%Boston),%pass%the%
message% to%a%person%you%correspond%with%who%is%�closest� to%
the%target.

Milgram’s experiment

Outcome:

20%1of1initiated1chains1reached1target
average1chain1length1=16.5

Two striking facts:
1. Short paths are abundant;
2. People are effective at collectively finding these short path;



Question 1: The existence of short paths

Network grows exponentially, leading to the
the existence of short paths!

The average person has between 500 and
1500 acquaintances, leading to
5002 = 25K in one step, 5003 = 125M in
two steps, 5004 = 62.5B in four
(Figure (a)).

However, the e↵ect of triadic closure works
to limit the number of people you can reach
by following short paths (Figure (b)).

Triadic closure: If two people in a social
network have a friend in common, then
there is an increased likelihood that they
will become friends themselves at some
point in the future.

Question: Can we make up a simple model
that exhibits both of the features: many
closed triads (high clustering), but also very
short path (small-world)?

Du (UNB) Social network 10 / 51

The paradox of short paths abundance



Reconciling%two%observations:
• High1clustering: my%friends� friends%tend%to%be%my%friends
• Short1average1paths

Small world phenomenon:
Watts/Strogatz model

Source: Watts, D.J., Strogatz, S.H.(1998) Collective dynamics of 'small-world' networks. Nature 393:440-442.



The Watts-Strogatz small-world network (Watts

and Strogatz, 1998) I

Small-world network satisfies two properties according to Watts
and Strogatz:

small average shortest path (global)
high clustering coe�cient (local)

Such a model follows naturally from a combination of two basic
social-network ideas:

Homophily: the principle that we connect to others who are like
ourselves, and hence creates many triangles.
Weak ties: the links to acquaintances that connect us to parts
of the network that would otherwise be far away, and hence the
kind of widely branching structure that reaches many nodes in a
few steps.

Du (UNB) Social network 11 / 51

The Watts-Strogatz small-world network (Watts

and Strogatz, 1998) I

Small-world network satisfies two properties according to Watts
and Strogatz:

small average shortest path (global)
high clustering coe�cient (local)

Such a model follows naturally from a combination of two basic
social-network ideas:

Homophily: the principle that we connect to others who are like
ourselves, and hence creates many triangles.
Weak ties: the links to acquaintances that connect us to parts
of the network that would otherwise be far away, and hence the
kind of widely branching structure that reaches many nodes in a
few steps.
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The Watts-Strogatz small-world network (Watts

and Strogatz, 1998) II

The crux of the Watts-Strogatz model: introducing a tiny
amount of randomness–in the form of long-range weak ties–is
enough to make the world “small” with short paths between
every pair of nodes.

Bollobás and Chung (1988) shows mathematically that with high
probability that the diameter is no more than O(log n), and
hence the small world phenomenon.

Du (UNB) Social network 12 / 51



! As in many network generating algorithms
! Disallow self-edges
! Disallow multiple edges

Select%a%fraction%p%of%edges
Reposition%on%of%their%endpoints

Add%a%fraction%p%of%additional
edges%leaving%underlying%lattice
intact

Watts:Strogatz model:
Generating small world graphs

Source: Watts, D.J., Strogatz, S.H.(1998) Collective dynamics of 'small-world' networks. Nature 393:440-442.



Clust coeff. and ASP as rewiring increases

10%%of%links%rewired1%%of%links%rewired

Source: Watts, D.J., Strogatz, S.H.(1998) Collective dynamics of 'small-world' networks. Nature 393:440-442.

• Fast decrease 
of average 
distance;

• Slow decrease 
in clustering (it 
remains 
almost 
constant, 
indicating that 
a transition to 
a small world 
is almost 
undetectable 
at a local level 
for p < 0.1



Hypothesis Testing with Network Data



Units of Analysis
• Dyadic (tie-level)

– The raw data
– Cases are pairs of actors
– Variables are attributes of the relationship among pairs (e.g.,  

strength of friendship; whether give advice to; hates)
– Each variable is an actor-by-actor matrix of values by dyad

• Monadic (actor-level)
– Cases are actors
– Variables are aggregations that count number of ties a node has,  

or sum of distances to others (e.g., centrality)
– Each variable is a vector of values, one for each actor

• Network (group-level)
– Cases are whole groups of actors along with ties among them
– Variables aggregations that count such things as number of ties  

in the network, average distance, extent of centralization,  
average centrality

– Each variable has one value per network



Types of Hypotheses
• Dyadic (multiplexity)

– Friendship ties lead to business ties
– Social ties betweenm exchange partners leads to less formal  

contractual ties (embeddedness)
• Monadic

– Actors with more ties are more successful (social capital)
• Mixed Dyadic-Monadic (autocorrelation)

– People prefer to make friends (dyad level) with people of the  
same gender (actor level) (homophily)

– Friends influence each other’s opinions
• Network

– Teams with greater density of communication ties perform better  
(group social capital)



Statistical Issues

• Samples non-random
• Often work with populations
• Observations not independent
• Distributions unknown
• This is not true if comparing network  

measures across independent networks
– Then you can calculate the measures and  

input them to normal Regressoins
– This is generally true in [pure] ego-net analysis



Solutions

• Non-independence
– Model the non-independence explicitly as in  

Hierarchical LM
• Assumes you know all sources of dependence

– Permutation tests
• Non-random samples/populations

– Permutation tests
• Unknown distributions

– Permutation tests



Logic of Permutation Test

• Compute test statistic
– e.g., correlation or difference in means
– Correlation between centrality and salary is 0.384 or difference  

in mean centrality between the boys and the girls is 4.95.
– Ask what are the chances of getting such a large correlation or  

such a large difference in means if the variables are actually  
completely independent?

• Wait! If the variables are independent, why would the  
correlation or difference in means be anything but zero?
– Sampling
– “Combinatorial chance”: if you flip coin 10 times, you expect 5  

heads and 5 tails, but what you actually get could be quite  
different



Logic of Permutation Test
• So to evaluate an observed correlation between two  

variables of 0.384, we want to
– correlate thousands of variables similar to the ones we are  

testing that we know are truly independent of each other, and
– see how often these independent variables are correlated at a  

level as large as 0.384
• The proportion of random correlations as large (or small) as  

the observed value is the p-value of the test
• How to obtain thousands of independent variables  

whose values are assigned independently of each other?
– Fill them with random values

• But need to match distribution of values
– Permute values of one with respect to the other



Outline of Permutation Test

• Get observed test statistic
• Construct a distribution of test statistics  

under null hypothesis (no relationship)
– Thousands of permutations of actual data

• Count proportion of statistics on permuted  
data that are as large as the observed
– This is the p-value of the test



Friendship,	age	,	class	

A	 B	 C	 D	 E	 F	 G	

A	 0	 1	 0	 0	 1	 0	 0	

B	 1	 0	 3	 5	 1	 4	 2	

C	 0	 3	 0	 4	 5	 8	 10	

D	 2	 5	 4	 0	 0	 3	 2	

E	 1	 1	 3	 0	 0	 2	 2	

F	 0	 4	 2	 3	 3	 0	 1	

G	 0	 2	 1	 2	 2	 1	 0	

A	 B	 C	 D	 E	 F	 G	

A	 0	 1	 0	 2	 1	 0	 0	

B	 1	 0	 3	 5	 1	 4	 2	

C	 0	 3	 0	 4	 5	 8	 10	

D	 2	 5	 4	 0	 0	 3	 2	

E	 1	 1	 3	 0	 0	 2	 2	

F	 0	 4	 2	 3	 3	 0	 1	

G	 0	 2	 1	 2	 2	 1	 0	

A	 B	 C	 D	 E	 F	 G	

A	 0	 1	 0	 2	 1	 0	 0	

B	 1	 0	 3	 5	 1	 4	 2	

C	 0	 3	 0	 4	 5	 8	 10	

D	 2	 5	 4	 0	 0	 3	 2	

E	 1	 1	 3	 0	 0	 2	 2	

F	 0	 4	 2	 3	 3	 0	 1	

G	 0	 2	 1	 2	 2	 1	 0	

≈	 +	

Friendship	=e	 Age	difference	 educa=on	
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A	 B	 C	 D	 E	 F	 G	

A	 0	 1	 0	 0	 1	 0	 0	

B	 1	 0	 3	 5	 1	 4	 2	

C	 0	 3	 0	 4	 5	 8	 10	

D	 2	 5	 4	 0	 0	 3	 2	

E	 1	 1	 3	 0	 0	 2	 2	

F	 0	 4	 2	 3	 3	 0	 1	

G	 0	 2	 1	 2	 2	 1	 0	

A	 B	 C	 D	 E	 F	 G	

A	 0	 1	 0	 2	 1	 0	 0	

B	 1	 0	 3	 5	 1	 4	 2	

C	 0	 3	 0	 4	 5	 8	 10	

D	 2	 5	 4	 0	 0	 3	 2	

E	 1	 1	 3	 0	 0	 2	 2	

F	 0	 4	 2	 3	 3	 0	 1	

G	 0	 2	 1	 2	 2	 1	 0	

A	 B	 C	 D	 E	 F	 G	

A	 0	 1	 0	 2	 1	 0	 0	

B	 1	 0	 3	 5	 1	 4	 2	

C	 0	 3	 0	 4	 5	 8	 10	

D	 2	 5	 4	 0	 0	 3	 2	

E	 1	 1	 3	 0	 0	 2	 2	

F	 0	 4	 2	 3	 3	 0	 1	

G	 0	 2	 1	 2	 2	 1	 0	

≈	 +	

Friendship	=e	 Age	difference	 educa=on	

•  Permutes	dependent	variables	lots	of	=me.	Measure	
the	sampling	distribu=on	of	the	coefficients.			
•  P-value	is	a	propor=on	of		=mes	that	the	observa=on	is	
Falling	outside	the	sampling	distribu=on.	

QAP	procedure	



QAP	process	–	graph	representa=on	
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1. Regression on response and predictors;

2. Permute response variable lots of time to create random 
datasets
a. gives sampling distribution of null hypothesis)
b. Preserves dependence between dyads – (person A’s 

values stay together during permutation)
c. but removes relationship between response/predictor



Monadic Hypotheses

Centrality Grades •

bill 10 2.1

maria 20 9.5

mikko 40 7.3

esteban 30 4.1

jean 70 8.1

ulrik 50 8.1

joao 40 6.6

myeong-gu 50 3.3

akiro 60 9.1

chelsea 10 7.2

This, effectively, is basic  

social science research

– However, centrality  

measures in most  

network based research  

are non-independent, so  

OLS is not appropriate

– Ego-Net based research,  

on the other hand, would  

arguably yield  

independent measures



Testing Monadic Hypotheses

• We use the same techniques for  
determining coefficients as in traditional  
statistics
– Regression for continuous variables
– T-Tests to compare across two groups
– ANOVA to compare across more than two

• But, we use the permutation test  
mechanisms to determine the significance  
of our findings



Dyadic Hypotheses
• Hubert / Mantel QAP test

– All variables are actor-by-
actor matrices

– We use one relation  
(dyadic variable) to predict  
another

Friendship
Jim  Jill  Jen Joe

Jim
Jill
Jen
Joe

- 1 0 1
1 - 1 0
0 1 - 1
1 0 1 -

= x y

X

– Test statistic is

• QAP correlation & MR-
QAP multiple regression

Proximity
Jim  Jill  Jen Joe

Jim
Jill
Jen
Joe

- 3 9 2
3 - 1 15
9 1 - 3
2 15 3 -

i j
ij ij

Yx yåå ij p(i ) p( j)
i j

�P =

– Significance is

prop(� ³ �P),



Dyadic/Monadic Hypotheses
• One dyadic (relational) variable, one monadic  

(actor attribute) variable
– Technically known as autocorrelation
– But, unlike in OLS, autocorrelation is NOT bad

• Diffusion
– adjacency leads to similarity in actor attribute

• Spread of information; diseases

• Selection
– similarity leads to adjacency

• Homophily: birds of feather flocking together
• Heterophily: disassortative mating



Continuous Autocorrelation

• Each node has score on continuous  
variable, such as age or rank

• Positive autocorrelation exists when nodes  
of similar age tend to be adjacent
– Friendships tend to be homophilous wrt age
– Mentoring tends to be heterophilous wrt age

• Can measure similarity via difference or  
product



Autocorrelation Measures
• Geary’s C

– Also called Geary’s [Contiguity] Ratio
– Most sensitive to local autocorrelation

• Moran’s I
– Measures autocorrelation not only on variable values or location  

(adjacency), but rather on both simultaneously
– More sensitive to global autocorrelatoin

• I is about covariation of pairs, C is about variation in  
variable values

• Really the differences are probably immaterial



Comparing C & I

This figure suggests a linear relation between Moran's I and Geary's C, and
either statistic will essentially capture the same aspects of spatial
autocorrelation.

http://www.lpc.uottawa.ca/publications/moransi/moran.htm



Geary’s C
• Let wij > 0 indicate adjacency of nodes i and j, and Xi 

indicate the score of node i on attribute X (e.g., age)

åå
i j

2wij (xi - x j)

å å iij
2

i, j i

• Range of values: 0 <= C <= 2
– C=1 indicates independence;
– C > 1 indicates negative autocorrelation;
– C < 1 indicates positive autocorrelation (homophily)

w (x - x)2
C = (n-1)



Moran’s I

i

I = n 2

i, j i

i, j

å ijåw (x - x)

• Ranges between -1 and +1
• Expected value under independence is

-1/(n-1)
• I à +1 when positive autocorrelation
• I à -1 when negative autocorrelation

åwij (xi - x)(x j - x)



A

B

Positive Autocorrelation
(Similars adjacent; Moran’s I > -0.125)

C

D

E

F

G

H

I

C  
D

E
F
G

Node Attrib  A 1

B 2
3
2
3
4
3

H. 4
I. 5

Moran’s I: 0.500
Significance: 0.000



A

B

No Autocorrelation
Independence; (Moran’s I ≈ -0.125)

Node Attrib

C

D

E

F

G

H

I

Moran’s I:  
Significance:

-0.250
0.335

A 3
B 4
C 3
D 4
E 3
F 2
G 1
H 2
I 5



A

B

D

Negative Autocorrelation
(Dissimilars adjacent; Moran’s I < -0.125)

Node Attrib

C

E

F

G

H

I

Moran’s I:  
Significance:

-0.875
0.000

A 4
B 1
C 4
D 2
E 5
F 2
G 3
H 3
I 3



Interpreting Autocorrelation

• With Moran's I
– A value near +1.0 indicates clustering  

(adjacency tends to accompany similarity  

along a dimension)

– A value near -1.0 indicates dispersion  

(adjacency tends to accompany dissimilarity  

along a dimension)

– a value near 0 indicates random distribution

• For Geary’s C

– just substitute 0, 2, and 1 for 1, -1, and 0 above



With Categorical Variables
• Moran’s I and Geary’s C are designed for continuous  

variables (also, frequently, dichotomous)
• For categorical variables, we use either ANOVA Density  

Models to determine if there is a homophily effect
• Homophily effects (preference for in-group ties) can be  

modeled as
– Constant: Determine one in-group effect across all groups

• People in general prefer their own gender to same extent,  
independent of their gender.

– Variable: Each group can have its own in-group effect
• Some groups show stronger tendencies to choose in-group  

ties than others.
• E.g., Mormans show stronger in-group marriage ties than  

other Christian denominations



HOLLY

PAT

MICHAEL

DON

HARRY

GERY

Campnet Example
BILL

Observed

Female Male

BRAZEY CAROL

PAM
JENNIE

PAULINE

ANN

LEE

JOHN

STEVE

BERT

RUSS

Female

Male

12 7

7 16

Expected

Female Male

Female

Male

6.4 18.3

18.3 10.3

Ratio

Female Male

Female

Male

1.87 0.38

0.38 1.55



HOLLY
BRAZEY

PAT

MICHAEL

BILL

LEE

DON
HARRY

GERY

STEVE

BERT
RUSS

Campnet Example

Density Table

1
Femal

2
Male

----- -----
1 Fem 0.429 0.087
2 Mal 0.087 0.356

CAROL

PAM

JENNIE

PAULINE

ANN

JOHNMODEL FIT

R-square Adj R-Sqr Probability # of Obs
-------- --------- ----------- -----------

0.127 0.124 0.001 306

REGRESSION COEFFICIENTS

Independent
Un-stdized

Coefficient
Stdized

Coefficient Significance
Proportion

As Large
Proportion

As Small
----------- ----------- ----------- ------------ ----------- -----------
Intercept 0.087500 0.000000 1.000 1.000 0.001

Group 1 0.341071 0.313982 0.001 0.001 0.999
Group 2 0.268056 0.290782 0.001 0.001 0.999



Another Approach

• Convert the attribute vector into a matrix
• QAP this new matrix against the  

adjacency matrix
– Significances will be the ~same because it  

uses same underlying permutation method
– Values will follow same pattern (but not same  

values) as Moran’s I



Using QAP for Autocorrelation

HOLLY
BRAZEY  
CAROL  
PAM  
PAT  
JENNIE

Gender
1
1
1
1
1
1

PAULINE  
ANN  
MICHAEL  
BILL
LEE  
DON
JOHN  
HARRY  
GERY  
STEVE  
BERT  
RUSS

1
1
2
2
2
2
2
2
2
2
2
2

HOL BRA CAR PAM PAT JEN PAU ANN MIC BIL LEE DON JOH HAR GER STE BER RUS
HOLLY 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
BRAZEY 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
CAROL 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
PAM 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
PAT 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
JENNIE 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
PAULINE 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
ANN 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
MICHAEL 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
BILL 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
LEE 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
DON 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
JOHN 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
HARRY 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
GERY 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
STEVE 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
BERT 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
RUSS 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

This matrix was constructed based on “exact match”  
but you can use different transformations



Comparing QAP & Moran’s I

Moran’s I Output
A value of -0.059 indicates  

perfect independence.
Autocorrelation:  
Significance:

0.667
0.001

QAP Output

Independent
Un-stdized
Coefficient

Stdized
Coefficient Significance

------------ ----------- ----------- ------------
Intercept 0.056250 0.000000 0.999
CAMPATTR2-MAT 0.251969 0.330131 0.001



A word about  
permutation test significances

• As you increase the number of iterations  
or permutations, the test statistic  
(correlation, difference in mean, etc.) will  
stay the same

• The p value, or significance, may change  
a little, but should converge
– At relatively low permutations (2K), you may  

get different p values
– A higher values (>25K or 50K) they should be  

stable and consistent



Inferential Network Analysis



A key twist on this simple model above is that while we work with dyads 
(i.e. our observations in the dataset will be ij dyads), the model is of the 
entire network – including all the dependencies. 

Substantively, the approach is to ask whether the graph in question is an 
element of the class of all random graphs with the given known elements.
For example, all graphs with  5 nodes and 3 edges, or, put 
probabilistically, the probability of observing the current graph given the 
conditions.

ERGMS



The “p1” model of Holland and Leinhardt is the classic foundation 
– the basic idea is that you can generate a statistical model of the 
network by predicting the counts of types of ties (asym, null, sym).  
They formulate a log-linear model for these counts; but the model 
is equivalent to a logit model on the dyads:

Note the subscripts!  This implies a distinct parameter for every 
node i and j in the model, plus one for reciprocity.

!"#$% &'( = 1 = +' + -( + .(&'()



Statistical Models for Networks
Modeling the network: ERGM



Results from SAS version on PROSPER datasets



Once you know the basic model format, you can imagine other 
specifications:

Key is to ensure that the specification doesn’t imply a linear 
dependency of terms.  

Model fit is hard to judge, and for all but the simplest rhs features, 
the se’s are “approximate.”   

How to fix the inference problem?

Logit &'( = 1 = +' + -( + .(&'()
Logit &'( = 1 = +' + -( + .0(&'() – differential reciprocity
Logit &'( = 1 = +' + -( + .0(&'() + (node attributes)



Where:
q is a vector of parameters (like regression coefficients)
z is a vector of network statistics, conditioning the graph
k is a normalizing constant, to ensure the probabilities sum to 1.

! " = $ = %$! &'( $
) &

Analytic & estimation solutions came with some careful thinking on the underlying 
structure on this model.  Start with a re-expression of a general graph model:

So here, we’re just asking the probability of observing our network, given some 
network statistics.



We need a way to express the probability of the graph that doesn’t depend on 
that constant.  It turns out we can do this by conditioning on a ‘complement’ 
graph.   

First some terms:
!"#$= Sociomatrix with ij element forced to be 1
!"#%= Sociomatrix with ij element forced to be 0
!"#& = Sociomatrix array without ij element

'() *(!"# = 1|!"#& )
*(!"# = 0|!"#& )

= 12 3 4"#$ − 3 4"#% = 1′7(4)

After some algebra:

We can re-write the probability of the graph as a function of the change scores 
(complement graph), which has to do with the tie being present or absent. 

Which ends up being a logit model on z, where z are “change statistics”   or counts of 
features on the full graph when that statistic for the ij dyad is differenced.



Now we can get an unbiased estimation of the graph as a function of the change
statistics;

Imagine what the change score looks like for the simples configuration: an edge. This
gives us an intercept only model: what’s the number of ties in the network if each 
edge is/is not present?

What about reciprocity? What’s the number of reciprocal ties if Xij is present/asbent.

Steps in estimating an ERGM
1) Specify the model
2) Fit the model
3) Examine MCMC chains for convergence & such
4) Examine Goodness of fit

1) If poor, return to 1
2) Else, publish your paper.  J



Question is the 
likelihood of a network 
given an observed set of 
network mixing 
statistics. 

The set of such statistics 
(“terms”) is large…and 
growing.

Intuitively, these capture 
a social process you 
think is driving network 
formation.



Theory 

Small-Worlds

Preferential 
Attachment

Homophily

Social Balance

Birds of a feather…

Colloquialism
Structural 
Signature Model Term

A friend of a friend...
A friend of an enemy…

Don’t I know your…

or

Kevin Bacon game…

Rich get richer..
First mover advantage

NodeMatch()

Balance,  
Transitivity,
GWESP

Clustering & k-
paths

In-degree, k-stars



Common classes of terms:

Term Why?
Edges Density

Receiver, Sender Fit person specific degree distribution

Degree(d,attr) Fit the observed global degree distribution, 
perhaps by attribute

Mutuality Reciprocity

Nodecov(attr), nodefactor() Differential row/colloumn effects by an attribute

Nodematch(attr) Homophily on a particular attribute

Gwesp Geometric form for closed partners

Dyadcov, edgecov Pair specific covariates, differ by directed or not.

Isolates Fit the number of isolated nodes in the graph

Cycle(k) Fit cycles of length k (slow!)



Model Sensitivity

ERGM models are very sensitive to model specification, and work 
best if you have a good intuition about how the interdependencies in 
a network operate – most of us do not have that intuition!

Model Degeneracy: Intuitively, it happens when the network 
sample space implied by the model does not contain any 
instances of your model.

Example:  Simple model of edges & triangles.  

Intuitively, we’d expect from balance a positive coefficient on 
triangles.  



Triangles

Intuition from regression: b(triangle) is positive
P(

x=
x)



Triangles

..so what you really want is:
P(

x=
x)

Or that there are marginal decreasing returns to each *additional* closed triad

GWESP



But note the model really says “more closed triads is good”

So if this is good… ..this is better!



Running a model feels a lot like any general linear model:

Under the hood, it’s using a pseudo-=likelihood (logit) for models with only 
dyad-independent features, or fitting an MCMC if there are dependencies.

Coeficcients are given in log-odds scale. If we exponentiate, we get the 
probability of observing a tie in the network



STATNET has a 
bunch of MCMC 
diagnostic tools.  For 
example, you want to 
make sure your trace 
plots are nice and 
random, rather than 
trending in one 
direction or 
another… 



Once you have a model, the most common way to assess fit is to draw samples 
from the implied network space and compare them to your observed graph.



Once you have a model, the most common way to assess fit is to draw samples 
from the implied network space and compare them to your observed graph.







Lord of Flies theory is correct among adolescents:
We give them no structure and they create a rich hierarchy
and beat the shit out of each other





Latent Space Models



Does not require any theoretical machinery about social processes.

Simple latent distance model, where the z are actors positions in a latent space, such
that people close to each other in z space tend to have a tie, and not otherwise:

Given a distribution of points in the space defined by z, probability of a 
tie decreases with their distance in the latent space.

Z can be as many dimensions as you want; typically we try to fit the 
minimum number of dimensions that provide reasonable fit to the data.

We don’t know what z means!



2d solution 
for 
Sampson 
monistary
data

Don’t 
require 
social 
processes 
or functional 
forms.

Works well, 
people close 
in z space 
have a tie



Z = a dimension in some unknown 
space that, once accounted for makes 
ties independent.  

In addition, we can now embed z 
within a group structure, which adds 
probability of ingroup ties. 





Example with the 
Prosper data, with 
three groups

Dimension isn’t 
just Euclidean. 
There’s some 
clustering soaking 
up variation. 

Here we assume 3 
groups.



Latent space models tend to be (a) much more robust to model 
specification errors than are ERGMs and (b) have better known 
convergance properties (i.e. you can prove that the models will converge, 
which follows because you’re making a conditional independence 
assumption that’s not made in ERGM).

But, you rarely know what the dimensions mean socially.  So it provides a 
fit, but doesn’t test a mechanism.

This is a key difference; if you’re goal is out of sample prediction or simply 
controlling the “noise” of a network, a latent space model is probably the 
best solution.  If your goal is to test a particular network mechanism, an 
ERGM is probably better.



AMEN: Additive & multiplicative effects from latent factor models (Hoff & Volfovsky)

Basic social relations model

Dyad 

effects

Row 

effects

Column 

effects

Row

error

Col

error

dyad

error

More general frame:

Latent 

multiplicativ

e

covariance
Model is very general; can deal with y on any scale (binary to real 

values), fits latent space & observed covariates. 

Computationally intensive…for networks > 100;





Affinity of GoT characters





(Field) Experiments

Randomizing into conditions, done by 
experimenter or naturally by exogenous shock.



Three examples
1. Peer Effects: does j influence the behaviour or 

outcomes of i?

2. Network Formation: what conditions whether j forms a 
tie with i?

3. Designing networks: which network structures 
maximize network level outcomes?


