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Preface
	

Welcome	to	the	world	of	social	network	analysis.	This	book	is	intended	as	a	general
introduction	 to	 doing	 network	 research.	 The	 focus	 is	 on	 methodology,	 from
research	design	and	data	collection	to	data	analysis.	Of	course,	since	methodology
and	theory	are	deeply	intertwined,	this	book	is	also	about	network	theory.	What	it	is
not	is	a	survey	of	empirical	research	on	social	networks.
The	book	is	also	not	meant	 to	be	overly	technical.	We	try	not	 to	simplify	to	the

point	 of	 misleading,	 but,	 when	 forced	 to	 make	 a	 choice,	 we	 have	 opted	 for
intelligibility	 and	 transmitting	 the	 spirit	 of	 an	 idea.	 In	 each	 case,	 however,	 we
provide	pointers	 to	 the	appropriate	 technical	 literature	so	 that	 the	reader	can	get	a
fuller	picture	if	desired.
Doing	 network	 analysis	 implies	 using	 network	 analysis	 software.	A	 number	 of

packages	exist,	including	UCINET	(Borgatti,	Everett	and	Freeman,	2002)	and	Pajek
(Batagelj	 and	Mrvar,	1998).	As	 two	of	 the	authors	of	UCINET	are	authors	of	 this
book,	we	use	UCINET	for	most	of	our	examples.	However,	we	do	not	 intend	 this
book	 to	 be	 a	 tutorial	 on	UCINET.	 This	means	we	 focus	 on	 generic	 data	 analysis
issues	and	do	not	give	detailed	UCINET-specific	 instructions.	For	 those	 interested,
however,	 the	 book’s	 website
(https://sites.google.com/site/analyzingsocialnetworks/)	 gives	 detailed	 information
on	how	all	of	 the	UCINET	examples	are	done.	The	one	exception	 to	all	of	 this	 is
Chapter	5,	which	is	much	more	UCINET-focused	than	the	rest	of	the	book.
One	 of	 the	 issues	we	 faced	 in	writing	 this	 book	was	 how	 to	 keep	 it	 down	 to	 a

reasonable	 size	 and	maintain	 an	 understandable	 flow.	We	wanted	 to	write	 a	 guide
rather	than	an	encyclopedia.	As	a	result,	we	had	to	leave	some	things	out.	In	general,
our	approach	to	this	was	to	include	only	methods	and	concepts	that	are	in	demand
and	 tend	 to	 be	 useful	 in	 a	 variety	 of	 settings.	 For	 example,	 although	 the	 k-plex
(Seidman	and	Foster,	1978)	is	one	of	our	favorite	network	concepts,	we	left	it	out	of
the	 chapter	 on	 subgroups	 because,	 in	 general,	 other	 approaches	 tend	 to	 be	more
practical.	 Similarly,	 in	 the	 chapter	 on	 centrality,	 we	 successfully	 resisted	 the
temptation	to	present	even	a	small	fraction	of	all	the	measures	that	are	available	in
the	literature.
Throughout	 the	 book,	 we	 use	 empirical	 examples	 to	 illustrate	 the	 material.

Because	social	networks	are	studied	in	a	variety	of	traditional	academic	disciplines,
we	 draw	 our	 examples	 from	 a	 wide	 variety	 of	 fields,	 including	 anthropology,
sociology,	management,	and	health	care.
The	book	consists	of	15	chapters	that,	in	our	minds	at	least,	are	logically	grouped

into	four	sections.	The	first	section	consists	of	an	introduction	(Chapter	1)	and	some

https://sites.google.com/site/analyzingsocialnetworks/


mathematical	 foundations	 (Chapter	 2).	 Chapter	 1	 lays	 out	 our	 perspective	 on	 the
network	 research	 enterprise	 as	 a	whole.	 It	 discusses	 the	 kinds	 of	 things	we	 try	 to
explain,	along	with	the	main	approaches	to	explaining	them.	Chapter	2	reviews	–	in
very	simple	terms	–	some	of	the	basic	concepts	in	graph	theory	and	matrix	algebra.
A	reader	familiar	with	network	analysis	could	skip	these	two	chapters,	but	we	think
it	advisable	to	familiarize	yourself	with	our	notation	and	terminology.
The	next	section	has	six	chapters	which	are	all	about	research	methods.	Chapter	3,

on	research	design,	is	about	the	choices	we	make	in	setting	up	a	study	to	investigate
a	given	research	question.	Some	of	it	applies	to	social	science	research	in	general,
but	much	of	it	presents	issues	that	are	specific	to	social	network	analysis,	such	as	the
special	 challenges	 to	 respondent	 privacy.	 A	 key	 concept	 introduced	 here	 is	 the
distinction	between	whole-network	research	designs	and	personal-network	research
designs.	 Chapter	 4	 discusses	 different	 options	 for	 the	 collection	 of	 network	 data,
focusing	 specifically	 on	 survey	 methods	 for	 full	 network	 designs.	 Chapter	 5	 is
about	 the	 data	 manipulations	 we	 often	 do	 to	 prepare	 network	 data	 for	 different
analyses.	Because	it	also	discusses	the	importing	and	exporting	of	data,	this	chapter
is	 more	 closely	 tied	 to	 UCINET	 than	 any	 other	 chapter.	 Chapter	 6	 is	 about
fundamental	 exploratory	multivariate	 techniques	 that	 are	 not	 specifically	 designed
for	 social	 network	 analysis	 but	 are	 often	 used	 as	 part	 of	 the	 analysis	 process.
Chapter	 7	 is	 about	 ways	 of	 visualizing	 network	 data	 in	 order	 to	 reveal	 patterns.
Finally,	Chapter	8	is	about	statistical	techniques	for	testing	hypotheses	with	network
data.	These	are	techniques	specifically	tailored	for	the	special	challenges	of	network
data,	such	as	non-independence	of	observations.	The	first	part	of	the	chapter	is	about
using	 permutation-based	 versions	 of	 standard	 techniques	 such	 as	 correlation	 and
regression.	The	second	part	is	about	exponential	random	graph	and	SIENA	models.
These	techniques	are	not	available	in	UCINET,	and	the	statistical	underpinnings	of
the	models	are	far	outside	the	scope	of	this	book.	However,	we	have	included	a	brief
introduction	 so	 that	 the	 reader	 is	 at	 least	 familiar	 in	 the	broadest	 terms	with	 these
options	and	can	then	decide	whether	to	explore	them	further.
The	third	section	of	the	book	is	about	the	core	concepts	and	measures	of	network

analysis.	Chapter	9	discusses	measures	at	the	whole-network	level	of	analysis,	such
as	the	density	of	ties	and	the	degree	of	clustering.	Chapter	10	is	about	measures	of
node	 centrality,	 which	 can	 be	 seen	 as	 characterizing	 each	 node’s	 position	 in	 a
network.	 Chapter	 11	 is	 about	 definitions	 and	 methods	 of	 detecting	 groups
(sometimes	 called	 ‘clusters’	 or	 ‘communities’)	 within	 a	 network.	 Chapter	 12
discusses	 ways	 of	 conceptualizing	 and	 measuring	 structural	 similarities	 in	 how
nodes	are	connected	in	the	network.
The	 final	 section	of	 the	book	consists	of	 three	cross-cutting	chapters	organized

around	different	kinds	of	data.	Chapter	13	is	about	methods	of	analyzing	affiliation-
type	data,	as	when	we	have	persons’	memberships	in	groups.	Chapter	14	provides	a



set	 of	 heuristics	 useful	 in	 processing	 large	 networks,	 such	 as	 ways	 of	 breaking
down	the	problem	into	a	series	of	smaller	ones,	or	changing	the	problem	to	analyze
ties	 among	 clusters	 of	 nodes.	 Finally,	 Chapter	 15	 is	 concerned	 with	 designing,
collecting	and	analyzing	ego	network	data.	We	note	that	there	is	no	chapter	devoted
to	longitudinal	data,	but	examples	of	longitudinal	analyses	can	be	found	in	many	of
the	chapters	in	the	network	concepts	section.
With	certain	exceptions,	the	chapters	do	not	depend	heavily	on	each	other,	so	the

book	 need	 not	 be	 read	 sequentially.	 One	 reviewer	 has	 suggested	 beginning	 with
Chapters	1	and	2	for	an	introduction	to	networks,	then	Chapters	3–5,	15,	14	and	13
on	study	design	and	implementation,	Chapters	9–12	on	social	network	concepts	and
measures,	and	finally	Chapters	6–8	on	analyzing	network	data.
We	 thank	 Roberta	 Chase	 for	 many	 painful	 hours	 editing	 our	 less-than-perfect

prose.	We	 also	 thank	Adam	 Jonas	 for	managing	 all	 of	 the	 (constantly	 changing)
figures	 and	 tables,	 and	 Chris	 Cooper	 for	 managing	 the	 references.	 We	 also
acknowledge	NSF,	DTRA,	ARO	and	DARPA,	whose	grants	have	supported	portions
of	this	work.
We	hope	you	find	the	book	useful	and	will	send	us	gently-worded	suggestions	for

improvement.	By	 the	way,	 there	 is	 no	 need	 to	 let	 us	 know	 that	 data	 are	 plural:	 at
SAGE,	all	data	is	singular.

Steve,	Martin	and	Jeff
August	2012
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Introduction
	

Learning	Outcomes
	

1.	 Understand	what	constitutes	a	social	network
2.	 Identify	and	describe	different	levels	of	analysis
3.	 Formulate	problems	in	terms	of	network	variables

1.1	Why	networks?

An	obvious	 question	 to	 ask	 is	why	 anyone	would	want	 to	 analyze	 social	 network
data.	The	incontestable	answer,	of	course,	is	because	they	want	to.	But	what	are	some
sensible-sounding	 reasons	 that	 a	 researcher	 could	 use	 in	 polite	 company?	One	 is
that	much	of	culture	and	nature	 seems	 to	be	 structured	as	networks	–	 from	brains
(e.g.,	 neural	 networks)	 and	 organisms	 (e.g.,	 circulatory	 systems)	 to	 organizations
(e.g.,	who	 reports	 to	whom),	 economies	 (e.g.,	who	 sells	 to	whom)	 and	 ecologies
(e.g.,	who	eats	whom).	Furthermore,	a	generic	hypothesis	of	network	theory	is	that
an	actor ’s	position	in	a	network	determines	in	part	the	constraints	and	opportunities
that	he	or	she	will	encounter,	and	therefore	identifying	that	position	is	important	for
predicting	 actor	 outcomes	 such	 as	 performance,	 behavior	 or	 beliefs.	 Similarly,
there	is	an	analogous	generic	hypothesis	at	the	group	level	stating	that	what	happens
to	 a	 group	 of	 actors	 is	 in	 part	 a	 function	 of	 the	 structure	 of	 connections	 among
them.	For	example,	a	sports	team	may	consist	of	a	number	of	talented	individuals,
but	they	need	to	collaborate	well	to	make	full	use	of	that	talent.

1.2	What	are	networks?

Networks	are	a	way	of	thinking	about	social	systems	that	focus	our	attention	on	the
relationships	 among	 the	 entities	 that	make	up	 the	 system,	which	we	 call	 actors	 or
nodes.	The	nodes	have	characteristics	–	typically	called	‘attributes’	–	that	distinguish



among	them,	and	these	can	be	categorical	traits,	such	as	being	male,	or	quantitative
attributes,	such	as	being	56	years	of	age.	The	relationships	between	nodes	also	have
characteristics,	and	in	network	analysis	we	think	of	these	as	ties	or	links.	Thus,	the
relationships	between	Bill	(male,	47	years	old)	and	Jane	(female,	43	years	old)	may
be	characterized	by	being	married,	living	together,	co-owners	of	a	business,	and	a
multitude	 of	 other	 social	 ties.	 These	 relational	 characteristics	 can	 also	 be
continuously	or	ordinally	valued,	as	in	having	known	each	other	for	12.5	years	and
having	fights	3–5	times	a	year.
Of	 special	 interest	 in	 network	 analysis	 is	 the	 fact	 that	 ties	 interlink	 through

common	nodes	(e.g.,	the	A→B	link	shares	a	node	in	common	with	the	B→C	link),
which	 creates	 chains	 or	 paths	 of	 nodes	 and	 links	 whose	 endpoints	 are	 now
connected	 indirectly	by	 this	means.	This	 in	 turn	creates	 the	connected	web	 that	we
think	of	as	a	network.1	Part	of	the	power	of	the	network	concept	is	that	it	provides	a
mechanism	–	indirect	connection	–	by	which	disparate	parts	of	a	system	may	affect
each	other.
The	 nodes	 in	 a	 network	 can	 be	 almost	 anything,	 although	 when	 we	 talk	 about

social	networks	we	normally	expect	 the	nodes	 to	be	active	agents	 rather	 than,	say,
inanimate	objects.2	Most	often,	nodes	are	individuals,	such	as	individual	persons	or
chimpanzees.	 But	 they	 can	 also	 be	 collectivities,	 such	 as	 teams,	 firms,	 cities,
countries	or	whole	species.
Whether	 actors	 are	 collectivities	 or	 individuals	 should	 not	 be	 confused	 with

levels	of	analysis.	In	network	analysis,	it	is	useful	to	distinguish	between	three	levels
of	analysis:	the	dyad,	the	node,	and	the	network	(see	Table	1.1).	At	the	dyad	level	of
analysis,	we	study	pairwise	relations	between	actors	and	ask	research	questions	like
‘do	pairs	of	actors	with	business	ties	tend	to	develop	affective	ties?’.	The	dyad	level
is	 the	fundamental	unit	of	network	data	collection,	and	is	 the	unit	with	 the	greatest
frequency.	 In	Table	1.1,	 the	notation	O(n2)	 indicates	 that	 the	number	of	dyads	 in	 a
network	is	of	order	n2,	where	n	is	the	number	of	nodes	in	the	network.3	At	the	node
level	of	 analysis,	we	ask	questions	 like	 ‘do	actors	with	more	 friends	 tend	 to	have
stronger	 immune	systems?’.	Most	network-level	node	properties	are	aggregations
of	dyad-level	measurements,	as	when	we	count	 the	number	of	 ties	 that	a	node	has.
The	number	of	nodes	in	the	network	is,	of	course,	of	order	n.	At	the	network	level,
we	ask	questions	like	‘do	well-connected	networks	tend	to	diffuse	ideas	faster?’.	The
number	of	objects	 at	 this	 level	of	 analysis	 is	of	order	n0,	which	 is	 to	 say,	1.	This
means,	for	example,	that	if	we	have	a	friendship	network,	a	variable	at	this	level	of
analysis	will	consist	of	a	 single	number	 that	characterizes	 the	network	as	a	whole
(e.g.,	 how	 densely	 connected	 it	 is).	 Note	 that	 at	 each	 level	 of	 analysis,	 the	 actors
could	be	individuals	or	collectivities,	as	shown	in	Table	1.1.

Table	1.1			Examples	of	research	questions	by	level	of	analysis	and	type	of	node.



It	 is	worth	noting	 that	 the	 ‘micro’	versus	 ‘macro’	 terminology	used	 in	many	of
the	 social	 sciences	 can	 refer	 to	 either	 the	 rows	 or	 the	 columns	 of	 Table	 1.1.	 For
instance,	in	the	management	literature,	micro	refers	to	studies	in	which	the	cases	are
persons	and	macro	refers	to	studies	in	which	the	cases	are	firms.	But	in	economics,
it	 is	 more	 common	 to	 use	 micro	 to	 refer	 to	 the	 study	 of	 actor-level	 behavior
(whether	 the	 actors	 are	 individuals	 or	 firms)	 and	macro	 to	 refer	 to	 studies	 of	 the
economy	as	a	whole	(i.e.,	the	network	level	of	analysis).

1.3	Types	of	relations

Relations	among	actors	can	be	of	many	different	kinds,	and	each	type	gives	rise	to	a
corresponding	 network.	 So	 if	 we	 measure	 friendship	 ties,	 we	 have	 a	 friendship
network,	and	if	we	also	measure	kinship	ties	among	the	same	people,	we	have	both	a
friendship	 network	 and	 a	 kinship	 network.	 In	 the	 analysis	 we	 may	 choose	 to
combine	the	networks	in	various	ways,	but	in	reality	we	have	two	networks.	Perhaps
the	 most	 commonly	 studied	 ties	 for	 persons	 are	 friendship	 ties,	 advice	 giving,
communication	 and,	 the	 most	 basic	 of	 all,	 simple	 acquaintanceship	 (who	 knows
whom).	Acquaintanceship	is	especially	important	in	large	networks,	such	as	a	firm
of	160,000	employees	or	society	as	a	whole.	The	latter	is	the	basis	for	the	famous
Milgram	(1967)	‘six	degrees	of	separation’	study.	The	process	of	how	individuals
become	 acquainted	 has	 been	 the	 subject	 of	 considerable	 research,	 including
Newcomb’s	(1961)	seminal	book,	The	Acquaintance	Process.
Table	1.2	provides	a	useful	taxonomy	of	types	of	ties	among	persons.	Inspired	by

Atkin’s	(1977)	distinction	between	backcloth	and	traffic,	the	principal	division	in	the
table	 is	 between	 the	 relational	 states	 (on	 the	 left)	 and	 the	 relational	 events	 (on	 the
right).	Relational	states	refer	to	continuously	persistent	relationships	between	nodes,
such	as	being	someone’s	brother	or	friend.	‘Continuously	persistent’	does	not	mean



that	 the	 relationship	 will	 never	 end,	 but	 rather	 that,	 while	 it	 does	 exist,	 it	 exists
continuously	over	that	time.	This	contrasts	with	relational	events,	such	as	selling	a
house.	Although	the	process	may	take	months	to	execute,	the	concept	of	a	sale	is	a
discrete	 event.	 (Of	 course,	 we	 can	 always	 define	 a	 relational	 state	 based	 on	 a
relational	event	simply	by	casting	it	 in	a	 timeless	way.	For	example,	 if	Bill	sells	a
house	 to	Jim,	 it	 is	an	event,	but	 the	 relation	 ‘has	ever	 received	a	house	 from’	 is	a
state.)	Events	 that	 recur	can	also	be	counted	up,	as	 in	 the	number	of	emails	 that	X
sent	 to	 Y	 last	 month.	We	 often	 use	 recurring	 relational	 events	 as	 evidence	 of	 an
underlying	relational	state,	as	in	assuming	that	a	frequent	lunch	partner	is	a	friend.
We	may	also	regard	recurring	events	as	antecedents	of	relational	states,	so	that	if	we
frequently	have	lunch	together	(perhaps	for	work-related	reasons),	we	may	develop
a	friendship.	It	is	difficult	to	develop	friendships	without	any	interactions	at	all.
Within	 relational	 events,	 the	 table	 distinguishes	 between	 interactions	 and	 flows.

Interactions	 are	 behaviors	 with	 respect	 to	 others	 and	 often	 observable	 by	 third
parties.	Flows	are	 the	outcomes	of	 interactions,	and	 interactions	form	the	medium
that	 enables	 things	 to	 flow.	 Flows	 may	 be	 intangibles,	 such	 as	 beliefs,	 attitudes,
norms,	and	so	on,	that	are	passed	from	person	to	person.	They	can	also	consist	of
physical	resources	such	as	money	or	goods.
Within	 relational	 states,	 the	 table	 distinguishes	 between	 similarities,	 relational

roles	 and	 relational	 cognition.	Taking	 these	 in	 reverse	 order,	 relational	 cognition
refers	 to	 thoughts	 and	 feelings	 that	 people	 have	 about	 each	 other.	 This	 includes
acquaintance	 –	 who	 knows	 whom.	 Relational	 cognitions	 are	 essentially
unobservable	 by	 other	 network	 members	 except	 as	 inferred	 from	 interactions.	 A
highly	consequential	example	of	relational	cognition	is	the	trust	relation,	which	can
determine	whether	transactions	will	take	place,	and	at	what	cost.

Table	1.2			Taxonomy	of	types	of	relations.

The	 relational	 roles	 category	 includes	 some	 of	 the	 most	 permanent	 of	 human
relations,	such	as	‘parent	of’	and	‘sibling	of’.	Typically,	the	persons	we	have	these
relationships	with	are	named	or	categorized	by	 the	 relationship.	Hence	 the	person
we	have	 a	 friendship	 tie	with	 is	 called	 a	 friend	 and	 is	 seen	 as	 enacting	 the	 friend
role.	When	 these	 relationships	 are	 asymmetric	 (such	 as	 ‘mother	 of’),	 our	 culture
typically	 provides	 us	 with	 named	 reciprocal	 roles.	 Hence	 we	 have	 parents	 and
children,	students	and	teachers,	bosses	and	subordinates,	and	so	on.



The	similarities	category	refers	to	relational	phenomena	that	are	not	quite	social
ties	but	can	be	 treated	as	such	methodologically,	and	which	are	often	seen	as	both
antecedents	and	consequences	of	social	 ties.	For	example,	physical	proximity	(i.e.,
similarity	in	physical	location)	provides	opportunities	for	face-to-face	interactions.
At	 the	 same	 time,	 certain	 social	 relations	 (e.g.,	 romantic)	 often	 lead	 to	 radical
increases	in	proximity	(as	in	moving	in	together).	Co-membership	in	groups	(such
as	 universities,	 gyms,	 teams,	 workplaces)	 provides	 many	 opportunities	 for
interaction.	Co-participation	in	events	(such	as	attending	the	same	conference	or	the
same	political	rally)	also	provides	opportunities	for	interaction.	We	can	also	define
similarities	 in	 terms	of	 attributes	of	nodes,	 such	as	gender	 and	 race.	An	enduring
finding	in	social	psychology	is	homophily	–	the	tendency	for	people	to	like	people
who	are	similar	to	themselves	on	socially	significant	attributes.
It	is	worth	pointing	out	that	when	nodes	are	collectivities,	such	as	firms,	there	are

two	different	kinds	of	ties	possible.	First,	there	are	ties	among	the	firms	qua	firms	–
that	 is,	 ties	 that	 are	 explicitly	 between	 the	 firms	 as	 single	 entities,	 such	 as	 a	 joint
venture	between	 two	 firms,	an	alliance,	a	purchase	agreement,	and	so	on.	Second,
there	are	 ties	between	 the	 individual	members	of	 the	 firms.	Even	 though	 these	are
not	‘official’	ties	between	the	organizations,	they	may	serve	all	the	same	functions.
For	example,	if	the	chief	executive	officers	of	two	companies	are	friends,	they	may
well	share	considerable	information	about	each	other ’s	organization,	constituting	a
flow	of	information	between	the	firms.	Table	1.3	provides	examples	of	both	kinds
of	ties	among	firms,	cross-classified	using	the	typology	in	Table	1.1.

Table	1.3			Relations	among	firms.

1.4	Goals	of	analysis

Network	 analyses	 can	 be	 applied	 or	 basic.4	 By	 ‘applied’	 we	 mean	 that	 the	 study
consists	of	calculating	a	number	of	metrics	to	describe	the	structure	of	the	network
or	 capture	 aspects	 of	 individuals’	 positions	 in	 the	 network.	 The	 results	 are	 then
interpreted	and	acted	upon	directly.	For	example,	in	an	applied	setting	such	as	public



health,	 we	might	 use	 a	 centrality	 analysis	 of	 a	 network	 of	 drug	 addicts	 to	 detect
good	candidates	 for	 costly	 training	 in	healthful	practices,	with	 the	hope	 that	 these
individuals	would	then	diffuse	the	practices	through	the	network.	Or	in	management
consulting,	 we	 might	 detect	 groups	 of	 employees	 from	 one	 organization	 in	 a
merger	 situation	who	 are	 not	 integrating	well	with	 the	other	 company,	 and	 create
some	kind	of	intervention	with	them.	Applied	studies	are	basically	univariate	in	the
sense	 that	 the	 variables	 measured	 are	 not	 correlated	 with	 each	 other.	 Rather,	 the
correlations	are	 assumed	–	because	 they	have	been	observed	or	deduced	 in	other,
basic,	research.	For	example,	in	the	drug	addict	case,	we	choose	to	identify	central
players	because	previous	research	has	suggested	that	getting	central	players	to	adopt
a	 behavior	 will	 have	 add-on	 effects	 through	 diffusion	 to	 others.	 The	 causal
relationships	 have	 been	 established,	 so	 we	 need	 only	 measure	 the	 predictor
variables.
In	 contrast,	 basic	 research	 studies	 are	multivariate	 and	 correlative	 –	 they	 try	 to

describe	the	variance	in	certain	variables	as	a	function	of	others.	The	objective	is	to
understand	the	dependent	variables	(i.e.,	outcomes)	as	the	result	of	a	causal	process
acting	on	a	set	of	starting	conditions.	The	independent	variables	serve	to	capture	the
initial	conditions	as	well	as	traces	of	the	theorized	process.	These	are	the	kinds	of
studies	we	 usually	 see	 in	 academic	 research.	 The	 function	 of	 network	 analysis	 in
these	 studies	 is	 often	 to	 generate	 the	 variables	 that	 will	 be	 correlated,	 either	 as
independent/explanatory	 variables	 or	 as	 dependent/outcome	 variables.	 As	 an
example	of	the	former,	we	might	construct	a	measure	of	the	centrality	of	each	actor
in	a	network,	and	use	that	to	predict	each	actor ’s	ability	to	get	things	done	(i.e.,	their
power).	Studies	of	this	type	seek	to	create	a	network	theory	of____,	where	we	fill	in
the	 blank	 with	 the	 dependent	 variable,	 such	 as	 aggression	 or	 status	 attainment,
yielding	a	‘network	theory	of	aggression’	or	a	‘network	theory	of	status	attainment’.
As	an	example	of	using	network	variables	as	dependent	variables,	we	might	use	the
similarity	of	actors	on	attitudinal	and	behavioral	variables	(e.g.,	political	views	and
smoking	behavior)	to	predict	who	becomes	friends	with	whom.	Studies	of	this	type
seek	 to	 generate	 a____	 theory	 of	 networks,	 where	 we	 fill	 in	 the	 blank	 with	 a
mechanism	 relating	 to	 the	 independent	 variables,	 such	 as	 a	 ‘utility-maximization
theory	 of	 network	 tie	 formation’	 or	 a	 ‘balance	 theory	 perspective	 on	 network
change’.

Table	1.4			Types	of	network	studies	classified	by	direction	of	causality	and	level	of
analysis.



Whether	we	use	network	variables	as	the	independent	variables	in	our	analyses	or
as	 the	 dependent	 variables,	 they	 can	 be	 at	 any	 of	 the	 three	 levels	 of	 analysis
discussed	 earlier.	 Table	 1.4	 gives	 examples	 of	 studies	 representing	 six	 possible
combinations.5

1.5	Network	variables	as	explanatory	variables

When	 network	 variables	 are	 used	 as	 independent	 variables,	 the	 researcher	 is
implicitly	or	explicitly	using	network	theory	to	explain	outcomes.	These	outcomes
can	be	highly	varied	given	 that	networks	are	studied	 in	so	many	different	 fields	–
anything	 from	 individual	 weight	 gain	 to	 firm	 profitability.	 But	 because	 network
processes	 are	 being	 used	 to	 explain	 these	 outcomes,	 there	 is	 a	 certain	 amount	 of
unity	in	the	logic	that	is	used	to	predict	the	outcomes.
Most	 network	 theorizing	 is	 based	 on	 a	 view	 of	 ties	 as	 conduits	 through	which

things	flow	–	material	goods,	ideas,	instructions,	diseases,	and	so	on.	Atkin	(1977)
referred	to	this	as	the	backcloth	and	traffic	model,	where	the	backcloth	is	a	medium,
like	 a	 road	 system,	 that	 enables	 some	 kind	 of	 traffic	 to	 flow	 between	 locations.
Within	 this	 basic	 conception,	 however,	 there	 are	many	 different	 mechanisms	 that
have	been	proposed	 to	 relate	 flows	 to	 outcomes.	To	discuss	 these,	 it	 is	 helpful	 to
classify	the	outcomes	being	studied	into	a	few	broad	categories.	One	basic	category
of	outcomes	consists	of	 some	sort	of	achievement,	performance	or	benefit,	either
for	individual	nodes	or	for	whole	networks.	Studies	of	this	sort	are	known	as	social
capital	studies.	An	example	is	social	resource	theory	(Lin,	2001),	which	argues	that
a	 node’s	 achievement	 is	 in	 part	 a	 function	 of	 the	 resources	 that	 their	 social	 ties
enable	them	to	access.	Thus,	an	entrepreneur	who	is	well	connected	to	people	who
control	a	variety	of	important	resources	(e.g.,	money,	power,	knowledge)	should	be
better	positioned	to	succeed	than	one	who	has	only	his	own	resources	 to	draw	on.
Thus	the	key	here	is	the	inflow	of	resources	that	the	entrepreneur ’s	ties	afford	him.
Another	perspective,	which	we	 refer	 to	as	arbitrage	 theory,6	 argues	 that	a	node	B



can	benefit	 if	 it	has	ties	to	A	and	C,	who	are	otherwise	unconnected	and	who	have
achieved	differing	levels	of	progress	toward	a	common	goal.	For	example,	if	C	has
already	solved	something	that	A	is	still	struggling	with,	B	can	make	herself	useful
by	bringing	C’s	 solution	 to	A	 (for	a	price!).	Here,	 the	benefit	 is	derived	 from	 the
combination	of	an	 inflow	and	an	outflow.	Yet	another	network	mechanism	linking
networks	to	achievement	is	auctioning.	Here,	if	B	has	something	that	both	A	and	C
need,	B	can	play	 them	off	against	each	other	 to	bid	up	 the	price	or	extract	 favors
from	them	both.	In	this	case,	the	benefit	comes	from	the	potential	outflow	from	B	to
her	customers.	In	all	of	these	cases,	achievement	is	some	sort	of	function	of	social
ties.	That	is,	the	structure	of	the	network	and	the	position	of	individual	nodes	within
it	 are	 crucial	 factors	 in	 predicting	 outcomes.	 This	 is	 very	 clear	 in	 the	 last	 two
examples,	in	which	a	node	B	occupies	a	position	between	two	others.	But	it	is	also
true	 of	 the	 first	 case	 (social	 resource	 theory),	 because	 the	 resources	 of	 a	 node’s
connections	may	themselves	be	a	function	of	their	connections.
Another	 basic	 category	 of	 outcomes	 is	 what	 we	 might	 call	 ‘style’.	 Unlike

achievement,	 where	 one	 outcome	 is	 ‘better ’	 than	 another,	 style	 is	 about	 choices.
Studies	 in	 this	 category	 look	 at	 things	 like	 political	 views,	 decisions	 to	 adopt	 an
innovation,	acquisition	of	practices	and	behaviors,	and	so	on.	These	outcomes	are
often	phrased	in	dyadic	terms,	so	that	what	we	are	trying	to	explain	is	why,	say,	two
firms	 have	 adopted	 similar	 internal	 structures,	 or	why	 two	 people	 have	made	 the
same	decision	on	 the	kind	of	 smartphone	 to	buy.	The	classic	network	explanation
for	 these	 observed	 similarities	 is	 diffusion	 or	 influence.	 Through	 interactions,
actors	affect	each	other	and	come	to	hold	similar	views	or	become	aware	of	similar
bits	of	 information.	This	 is	a	perspective	 that	clearly	stems	from	a	view	of	 ties	as
conduits.	But	 it	 is	 not	 necessarily	 the	 case	 that	 node	A	 resembles	 node	B	 because
they	influenced	each	other.	It	could	be	that	a	third	party	is	tied	to	both	of	them	and	is
influencing	 them	 both.	 It	 could	 also	 be	 something	 more	 subtle.	 For	 example,
consider	 predicting	 employees’	 reaction	 to	 their	 phone	 ringing.	 Suppose	 some
people	 cringe	 when	 it	 rings	 and	 others	 enjoy	 it.	 It	 could	 be	 that	 the	 people	 who
cringe	are	those	who	are	highly	central	in	the	advice	network,	meaning	that	lots	of
people	are	constantly	calling	to	get	their	help,	and	this	gets	annoying.	Notice	it	is	not
that	the	central	people	are	infecting	each	other	with	a	bad	attitude	toward	the	phone,
or	even	that	third	parties	are	infecting	both	of	them	with	that	attitude.	It	is	a	reaction
that	both	have	to	the	same	situation,	namely	receiving	so	much	flow.	Essentially,	the
argument	 is	 that	 nodes	 are	 shaped	 by	 their	 social	 environments,	 hence	 nodes	 that
have	similar	environments	(such	as	both	being	central)	will	have	similar	outcomes.

1.6	Network	variables	as	outcome	variables



It	 is	 often	 asserted	 that	 there	 is	 more	 research	 examining	 the	 consequences	 of
network	 variables	 than	 the	 antecedents.	 This	 could	 be	 true,	 but	 it	 could	 also	 be	 a
misperception	 due	 to	 the	 fact	 that	 the	 various	 factors	 that	 impinge	 on	 network
variables	will	 come	 from	a	wide	variety	of	different	 fields	 and	will	 not	 have	 any
particular	 theoretical	 unity.	 This	 is	 especially	 clear	 when	 you	 consider	 that	 the
network	 properties	 being	 explained	 can	 be	 at	 different	 levels	 of	 analysis	 (i.e.,	 the
dyad,	the	node	and	the	whole	network),	and	that	they	may	not	be	talked	about	using
network	 terms.	 For	 example,	 there	 is	 a	 large	 and	 venerable	 literature	 on	 the
acquaintance	process	(Newcomb	1961)	that	never	uses	the	term	‘network’.
One	of	the	oldest	and	most	frequently	replicated	findings	in	social	psychology	is

homophily	–	the	tendency	for	people	to	have	positive	ties	to	those	who	are	similar
to	 themselves	 on	 socially	 significant	 attributes	 such	 as	 gender,	 race,	 religion,
ethnicity	and	class.	One	way	of	thinking	about	these	findings	is	in	terms	of	a	logistic
regression	in	which	the	cases	are	dyads,	the	dependent	variable	is	whether	or	not	the
nodes	in	the	dyad	have	a	positive	tie,	and	the	independent	variables	are	things	like
samegender	(a	variable	that	is	1	if	the	nodes	in	the	dyad	are	the	same	gender	and	0
otherwise)	and	agediff	(the	absolute	value	of	the	difference	between	their	ages).7	 In
predicting	 most	 kinds	 of	 positive	 ties	 (but	 not	 marriage	 or	 other	 romantic
relationships)	 we	 find	 a	 positive	 coefficient	 for	 same-gender	 and	 a	 negative
coefficient	for	agediff.
It	is	worth	noting	that	having	positive	ties	with	people	similar	to	oneself	need	not

be	solely	the	result	of	a	preference.	It	could	also	reflect	the	availability	of	suitable
partners.	For	 example,	 if	most	 people	 in	 an	organization	were	women,	we	would
expect	most	of	these	women’s	work	friends	to	be	women	as	well,	simply	because	of
availability.	 We	 would	 not	 want	 to	 conclude	 from	 such	 data	 that	 men	 are
homophilous	whereas	women	are	not.	One	of	the	historical	roots	of	social	network
analysis	is	in	structuralist	sociology,	which,	in	the	name	of	parsimony,	urges	us	to
seek	answers	in	opportunities	and	constraints	before	turning	to	preferences.
This	 suggests	 two	 basic	 types	 of	 factors	 in	 tie	 formation	 –	 opportunity	 and

preference	–	and	these	are	often	intertwined.	As	an	example	of	an	opportunity-based
mechanism,	 another	 well-known	 finding	 in	 the	 literature	 is	 that	 one	 tie	 leads	 to
another.	For	example,	business	ties	can	lead	to	friendship	ties,	and	vice	versa.	The
presence	of	 one	 tie	 sets	 up	 the	 opportunity	 for	 another	 kind	of	 tie	 to	 form.	More
generally,	as	discussed	in	the	third	section	of	this	chapter,	we	often	expect	relational
states	like	friendship	to	lead	to	interactions	(e.g.,	talking)	through	which	things	like
information	can	 flow,	and	which	 in	 turn	can	change	 the	 relationship	 (e.g.,	 sharing
intimacies	deepens	the	relationship).
An	example	of	a	preference-based	mechanism	is	balance	theory	(Festinger	1957;

Heider	1958).	In	this	theory	a	person	tries	to	be	congruent	with	those	she	likes.	So	if
Jane	likes	Sally,	and	Sally	likes	Mary,	it	would	cause	Jane	cognitive	dissonance	to



dislike	 Mary.	 So	 based	 on	 balance	 theory,	 we	 would	 expect	 either	 that	 Jane’s
estimation	of	Mary	would	rise,	or	her	estimation	of	Sally	would	decline.	Note	that
an	opportunity-based	perspective	would	also	predict	 the	development	of	a	positive
tie	between	 Jane	and	Mary	because	both	of	 them	are	 friends	with	Sally,	 and	Sally
might	well	invite	both	to	the	same	event,	or	at	least	make	each	of	them	aware	of	the
other.

1.7	Conclusion

Network	analysis	is	about	structure	and	position.	To	this	end,	the	field	has	developed
an	impressive	array	of	concepts	to	characterize	position	and	structure.	In	large	part,
the	 field	 has	 been	 able	 to	 express	 these	 concepts	 formally	 (i.e.,	 in	 mathematical
terms).	This	 is	 a	 huge	 advantage	 because	 it	means	we	 can	 program	 computers	 to
detect	and	measure	these	concepts	in	data,	which	in	turn	allows	us	to	test	hypotheses
empirically.	 One	 downside,	 however,	 has	 been	 that	 some	 social	 scientists,
unfamiliar	 with	 formal	 theorizing,	 have	 misconceived	 of	 the	 field	 as	 a
methodology.	 It	 does	 indeed	 have	 a	 distinctive	 methodology	 that	 is	 born	 of	 its
fundamentally	relational	view	of	social	phenomena.	But	the	theoretical	concepts	that
are	so	emblematic	of	the	field,	such	as	centrality	and	structural	equivalence,	are	just
that:	 theoretical	 concepts	 that	 are	 part	 of	 a	 distinctive	 approach	 to	 explaining	 the
social	world	(Borgatti	and	Halgin	2011).
	

1	 However,	 it	 should	 be	 understood	 that	 we	 do	 not	 require	 a	 network	 to	 be
connected,	 nor	 to	have	 any	 ties	 at	 all.	This	 is	 important	when	 analyzing	networks
over	 time,	 as	 initially	 a	 set	 of	 actors	 (say,	 a	 new	 task	 force	 charged	 with
investigating	unethical	behavior	in	an	organization)	may	have	no	ties	at	all	to	each
other,	but	will	develop	ties	over	time.	If	the	data	is	collected	over	time,	we	will	be
able	to	see	the	network	connect	up.
2	But	this	gets	more	complicated	in	the	case	of	two-mode	networks.	See	Chapter	13
for	more	on	this.
3	The	use	of	this	notation	to	represent	levels	of	analysis	is	due	to	David	Krackhardt
(personal	communication).
4	 Some	might	 use	 ‘descriptive’	 or	 ‘explanatory’,	 but	 explanation	 is	 theory	 and	 a
theory	is	a	description	of	how	a	system	works.
5	 For	 simplicity,	 the	 table	 excludes	 cases	 where	 network	 variables	 are	 both	 the
independent	 and	 dependent	 variables,	 as	 when	 friendship	 ties	 are	 used	 to	 predict



business	ties,	or	one	kind	of	node	centrality	is	used	to	predict	another.
6	Arbitrage	is	our	term	for	one	specific	mechanism	in	Burt’s	(2004)	discussion	of
brokerage.
7	See	Chapter	8	for	a	discussion	of	how	to	deal	with	issues	of	non-independence	of
observations	that	arise	in	an	analysis	of	this	type.



2

Mathematical	foundations
	

Learning	Outcomes
	

1.	 Represent	networks	in	graph-theoretic	language
2.	 Identify	paths,	walks,	trails	and	components
3.	 Formulate	networks	in	matrix	terms
4.	 Compute	and	interpret	multiplication	of	adjacency	matrices

2.1	Introduction

As	 should	be	 evident	 from	Chapter	1,	 social	 network	 analysis	 is	 a	 social	 science.
The	 actors	we	 study	 are	 typically	 individuals	 (specifically	 humans,	 but	 also	 other
social	species	such	as	apes	and	dolphins)	or	organizations	(such	as	corporations).
But	 networks	 are	 encountered	 in	 many	 other	 fields	 as	 well,	 including	 physics,
ecology,	 chemistry,	 neurology,	 genetics	 and	 computer	 science.	What	 all	 of	 these
instances	 of	 network	 analysis	 have	 in	 common	 is	 an	 underpinning	 in	 a	 branch	of
discrete	 mathematics	 called	 graph	 theory.	 In	 this	 chapter	 we	 introduce	 the
terminology	and	basic	conceptual	building	blocks	of	graph	theory.	In	addition,	we
present	 a	 short	 introduction	 to	 matrices,	 which	 can	 also	 be	 used	 to	 represent
networks,	and	matrix	algebra,	which	has	proved	very	useful	in	network	analysis.

2.2	Graphs

One	way	of	conceptualizing	networks	mathematically	is	as	graphs.	The	term	‘graph’
here	does	not	refer	to	a	diagram	but	rather	a	mathematical	object	(Harary	1969).	A
graph	G(V,	E)	consists	of	a	set	of	vertices	V	(also	called	nodes	or	points),	and	a	set
of	edges	E	(or	links	or	lines).	The	edges	connect	pairs	of	vertices.	To	express	that
an	 edge	 connecting	 vertices	u	 and	v	 exists	 in	 a	 graph	G,	we	write	 (u,	 v)	∈	E(G).



When	 two	 vertices	 are	 joined	 by	 an	 edge,	 we	 say	 the	 vertices	 are	 adjacent.	 So
adjacent	 just	 means	 ‘has	 a	 tie’.	 If	 an	 edge	 connects	 A	 with	 B,	 and	 another	 edge
connects	A	with	C,	we	say	 that	 the	 two	edges	are	 incident	upon	A.	The	number	of
edges	incident	on	a	node	is	called	the	‘degree’	of	that	node.
Graphs	 may	 be	 directed	 or	 undirected.	 In	 a	 directed	 graph,	 the	 edges	 are	 like

arrows	–	they	have	direction.	Edges	in	directed	graphs	are	often	referred	to	as	arcs,
and	can	be	thought	of	as	ordered	pairs	of	vertices.	For	example,	the	graph	depicted
visually	in	Figure	2.1	consists	of	a	set	of	vertices	V	=	{A,	B,	C,	D,	E},	and	a	set	of
ordered	pairs	E	=	{(A,	B),	(B,	C),	(C,	D),	(D,	A),	(D,	E)}.	To	capture	the	direction
we	will	say	that	C	sends	a	tie	to	D	to	refer	to	the	(C,	D)	arc.	Directed	graphs	are	used
to	 represent	 relational	 phenomena	 that	 logically	 have	 a	 sense	 of	 direction	 –	 for
example,	‘is	the	parent	of’	and	‘gives	advice	to’.	Note	that	directed	relations	can	be
reciprocated.	It	could	be,	for	example,	that	in	a	certain	group	of	people,	every	time
someone	 gives	 advice	 to	 someone	 else,	 they	 receive	 advice	 from	 that	 person	 as
well.

Figure	2.1			A	simple	directed	graph.

In	undirected	graphs,	the	edges	are	unordered	pairs.	Undirected	graphs	are	used
for	 relations	 where	 direction	 does	 not	 make	 sense	 or	 logically	 must	 always	 be
reciprocated,	as	in	‘was	seen	with’	or	‘is	kin	to’.
Although	 not	 a	 mathematical	 necessity,	 in	 social	 network	 analysis	 we	 usually

organize	 things	 such	 that	 every	 edge	 in	 a	 graph	 means	 the	 same	 thing	 –	 that	 is,
represents	 the	 same	 social	 relation.	 So	 a	 given	 graph	 G(V,	 E)	 contains	 only
friendship	 ties,	while	another	graph	H(V,	A)	contains	only	advice	among	 the	same
set	 of	 vertices.	 This	 means	 we	 think	 of	 the	 friendship	 and	 advice	 networks	 as
different	 from	 each	 other	 and	 analyze	 them	 separately,	 though	 there	 are	 certainly
exceptions	 to	 this.1	 In	 general,	 we	 expect	 each	 kind	 of	 social	 relation	 to	 have	 a
different	 structure,	 and	 to	 have	 different	 implications	 for	 the	 nodes	 involved.	 For



example,	being	highly	central	in	a	friendship	network	might	be	very	pleasant,	while
being	 central	 in	 a	 hatred	 network	 could	 be	 quite	 the	 opposite.	 Similarly,	 having
many	 ties	 in	 a	 sexual	 network	 could	 imply	 a	 high	 risk	 of	 contracting	 a	 sexually
transmitted	 disease,	 while	 having	 many	 ties	 in	 a	 gossip	 network	 implies	 an
accumulation	of	knowledge	about	one’s	social	environment.
When	we	have	more	than	one	relation	on	the	same	set	of	vertices,	we	often	refer

to	our	data	as	a	multirelational	dataset,	or	(confusingly)	as	a	network.	Thus	the	term
‘network’	 in	 its	 largest	 sense	 can	 refer	 to	 a	 collection	 of	 graphs	 in	 which	 each
represents	a	different	kind	of	social	tie.	As	an	example,	Figure	2.2	shows	some	data
from	the	Roethlisberger	and	Dickson	bank	wiring	room	dataset	(Roethlisberger	and
Dickson	1939).	Figure	2.2a	shows	who	plays	games	with	whom,	while	Figure	2.2b
shows	friendship	ties.	As	we	can	see,	the	two	graphs	have	many	points	of	similarity
but	are	by	no	means	identical.	For	example,	in	the	games	network,	W5	and	W7	are
adjacent,	whereas	they	are	not	in	the	friendship	network.	In	the	games	network	there
are	two	vertices	that	have	no	connections,	I3	and	S2.	These	are	called	‘isolates’.	The
friendship	network	has	five	isolates.	We	call	the	number	of	connections	an	actor	has
her	 degree.	 Nodes	 with	 just	 one	 tie	 (i.e.,	 degree	 1)	 are	 called	 ‘pendants’.2	 The
friendship	network	has	one	pendant	(I1).



Figure	2.2	 	 	A	multirelational	 network	 consisting	 of	 two	 relations:	 (a)	who	plays
games	with	whom;	(b)	friendship	ties.

2.3	Paths	and	components

A	key	 concept	 in	 graph	 theory	 is	 the	 notion	 of	 a	 path.	 In	 the	 friendship	 network,
vertices	W1	and	W7	do	not	have	a	tie,	but	information	passed	along	between	friends
could	 reach	 W7	 from	W1	 through	 the	 intermediary	 S1.	 A	 sequence	 of	 adjacent
nodes	forms	a	path.	If	the	graph	is	directed,	the	sequence	must	respect	the	direction
of	the	edges	to	be	called	a	path.	Actually,	the	term	‘path’	refers	to	a	particular	kind
of	 sequence,	 namely	 one	 which	 never	 revisits	 a	 vertex.	 For	 example,	 in	 the
friendship	graph,	the	sequence	S4–W9–W8–W7	is	a	path,	but	W9–W8–S4–W9–W7
is	not	because	it	visits	W9	twice.	A	sequence	that	revisits	nodes	but	never	revisits	an
edge	is	called	a	‘trail’.	The	sequence	W9–W8–S4–W9–W7	is	a	trail,	but	W8–W7–
W9–W8–W7–S1	 is	 not	 because	 the	 line	 from	 W8	 to	 W7	 is	 used	 twice.	 Such	 a
sequence	 is	 called	 a	 ‘walk’.	 A	 walk	 is	 any	 sequence	 of	 adjacent	 nodes,	 without
restriction.	Obviously,	every	path	is	a	trail,	and	every	trail	is	a	walk.
Paths,	trails	and	walks	matter	because	they	correspond	to	different	processes	that

we	might	want	to	model.	Consider	a	dollar	bill	changing	hands	as	it	moves	through
the	economy.	The	bill	does	not	know	where	 it	has	been	before,	and	neither	do	 the
people	 passing	 it	 along.	 As	 a	 result,	 the	 sequence	 it	 follows	 is	 completely
unrestricted	 and	 is	 best	 described	 as	 a	 walk	 –	 perhaps	 even	 a	 random	 walk.	 In
contrast,	consider	a	juicy	bit	of	gossip	flowing	through	the	network.	Looking	at	the



friendship	graph	in	Figure	2.2b,	does	it	seem	likely	that	the	gossip	would	follow	the
sequence	 W8–W7–W9–W8–W7–S1?	 Probably	 not.	 In	 most	 cases,	 W8	 would
remember	 having	 told	 W7	 the	 story,	 and	 would	 not	 do	 it	 again	 anytime	 soon.
Barring	 a	 few	 well-known	 exceptions	 (Alzheimer ’s	 cases;	 any	 family	 gathering)
people	 do	 not	 tell	 the	 same	 stories	 again	 to	 the	 same	people.	 So	 gossip	 probably
does	 not	 traverse	 the	 network	 in	 an	 unrestricted	 way.	 One	 question,	 though,	 is
whether	 it	would	 revisit	a	node,	as	 in	 the	sequence	W9–W8–S4–W9–W7.	 In	many
cases,	 the	 answer	 would	 be	 yes,	 because	 S4	 does	 not	 know	 that	W9	 has	 already
received	this	particular	bit	of	information.	Hence,	an	appropriate	way	of	modeling
the	flow	of	gossip	would	be	as	trails.	Finally,	consider	the	case	of	a	deadly	virus	that
is	 spread	 by	 contact.	 In	 fact,	 let	 us	 suppose	 it	 is	 so	 virulent	 that	 it	 kills	 anyone	 it
infects.	To	model	the	movement	of	this	virus	we	would	probably	use	paths	because
it	never	revisits	a	node.	(Less	gruesomely,	we	could	imagine	that	it	does	not	revisit
nodes	because	once	they	get	it,	they	become	immune.)
The	length	of	a	walk	(and	therefore	a	trail	and	a	path)	is	defined	as	the	number	of

edges	it	has.	The	shortest	path	between	two	vertices	is	called	a	‘geodesic’.	Geodesics
are	not	necessarily	unique	as	 there	could	be	multiple	paths	of	equally	short	 length
between	a	given	pair	of	vertices.	In	the	friendship	graph,	W3–W4–S1	and	W3–W1–
S1	are	both	geodesics.	The	length	of	a	geodesic	path	between	two	vertices	is	called
the	‘geodesic	distance’,	or	simply	the	‘distance’.	If	we	assume	that	it	takes	a	unit	of
time	for	something	to	traverse	a	link,	the	distance	between	two	nodes	indicates	the
fastest	something	could	travel	from	one	node	to	the	other.	A	long	geodesic	distance
implies	 that,	 even	 under	 the	 very	 best	 conditions,	 it	would	 be	 a	 long	 time	 before
something	gets	from	one	node	to	the	other.



Figure	2.3			The	Campnet	dataset.

Some	 nodes	 cannot	 reach	 each	 other	 by	 any	 path.	 For	 example,	 consider	 the
graph	 in	Figure	2.3	 (the	 standard	UCINET	Campnet	 dataset	which	we	 describe	 in
detail	in	Chapter	8).	Try	to	find	a	path	(respecting	the	direction	of	ties)	from	Holly
to	Brazey.	There	is	no	way	to	do	it.	The	basic	problem	is	that	Michael	and	Pauline
have	no	outgoing	ties	toward	the	left-hand	side	of	the	graph,	and	so	there	is	no	way
for	 anyone	 on	 the	 right-hand	 side	 to	 reach	 anyone	 on	 the	 left-hand	 side.	 In	 this
sense,	the	left-	and	right-hand	sides	belong	to	different	components	of	the	graph.	A
component	 is	 defined	 as	 a	maximal	 set	 of	 nodes	 in	 which	 every	 node	 can	 reach
every	other	by	some	path.	The	‘maximal’	part	means	that	if	you	can	add	a	node	to
the	set	without	violating	the	condition	that	everyone	can	reach	everyone,	you	must
do	 so.	 This	means	 the	 set	 Lee,	 Bert	 and	 Brazey	 is	 not	 a	 component,	 because	 we
could	add	Steve	and	everyone	could	still	reach	each	other.	The	component	they	are
part	of	consists	of	Lee,	Bert,	Brazey,	Steve,	Russ	and	Gery.	By	this	definition,	there
are	four	components	in	the	graph:	{Lee,	Bert,	Brazey,	Steve,	Russ,	Gery},{Michael,
Harry,	Don,	Holly,	Pam,	Pat,	Jennifer,	Ann,	Pauline,	Carol},{Bill},	and	{John}.	Bill
and	John	form	singleton	components.	These	components	are	depicted	by	different
node	shapes	in	Figure	2.3.
In	 directed	 graphs	 like	 Figure	 2.3,	 it	 is	 sometimes	 useful	 to	 consider	 ‘weak

components’,	 which	 are	 the	 components	 you	 would	 find	 if	 you	 disregarded	 the
directions	of	 the	 edges.	To	distinguish	weak	components	 from	 the	kind	where	we
respect	the	direction	of	the	edges,	we	can	refer	to	the	latter	as	‘strong	components’.
If	the	data	is	not	directed	we	just	use	the	term	‘components’.
The	games	network	in	Figure	2.2a	has	an	 interesting	bow-tie-like	structure.	 It	 is

worth	noting	the	importance	of	the	edge	connecting	W5	with	W7.	If	this	edge	were
not	there,	the	group	at	the	bottom	left	would	be	separated	from	the	group	at	the	top
right.	We	 call	 such	 edges	 ‘bridges’.	 The	 friendship	 relation	 Figure	 2.2b	 has	 two
bridges:	the	one	connecting	S1	and	W7	and	the	one	connecting	I1	with	W3.	Vertices
with	the	same	property	are	called	‘cutpoints’.	In	the	games	relation	W5	and	W7	are
cutpoints,	and	in	the	friendship	relation	S1,W7	and	W3	are	cutpoints.	Note	that	I1	in
the	friendship	relation	is	not	a	cutpoint	since	its	removal	does	not	separate	any	part
of	 the	network.	 In	 these	examples	 the	cutpoints	are	at	 the	ends	of	bridges,	but	 it	 is
possible	to	have	cutpoints	that	are	not	part	of	a	bridge.
In	 many	 circumstances	 we	 have	 values	 associated	 with	 our	 edges.	 These	 may

represent	the	strength	of	the	tie,	 the	frequency	of	interaction	or	even	a	probability.
This	applies	to	both	directed	and	undirected	network	data.	In	our	diagrams	we	can
put	 the	value	on	the	edge,	but	for	complex	networks	this	 is	often	not	practical	and
we	 discuss	 other	 approaches	 in	 the	 chapter	 on	 visualization.	 Figure	 2.4	 gives	 a
valued	network	where	the	values	are	1,	2	or	3.	If	A	sends	a	tie	to	B	with	a	value	of	2,
the	 value	 is	 placed	 closer	 to	 the	 sending	 vertex.	 It	 can	 be	 seen	 that	 some	 ties	 are



reciprocated	but	not	always	with	the	same	value.
How	close	actors	are	to	each	other	in	a	network	is	known	as	‘dyadic	cohesion’.

The	simplest,	most	 fundamental	measure	of	dyadic	cohesion	 is	adjacency	 itself.	 If
you	and	I	have	a	tie	(say,	a	trust	 tie)	 then	we	are	more	cohesive	than	if	we	did	not
have	a	tie.	Of	course,	we	have	to	be	careful	to	think	about	what	kind	of	relation	is
being	measured.	A	graph	in	which	every	node	has	a	‘hates’	tie	to	every	other	node
may	be	mathematically	cohesive,	but	 the	sociological	 reality	 is	 that	 the	network	 is
maximally	 non-cohesive.	 If	 the	 data	 consists	 of	 valued	 ties	 (e.g.,	 strengths	 or
frequencies),	so	much	the	better,	because	then	we	have	degrees	of	cohesion	instead
of	simple	presence	or	absence.
It	 is	 useful	 to	 note	 that	 some	nodes	 that	 are	 not	 adjacent	may	 still	 be	 indirectly

related.	All	nodes	that	belong	to	the	same	component	are	far	more	cohesive	than	a
pair	 of	 nodes	 that	 are	 in	 separate	 components.	 If	 a	 virus	 is	 spreading	 in	 one
component,	 it	 will	 eventually	 reach	 every	 node	 in	 the	 component	 –	 but	 it	 cannot
jump	to	another	component.	Of	course,	if	we	are	using	the	existence	of	a	path	from
one	node	to	another	as	a	measure	of	cohesion,	it	is	only	a	small	stretch	to	consider
counting	 the	number	of	 links	 in	 the	shortest	path	between	 two	nodes	as	an	 inverse
measure	of	dyadic	cohesion.	However,	one	problem	with	geodesic	distance	 is	 that
the	 distance	 between	 nodes	 in	 separate	 components	 is	 technically	 undefined	 (or,
popularly,	 infinite).	A	solution	 is	 to	use	 the	 reciprocal	of	geodesic	distance	 (1/dij)
with	the	convention	that	if	the	distance	is	undefined,	then	the	reciprocal	is	zero.	This
also	has	the	advantage	of	making	it	so	that	larger	values	indicate	more	cohesion.	We
explore	these	ideas	in	more	detail	in	Chapter	9.



Figure	2.4			A	valued	network.

2.4	Adjacency	matrices

Another	 way	 to	 conceptualize	 networks	 mathematically	 is	 using	 matrices.	 An
adjacency	matrix	is	a	matrix	in	which	the	rows	and	columns	represent	nodes	and	an
entry	in	row	i	and	column	j	represents	a	tie	from	i	to	j.	In	other	words,	the	adjacency
matrix	A	of	a	non-valued	graph	is	defined	as	a	matrix	in	which	aij	=	1	if	there	is	a	tie
from	 i	 to	 j,	 and	 aij	 =	 0	 otherwise.	 The	 direction	 is	 important	 and	 it	 must	 be
remembered	that,	by	convention,	the	direction	goes	from	the	rows	to	the	columns.	If
the	graph	has	valued	edges,	then	we	can	simply	use	those	values	as	the	entries	in	the
adjacency	 matrix.	 Often,	 we	 assume	 by	 convention	 that	 when	 the	 values	 are	 all
positive	 a	 zero	 indicates	 no	 tie	 (alternatively,	 we	 can	 use	 a	 specially	 designated
missing-value	 code	 to	 indicate	 no	 tie;	 this	 is	 especially	 useful	 when	 the	 matrix
values	can	be	negative).	If	the	graph	is	reflexive	–	that	is,	self-loops	are	allowed	so
that	 a	 vertex	 can	 be	 connected	 to	 itself	 –	 then	 there	 can	 be	 values	 down	 the	main
diagonal.	 For	 most	 relations	 self-loops	 are	 not	 allowed,	 and	 in	 this	 case	 the
diagonal	 is	 often	 filled	 with	 zeros	 (a	 convention	 we	 shall	 use),	 but	 it	 could	 be
argued	that	the	diagonal	should	be	blank.	If	the	graph	is	undirected,	then	the	matrix
will	 be	 symmetric,	meaning	 that	 the	 top	 right	 half	 of	 the	matrix	 (above	 the	main
diagonal)	will	 be	 the	mirror	 image	 of	 the	 bottom	 half	 of	 the	matrix,	 and	 xij	 will
always	equal	xji.	If	the	graph	is	directed,	xij	need	not	equal	xji	(although	it	may).	The
adjacency	matrix	for	the	games	relation	in	Figure	2.2	is	given	in	Matrix	2.1.

Matrix	2.1			Adjacency	matrix	of	relation	1	in	Figure	2.2.



Matrix	2.2			Geodesic	distance	matrix	for	Campnet	data.

We	can	also	use	matrices	to	represent	derived	connections	between	pairs	of	nodes
such	as	geodesic	distance.	Given	a	graph	 then	 the	geodesic	distance	matrix	D	 has
elements	 dij	 equal	 to	 the	 geodesic	 distance	 between	 i	 and	 j.	 When	 there	 is	 no
possibility	of	confusion,	we	simply	use	the	term	‘distance	matrix’.	The	matrix	D	 is
in	fact	extremely	similar	to	the	adjacency	matrix	of	a	graph:	where	there	are	1s	in
the	adjacency	matrix,	there	are	1s	in	the	distance	matrix.	But	where	there	are	0s	in
the	adjacency	matrix,	there	are	a	range	of	values	in	the	distance	matrix,	providing	a
more	nuanced	account	of	lack	of	adjacency.	The	distance	matrix	must	be	symmetric
for	undirected	data.	Matrix	2.2	gives	the	geodesic	matrix	for	the	network	in	Figure
2.3.	This	was	produced	by	running	the	geodesic	distance	routine	in	UCINET.	We	see
that	the	distance	from	Brazey	to	Pam	is	6,	and	there	is	no	path	from	Brazey	to	Bill
as	 this	 entry	 is	 blank.	 Note	 that	 in	 this	 case	 the	 zeros	 on	 the	 diagonal	 do	 have
meaning.

2.5	Ways	and	modes

The	adjacency	matrix	of	a	graph	is	always	square:	it	has	the	same	number	of	rows
as	 columns.	 Moreover,	 it	 is	 a	 one-mode	 matrix,	 which	 means	 that	 the	 rows	 and
columns	 both	 refer	 to	 the	 same	 single	 set	 of	 entities.	 In	 contrast,	 in	 a	 two-mode



matrix	the	rows	and	columns	refer	to	different	sets	of	(non-interchangeable)	nodes,
and	would	only	coincidentally	be	square.	For	example,	the	classic	dataset	collected
by	 Davis,	 Gardner	 and	 Gardner	 (1941)	 in	 their	 book,	 Deep	 South,	 is	 shown	 in
Matrix	2.3.	The	18	 rows	of	 the	matrix	correspond	 to	women,	 and	 the	14	columns
correspond	to	events	the	women	attended.	In	the	matrix,	xij	=	1	if	woman	i	attended
event	j;	this	is	sometimes	called	an	‘affiliation	matrix’.
More	generally,	matrices	can	be	described	as	having	ways	and	modes.	The	ways

are	 the	 dimensions	 of	 the	 matrix	 –	 normally	 two,	 as	 when	 we	 have	 rows	 and
columns	 –	 while	 the	 modes	 are	 kinds	 of	 entities	 being	 represented.	 A	 three-way
matrix	has	 rows,	 columns	and	 levels,	 as	 in	 a	data	 cube.	For	 example,	 suppose	we
have	data	indicating	which	persons	attended	which	annual	conferences	in	each	year.
This	could	be	 represented	by	a	 three-way,	 three-mode	matrix.	As	an	example	of	a
three-way,	one-mode	matrix,	consider	the	cognitive	social	structure	data	that	David
Krackhardt	(1987)	pioneered.	He	asked	each	member	of	a	group	to	tell	him	which
people	 in	 the	 group	 had	 friendship	 ties	with	which	 others.	 So,	 they	were	 not	 just
being	asked	about	their	own	ties	to	others,	but	their	perceptions	of	everyone	else’s
ties	 to	 everyone	 else.	 The	 result	 is	 a	 person-by-person	 matrix	 for	 each	 person.
Combining	 all	 of	 these	 into	 a	 single	 data	 matrix	 we	 get	 a	 three-way,	 one-mode
matrix	X	 in	which	 xijk	 =	 1	 if	 person	k	 perceives	 a	 tie	 from	 i	 to	 j.	 Note	 that	 xiji	 is
person	i’s	perception	of	his	or	her	own	tie	to	j.

Matrix	2.3			Two-mode	Southern	women	dataset.



2.6	Matrix	products

A	 cornerstone	 of	 matrix	 algebra	 is	 matrix	 multiplication,	 an	 operation	 that	 is
defined	 as	 follows.	 If	 A	 and	 B	 are	 conformable	 matrices	 (which	 means	 that	 the
number	of	columns	in	A	equals	the	number	of	rows	in	B),	then	the	product	of	A	and
B	is	written	C	=	AB	and	is	calculated	as	follows:

We	 can	 use	 matrix	 multiplication	 to	 construct	 compound	 social	 relations.	 For
example,	if	F	is	an	adjacency	matrix	representing	the	‘friend	of’	relation	and	matrix
E	represents	the	‘enemy	of’	relation,	then	the	product	FE	is	a	compound	relation	we
might	 call	 ‘enemy	 of	 a	 friend	 of’.	 If	 the	 (i,	 j)	 cell	 of	 FE	 is	 greater	 than	 0,	 this
indicates	that	i	has	at	least	one	friend	for	whom	j	is	an	enemy.	In	other	words,	j	is	the
enemy	of	 i’s	 friend.	More	generally,	FE(i,	 j)	 gives	 the	number	of	 i’s	 friends	who
have	j	as	an	enemy.
It	is	worth	remembering	that	matrix	multiplication	is	not	commutative,	so	that	AB

need	not	be	the	same	as	BA	(and,	because	of	lack	of	conformability,	may	not	even	be
calculable).	 For	 example,	 if	 F	 is	 the	 friendship	 relation	 and	 B	 is	 the	 ‘boss	 of’
relation,	then	if	I	have	an	FB	relationship	with	Jane,	she	is	the	boss	of	at	least	one	of
my	 friends.	But	 if	 I	 have	 a	BF	 relationship	with	 Jane,	 she	 is	 a	 friend	of	my	boss.
These	are	very	different	relationships.
We	can	also	compute	products	of	matrices	with	themselves.	For	example,	if	F	 is

the	friendship	matrix,	then	FF	is	the	‘friend	of	friend’	relation.	When	the	(i,	 j)	cell
of	FF	is	greater	than	0,	it	indicates	that	i	has	at	least	one	friend	who	has	j	as	a	friend.
The	magnitude	of	the	(i,	j)	cell	gives	the	number	of	times	that	i	has	a	friend	that	has	j
as	a	friend,	which	is	to	say,	it	is	the	number	of	friends	of	i	who	have	j	as	a	friend.
Another	way	to	think	of	this	is	in	terms	of	walks.	The	FF	matrix,	or	F	2,	gives	 the
number	 of	 walks	 from	 i	 to	 j	 that	 are	 of	 length	 2	 –	 that	 is,	 walks	 with	 one
intermediary.	Multiplying	the	FF	matrix	again	by	F	gives	us	F3,	whose	entries	give
the	number	of	walks	of	length	3.
More	generally,	the	matrix	F	k	gives	the	number	of	walks	of	length	k	that	start	at

the	 row	node	 and	 end	 at	 the	 column	node.	 It	 is	worth	 remembering	 that	 these	 are
walks	 rather	 than	 simple	paths,	which	means	 they	can	double	back	on	 themselves.
For	example,	suppose	F	3(i,	j)	=	2.	This	means	that	there	are	two	walks	of	length	3
that	start	at	i	and	end	at	j.	One	such	walk	might	be	i–k–i–j.	Another	walk	might	be	i–
k–m–j.	 Both	 are	walks	 of	 length	 3.	An	 important	 application	 of	matrix	 powers	 is
given	in	Chapter	10,	where	we	discuss	Bonacich’s	(1987)	beta	centrality	concept.
A	 useful	 application	 of	matrix	 products	 is	 to	 express	 social	 theories	 in	 formal



form.	For	example,	the	notion	that	‘the	friend	of	my	friend	is	my	friend,	the	friend
of	my	enemy	is	my	enemy,	the	enemy	of	my	friend	is	my	enemy,	and	the	enemy	of
my	enemy	is	my	friend’	can	be	expressed	compactly	as	four	equations:

F	=	FF

E	=	EF

E	=	FE

F	=	EE

Of	course,	once	these	principles	are	expressed	as	equations,	they	can	also	be	tested.
Using	methods	covered	in	Chapter	8,	we	can	count	up	how	often	(i.e.,	for	how	many
i,	j	pairs)	it	is	actually	true	that,	say,	E	=	EF.	For	example,	we	could	count	up	how
often	EF(i,	j)	=	E(i,	j)	across	all	i	and	j,	and	test	whether	this	quantity	is	larger	than
we	could	expect	by	chance.

2.7	Summary

Social	 networks	 can	 be	 represented	 mathematically	 as	 graphs	 –	 mathematical
objects	 consisting	 of	 two	 sets:	 a	 set	 of	 vertices	 and	 a	 set	 of	 edges	 connecting	 the
vertices.	The	edges	may	or	may	not	have	a	direction	associated	with	them	and	can
also	 have	 values.	 Each	 graph	 represents	 a	 single	 relation,	 but	 we	 often	 have
multirelational	networks	with	different	sets	of	edges	from	different	relations	on	the
same	set	of	vertices.	A	path	is	a	sequence	of	non-repeated	vertices	such	that	adjacent
pairs	form	an	edge.	Sets	of	vertices	that	are	mutually	reachable	form	components,
and	 if	 they	 take	 account	 of	 direction,	 they	 are	 known	 as	 strong	 components.	 The
length	of	the	shortest	path	between	any	two	vertices	is	called	the	geodesic	distance.
An	alternative	representation	is	to	use	matrices,	with	the	adjacency	matrix	being	by
far	 the	 most	 common	 way	 to	 do	 this.	 We	 can	 also	 use	 matrices	 to	 capture	 the
distance	between	all	pairs	of	vertices	in	a	network.	If	the	data	has	two	modes,	we	can
use	a	reduced	form	of	the	adjacency	matrix	called	an	affiliation	matrix.
	

1	For	example,	we	might	regard	all	ties	between	nodes	as	implying	acquaintance,	so
we	include	all	of	them	and	call	the	resulting	network	the	acquaintance	network.
2	Technically,	a	node	is	only	a	pendant	if	the	one	node	it	has	a	tie	to	has	more	than
one	tie.



3

Research	design
	

Learning	Outcomes
	

1.	 Design	effective	and	reliable	network	research	projects
2.	 Identify	sources	and	boundaries	of	network	data
3.	 Understand	and	minimize	the	effects	of	data	error

3.1	Introduction

This	 chapter	 is	 about	 designing	 network	 research.	We	 try	 to	 lay	 out	 some	 of	 the
issues	that	need	to	be	considered	in	constructing	a	network	study.	In	particular,	we
try	to	bring	out	the	implications	in	terms	of	interpretation,	validity	and	feasibility	of
different	 combinations	of	design	choices.	The	 reader	will	 recognize	 that	many	of
the	 issues	 discussed	 here	 are	 common	 to	 all	 social	 science	 research	 and	 are	 not
particular	 to	 social	 network	 analysis.	 Thus,	 social	 networks	 can	 be	 studied	 via
experiments,	 quasi-experiments,	 field	 studies	 and	 so	 on.	 They	 can	 be	 studied
quantitatively	but	also	ethnographically.	The	data	collection	can	be	cross-sectional
or	 longitudinal.	 In	 addition,	 however,	we	 also	 discuss	 some	 special	 design	 issues
particular	 to	 social	network	analysis,	 such	as	 the	decision	between	whole-network
and	personal-network	designs,	as	well	as	questions	about	how	to	bound	the	network,
what	kinds	of	ties	to	measure,	and	so	on.
It	should	be	noted	that	this	chapter	touches	on	several	topics	that	are	discussed	in

greater	depth	in	other	chapters.	In	particular,	the	reader	should	consult	Chapters	1,	4,
8	and	15.

3.2	Experiments	and	field	studies

While	 most	 social	 network	 research	 has	 been	 carried	 out	 using	 field	 studies,
typically	survey-based,	there	is	a	well-known	body	of	network	research	employing



experimental	 designs	 of	 one	 form	 or	 another.	 True	 experiments	 are	 the	 gold
standard	for	the	study	of	causation.	For	a	study	to	be	a	true	experiment	it	must	have
a	 pre-post	 or	 post-only	 design,	 together	 with	 random	 assignment	 of	 units	 to
treatment	 groups	 and	 manipulation	 of	 the	 independent	 variable	 (such	 as	 a	 social
intervention)	while	controlling	for	all	other	factors,	both	known	and	unknown.	The
key	element	of	a	 true	experiment	 is	 the	random	assignment;	 in	quasi-experimental
research	 there	 is	 usually	 a	 pre-post	 design,	 along	 with	 manipulation	 of	 the
independent	 variable,	 but	 the	 units	 of	 analysis	 are	 not	 randomly	 assigned	 to
treatments.	 Field	 studies,	 or	 observational	 studies,	 may	 be	 longitudinal	 but	 more
often	 are	 cross-sectional,	 and	 do	 not	 involve	 a	 manipulation	 of	 the	 independent
variable.	As	one	goes	from	true	experiments	 to	field	designs,	 there	 is	 less	control
over	various	threats	to	the	studies’	reliability	and	validity.
Table	 3.1	 provides	 some	 examples	 of	 experiments	 and	 quasi-experiments	 in

social	 network	 research.	 As	 we	 move	 from	 the	 Rand,	 Arbesman	 and	 Christakis
(2011)	study	down	to	that	of	Soyez	et	al.	(2006),	researcher	control	over	the	various
aspects	 of	 the	 study	 declines.	 In	 the	 Rand,	 Arbesman	 and	 Christakis	 (2011)
experiment,	 subjects	are	 randomly	assigned	 to	one	of	 three	conditions.	 In	each	of
the	 conditions	 the	 links	 in	 the	 network	 are	manipulated	 or	 not	 (in	 the	 control)	 to
examine	the	evolution	of	cooperation	in	each	of	the	experimental	conditions.	In	the
Barr,	 Ensminger	 and	 Johnson	 (2009)	 field	 experiment,	 subjects	 were	 randomly
chosen	from	Orma	villages	in	Kenya	and	small	industrial	operations	in	Ghana	and
were	 assigned	 to	 two	 player	 conditions.	 The	 behavior	 of	 subjects	 in	 the	 two
reflected	 either	 degrees	 of	 trust	 or	 trustworthiness	 on	 the	 part	 of	 the	 players.
Although	 there	 was	 random	 assignment	 of	 subjects,	 there	 was	 no	 direct
manipulation	 of	 one	 of	 the	 primary	 independent	 variables	 of	 interest,	 individual-
level	social	capital.	Instead,	social	capital	was	measured	separately	and	used	as	one
of	several	independent	variables	in	attempts	to	account	for	individual-level	variation
in	 subjects’	 game-playing	 behaviors.	 Finally,	 the	 Soyez	 et	 al.	 (2006)	 study	 used	 a
classic	quasi-experimental	 design	 in	which	 subjects	 from	 four	different	 clinics	or
cohorts	were	assigned	 in	sequence,	and	not	 randomly,	 to	one	of	 two	experimental
conditions.	 Subjects	 in	 the	 control	 condition	 received	 standard	 treatment	 for	 drug
abuse	while	subjects	in	the	experimental	condition	received	standard	treatment	plus
a	social	network	intervention.
Most	research	involving	social	networks	employs	field-observational	designs	of

one	form	or	another.	Data	can	be	collected	at	a	single	point	in	time	(cross-sectional
and	lagged	cross-sectional)	or	at	multiple	points	 in	 time	(longitudinal).	Collecting
data	 at	 two	 or	 more	 points	 in	 time	 allows	 for	 the	 study	 of	 change.	 Examples	 of
cross-sectional	and	longitudinal	research	in	social	networks	are	shown	in	Table	3.2.
These	examples	were	chosen	to	help	illustrate	not	only	basic	elements	of	research
design	but	also	studies	that	examine	both	the	causes	and	the	consequences	of	social



network	structure.

Table	3.1			Experimental	and	quasi-experimental	designs	in	social	network	research.

The	 study	 by	Christakis	 and	 Fowler	 (2007)	 analyzed	 data	 repurposed	 from	 the
Framingham	Heart	Study,	which	had	a	prospective	(longitudinal)	design.	Christakis
and	Fowler	used	it	to	study	the	‘contagion’	of	obesity	through	social	networks	in	a
population.	 The	 advantage	 of	 this	 design	 is	 that	 network	 relations	 at	 one	 point	 in
time	 can	be	used	 to	 predict	 outcomes	 such	 as	 obesity	 at	 some	 future	 time	period,
providing	some	help	in	sorting	out	the	direction	of	causation	(even	though	it	did	not
use	a	 true	experimental	design,	something	 that	would	be	 totally	 impractical	 in	 this
case).	They	 found	 evidence	 to	 suggest	 a	 contagion	 effect	 even	 for	 something	 that
would	appear	on	the	surface	not	to	be	‘catchable’	in	the	medical	sense.

Table	3.2			Examples	of	field	studies	in	social	network	research.



The	 cross-sectional	 studies	 by	 Burt	 (1995)	 and	 Casciaro	 (1998)	 both	 collected
data	via	surveys	at	one	point	in	time.	However,	Burt	was	interested	in	understanding
how	an	actor ’s	position	in	a	network	–	the	spanning	of	structural	holes	–	influences
outcomes	 such	 as	 evaluations	 of	 employee	 performance	 and	 amount	 of	 bonuses
received.	Thus,	some	element	of	network	structure	is	influencing	some	outcome	of
interest	 (e.g.,	 performance).	 In	 contrast,	 Casciaro	 (1998),	 although	 also	 using	 a
cross-sectional	 design,	 was	 interested	 in	 how	 personality	 influences	 an	 actor ’s
accuracy	 in	 cognitive	 social	 structures.	 So	 here	 an	 attribute	 of	 an	 actor	 is
influencing	the	ability	of	that	actor	to	report	accurately	on	the	network	relations	of
others.	In	other	words,	network	accuracy	is	a	consequence	of	personality.
In	the	Johnson,	Boster	and	Palinkas	(2003)	study	a	longitudinal	repeated	measures

design	was	used.	Although	the	table	depicts	a	study	about	the	role	of	core–periphery
structure	 in	 influencing	 group	 morale,	 the	 premise	 of	 the	 research	 was	 actually
more	 complex	 and	 illustrates	 a	 slight	 spin	 on	 the	 simple	 structural	 causes-and-
consequences	 dichotomy.	 As	 shown	 in	 Figure	 3.1,	 the	 study	 was	 more	 broadly
focused	on	 the	relationship	among	 three	variables	 in	which	network	structure	was
actually	a	mediating	variable.	Using	a	repeated	measures	design,	the	study	focused
on	 how	 the	 emergence	 of	 informal	 roles	 in	 the	 network	 (e.g.,	 clown,	 expressive
leader)	 affected	 the	 evolution	 of	 network	 structure.	 If	 certain	 roles	 emerged	 in
certain	combinations,	it	was	expected	that	the	network	would	form	a	core–periphery
structure:	 the	more	 the	network	evolved	a	core–periphery	structure,	 the	higher	 the
morale	 and	 individual-level	 psychological	 well-being	 (e.g.,	 lower	 levels	 of
depression).	So,	 in	a	sense,	 this	 is	an	example	of	research	that	viewed	structure	as
both	a	cause	and	a	consequence.



Figure	3.1			Relationship	among	variables	for	Johnson,	Boster	and	Palinkas	study.

Finally,	the	Padgett	and	Ansell	(1993)	study	is	not	unlike	the	Burt	example	in	that
network	structure	is	found	to	influence	power	among	elite	families	in	Renaissance
Florence;	here	the	network	consists	of	connecting	families	by	marriage	that	are	not
otherwise	connected.	This	is	an	example	of	a	retrospective	case	study	where	we	are
given	an	outcome	–	the	rise	of	the	Medici	family	in	terms	of	power	and	wealth	–	and
use	historical	data	to	speculate	about	why	it	happened.

3.3	Whole-network	and	personal-network	research
designs

There	 are	 two	 fundamental	 kinds	 of	 network	 research	 designs,	 ‘whole	 network’
designs	 and	 ‘personal	 network’	 designs.1	 In	 general,	 when	 people	 talk	 about
network	 analysis,	 they	 are	 referring	 to	 whole-network	 studies.	 In	 whole-network
research,	 we	 study	 the	 set	 of	 ties	 among	 all	 pairs	 of	 nodes	 in	 a	 given	 set.	 For
example,	we	might	study	who	is	friends	with	whom	among	all	members	of	a	given
department	 in	 an	 organization.	 In	 whole-network	 studies,	 we	 can	 think	 of	 the
relation	 being	 measured	 as	 a	 dyadic	 variable	 that	 has	 a	 value	 for	 every	 pair	 of
nodes.	For	example,	in	the	friendship	case,	every	dyad	might	be	assigned	a	1	or	a	0
indicating	whether	they	are	friends	or	not.
In	personal-network	studies,	there	is	a	set	of	focal	nodes	called	‘egos’	or	‘index

nodes’,	 and	 their	 ties	 to	 others,	 called	 ‘alters’,	 are	 assessed,	 but	 the	 alters	 are	 not
necessarily	among	the	set	of	egos.	An	example	of	a	personal-network	study	is	 the
General	Social	Survey	of	 1985,	 in	which	 approximately	1500	 egos	were	 sampled
using	a	probability	sample	from	the	population	of	Americans.	Each	was	then	asked
for	a	list	of	up	to	five	people	with	whom	they	discussed	important	matters.	The	aim
was	 simply	 to	 understand	 something	 about	 the	 social	 environment	 of	 each	 of	 the
egos,	not	to	construct	a	network	of	ties	among	the	1500	(which	would	probably	be
completely	empty),	nor	 to	connect	 the	alters	of	one	ego	 to	 the	alters	of	any	other
ego	(typically,	the	names	of	the	alters	are	not	even	given	in	full).
In	 general,	whole-network	 designs	 enable	 researchers	 to	 employ	 the	 full	 set	 of

network	 concepts	 and	 techniques,	 which	 often	 assume	 that	 the	 entire	 network	 is
available.	 This	 is	 particularly	 true	 of	 positional	 concepts	 such	 as	 betweenness
centrality	or	regular	equivalence.	However,	because	the	cost	(to	the	researcher	and
the	respondent)	of	whole-network	designs	increases	quickly	with	network	size,	the
richness	of	the	data	often	suffers	as	the	researcher	has	to	scale	back	the	number	of



questions	 he	 asks	 (see	 Chapter	 4	 for	 more	 information	 on	 this).	 In	 that	 sense,
personal-network	 designs	 can	 yield	 richer,	 more	 detailed	 data	 about	 the	 network
area	 local	 to	 the	 respondent,	 but	 at	 the	 cost	 of	 losing	 information	 on	 the	 global
pattern	 of	 connections.	 Personal-network	 designs	 also	 have	 the	 advantage	 of
simplifying	 issues	 of	 bounding	 the	 network,	 since	 there	 is	 no	 cost	 to	 allowing	 a
respondent	 to	 mention	 any	 alter	 they	 like.	 Personal-network	 designs	 also	 have
significant	advantages	with	 respect	 to	confidentiality,	 as	personal-network	 surveys
can	 be	 entirely	 anonymous	 (with	 respect	 to	 the	 respondents),	 and	 when	 the
respondents	mention	alters,	they	do	not	need	to	give	the	alters’	real	names.	This	can
improve	the	quality	of	the	data	(because	the	respondent	feels	safer	in	giving	it)	and
simplify	the	process	of	getting	approval	from	human	subject	review	boards.2
As	 we	 devote	 a	 separate	 chapter	 to	 personal-network	 designs,	 the	 rest	 of	 this

chapter	 focuses	on	whole-network	designs,	 although	many	of	 the	points	we	make
apply	to	personal-network	designs	as	well.

3.4	Sources	of	network	data

Network	 data	 can	 be	 collected	 from	 either	 primary	 or	 secondary	 sources.	 In
primary	data	collection,	we	directly	ask	people	questions	or	observe	their	behavior.
What	 is	 asked	 or	 observed	 is	 determined	 by	 the	 objectives	 of	 the	 study,	 and	 the
researcher	has	a	 lot	of	control	over	 the	 types	of	 relations	studied	and	 the	 types	of
actor	 attributes	 collected.	 In	 secondary	 data	 collection	we	 gather	 data	 that	 already
exists	somewhere,	whether	in	paper	records	(e.g.,	fish	exchange	records,	historical
marriage	 records),	 or	 electronic	 databases	 (e.g.,	 Enron	 emails,	 social	 networking
sites).	Secondary	data	is	often	easier	and	quicker	to	collect	but	imposes	strong	and
arbitrary	 limits	on	 the	 type	of	 relations	 studied.	Some	of	 the	computer-based	data
generated	by	social	media	such	as	Facebook	and	even	email	represents	a	transitional
form	between	primary	and	secondary	data.	Although	the	data	is	collected	directly,	as
in	 primary	 research,	 there	 are	 limitations	 on	 the	 types	 of	 relations	 available	 for
study,	as	in	secondary	research.
Most	published	network	research	in	the	social	sciences	is	based	on	primary	data

sources.	Much	of	this	is	based	on	surveys,	in	which	respondents	are	asked	to	report
on	 their	 ties	 with	 others.	 However,	 there	 are	 also	 some	well-known	 examples	 of
direct	 observation.	 One	 of	 the	 stages	 of	 the	 well-known	 Hawthorne	 studies
(Roethlisberger	and	Dickson,	1939)	involved	planting	an	observer	at	the	back	of	the
room	 where	 a	 set	 of	 employees	 constructed	 telephone	 wiring	 apparatuses.	 The
observer	was	there	for	several	months	and	recorded	all	kinds	of	interactions	among
the	 workers,	 including	 who	 played	 games	 with	 whom	 during	 breaks,	 who	 had
conflicts	with	whom,	who	traded	jobs	with	whom,	and	so	on.



In	 recent	 years,	 we	 have	 seen	 a	 significant	 increase	 in	 the	 use	 of	 secondary
sources.	One	reason	for	this	is	the	increased	availability	of	electronic	records	of	all
kinds,	 including	 bibliometric	 data	 (e.g.,	 who	 cites	whom),	membership	 data	 (e.g.,
who	 is	 on	 what	 corporate	 board,	 who	 was	 in	 what	 movie)	 and	 of	 course	 social
media	 (e.g.,	 who	 follows	 whom	 on	 Twitter).	 Another	 reason	 is	 the	 increasing
importance	in	the	social	science	literature	of	longitudinal	data,	which	is	often	only
feasible	to	collect	from	secondary	sources.	However,	not	all	secondary	research	is
electronic.	 As	 previously	 mentioned,	 one	 of	 the	 best-known	 network	 analyses	 of
archival	data	is	the	study	by	Padgett	and	Ansell	(1993),	who	analyzed	the	pattern	of
marriages	among	Renaissance	Florentine	families.

3.5	Types	of	nodes	and	types	of	ties

As	noted	 in	Chapter	1	 (see	Table	 1.2),	 there	 are	many	 different	 kinds	 of	 ties	 one
could	measure.	Most	network	studies	involve	persons	as	the	nodes	and	interpersonal
relations	 as	 the	 ties.	 However,	 the	 nodes	 can	 be	 all	 kinds	 of	 entities	 –	 monkeys,
firms,	countries	and	so	on.	And	the	type	of	node	obviously	has	a	major	impact	on
what	kinds	of	ties	are	collected	and	how	they	are	collected.	These	decisions	–	who	to
study,	what	ties	to	study,	and	where	to	obtain	the	data	–	are	interlinked	and	must	to
some	extent	be	considered	together.
Table	3.3	reproduces	in	simplified	form	the	typology	of	 types	of	 ties	originally

presented	in	Chapter	1.	At	the	top	left	of	the	table	are	co-occurrences.	One	advantage
of	 co-occurrence	 data	 is	 that	 it	 is	 relatively	 easy	 to	 collect.	 One	 reason	 is	 that
membership	type	data	is	often	not	thought	of	as	particularly	private	or	sensitive.	In
addition,	it	is	often	available	via	archival	sources.	For	example,	we	can	look	up	the
names	of	people	serving	on	the	boards	of	directors	of	firms.	We	can	use	the	Internet
Movie	Database	(IMDb)	to	find	people	who	have	served	as	cast	or	crew	together	on
films.	 A	 frequently	 reanalyzed	 dataset	 in	 the	 network	 literature	 was	 collected	 by
Davis,	Gardner	and	Gardner	(1941)	for	their	Deep	South	book.	To	obtain	this	data,
they	 used	 the	 society	 pages	 of	 a	 local	 newspaper	 to	 record	which	 society	women
attended	which	social	events.
Next,	we	have	true	social	relations,	which	are	ties	that	have	a	continuous	nature	in

the	sense	that	they	can	be	seen	as	relational	states	(such	as	being	friends)	rather	than
events	 (such	as	 ‘having	sent	an	email	 to’).	Many	social	 relations	have	a	quality	of
being	 institutionalized	 such	 that	 they	 have	 a	 degree	 of	 reality	 apart	 from	 the
perceptions	of	 the	 individuals	 involved.	An	 example	 is	marriage,	where	 a	 pair	 of
persons	 is	married	 even	 if	 they	deny	 it.	As	 such,	 information	on	 such	 ties	 can	be
collected	 from	 sources	 other	 than	 the	 two	 people	 involved,	 such	 as	 others	 in	 the
community,	 family	 members,	 archival	 records,	 and	 so	 on.	 Other	 types	 of	 social



relations,	 such	 as	 affective	 and	 perceptual	 ties,	 have	 no	 independent	 existence	 or
corroboration:	short	of	inferring	the	tie	based	on	some	behavioral	theory,	such	data
has	to	be	obtained	by	surveying	the	perceiver.

Table	3.3			Types	of	dyadic	phenomena	commonly	studied.	
Category Varieties	and	examples
Co-occurrences Co-membership	in	groups
	 Co-participation	in	events
	 Physical	distances

	 Similarities	in	attributes	(e.g.,	political
views)

Social	relations Kinship	relations
	 Affective	relations	(e.g.,	dislikes)
	 Perceptual	relations	(e.g.,	knows)
Interactions Transactions	(e.g.,	‘sells	to’)
	 Activities	(e.g.,	‘sleeps	with’)
Flows Ideas	and	information
	 Goods
	 Infections

The	 third	 type	 of	 relation,	 interactions,	 can	 be	 either	 directly	 observed	 or
reported	on	by	respondents.	Who	people	talk	to,	watch	movies	with,	hang	out	with,
or	 communicate	 with	 via	 ham	 radio	 are	 all	 examples	 of	 interactions.	 Although
interactions	are	often	directly	observable,	there	are	always	issues	of	interpretation.
For	 example,	 if	 two	people	 are	 verbally	 sparring,	 are	 they	having	 a	 conflict	 or	 a
friendly	competition?	In	a	network	study	of	a	fish	camp,	Johnson	and	Miller	(1983)
observed	 two	 Italian	 fishers	 engaged	 in	what	 appeared	 to	 be	 a	 heated	 discussion.
Johnson	asked	a	younger	 Italian	fisher,	who	was	also	observing,	what	 the	conflict
was	all	about.	The	younger	Italian	explained	that	there	was	no	conflict,	but	that	the
two	men	–	who	were	brothers	–	were	simply	having	a	friendly	discussion	about	a
nephew.	 Johnson	 was	 interpreting	 that	 interaction	 from	 his	 cultural	 perspective
rather	than	from	the	perspective	of	the	two	Italians	engaged	in	the	interaction.
It	 is	 worth	 noting	 here	 the	 difference	 between	 using	 a	 highly	 interpreted	 label

such	 as	 ‘friendly	 competition’,	 versus	 a	 less	 interpreted	 label,	 such	 as	 ‘verbal
sparring’,	 versus	 something	 even	 less	 interpreted,	 such	 as	 ‘communicated	 face	 to
face’.	The	higher	the	level	of	interpretation,	the	more	theoretically	useful	the	data	is
likely	to	be,	but	the	greater	the	chance	of	being	wrong.	It	is	also	worth	noting	that
interactions	 are	often	 collected	 as	 a	 proxy	 for	 unseen	underlying	 social	 relations.



For	example,	we	might	record	who	talks	to	whom	outside	of	work,	and	assume	this
means	they	are	friends.	Again,	making	these	kinds	of	interpretations	is	often	more
powerful,	but	may	be	quite	unwarranted.
Electronic	interactions	are	often	available	in	archival	form,	as	when	we	mine	the

email	 logs	 of	 a	 company’s	 email	 server.	 Although	 convenient	 to	 collect,	 email
interactions	 are	 particularly	 difficult	 to	 interpret	 with	 respect	 to	 inferring	 an
underlying	 social	 relation.	 People	 email	 their	 friends	 but	 they	 also	 email	 work
colleagues,	 family	 members,	 acquaintances,	 and	 strangers	 even	 on	 a	 corporate
email	account.	Even	when	we	have	access	to	the	content	of	the	emails,	it	may	be	very
difficult	to	determine	what	the	relationships	are	between	the	interactants.
Finally,	 the	 fourth	 type	 of	 relation,	 flows,	 can	 be	 seen	 as	 the	 outcomes	 of

interactions.	 When	 two	 people	 interact,	 information	 is	 exchanged.	 Knowledge	 is
transferred.	 Other	 examples	 include	 sharing	 networks	 among	 subsistence	 hunters
where	 the	 catch	 is	 distributed	 among	 group	 members	 or	 traded	 for	 other
commodities.	In	general,	this	kind	of	data	is	rarely	collected,	because	it	is	difficult
to	 obtain.	 More	 often,	 interactions	 are	 recorded,	 and	 flows	 are	 assumed.	 For
example,	many	studies	ask	‘Who	do	you	seek	advice	from?’	and	the	assumption	is
that	the	resulting	data	can	be	used	as	a	proxy	for	the	flow	of	information	(from	the
alter	to	the	ego).	In	some	cases	direct	measures	of	flows	are	obtainable,	as	in	tables
of	 the	 dollar	 values	 of	 flows	 of	 raw	materials	 and	 manufactured	 goods	 between
countries.	 Similarly,	 personnel	 flows	 between	 companies,	 universities,	 football
teams	 and	 the	 like	 are	 readily	 observable.	 In	 general,	 flows	 among	organizations
are	easier	to	measure	than	flows	between	individuals.

3.6	Actor	attributes

As	noted	in	Chapter	1,	the	analysis	of	social	networks	involves	more	than	networks.
For	 example,	 node-level	 research	 would	 normally	 combine	 network-derived
variables,	such	as	node	centrality,	with	non-network	attributes	of	the	actors,	such	as
demographic	 characteristics	 or	 personality	 characteristics.	 In	 some	 cases,	 the
network-based	 variable	 will	 be	 among	 the	 independent	 variables	 (as	 when	 we
predict	 performance	 based	 on	 centrality,	 controlling	 for	 competence),	 and
sometimes	 it	 will	 be	 the	 dependent	 variable,	 as	 when	 we	 use	 personality
characteristics	 to	 predict	 centrality.	 Either	 way,	 an	 important	 part	 of	 the	 research
design	will	be	to	collect	non-network	data	that	will	be	combined	in	the	analysis	with
network	data.

3.7	Sampling	and	bounding



One	of	the	most	vexing	problems	for	those	just	starting	out	in	network	research	is
the	problem	of	bounding	the	set	of	nodes	to	be	included	in	the	study.	In	some	cases
the	 decision	 seems	 easy	 and	 may	 even	 be	 made	 tacitly	 without	 conscious	 effort.
Well-known	 examples	 include	 Sampson’s	 (1969)	 study	 of	 a	monastery,	 Zachary’s
(1977)	 study	of	a	karate	club,	Bernard	and	Killworth’s	 (1973)	 study	of	a	 research
ship,	Krackhardt’s	(1987)	study	of	a	company	in	Silicon	Valley,	and	Johnson,	Boster
and	Palinkas’s	(2003)	study	of	a	polar	research	station.	In	other	cases,	the	problem
seems	nearly	 insurmountable.	For	example,	 if	we	are	 interested	 in	studying	social
influences	on	consumer	purchasing,	we	know	we	cannot	study	the	entire	network	–
all	7	billion	individuals.	For	convenience,	we	might	choose	residents	of	the	city	in
which	we	are	located,	or,	more	realistically,	the	neighborhood.	The	problem	is	that
no	matter	whom	we	choose,	we	can	be	sure	that	a	large	number	of	influencers	will
be	outside	the	sample.
Notice	that	the	problem	is	not	really	the	size	of	the	network	but	rather	the	nature

of	 the	 research	 question.	 If	 the	 research	 interest	 is	 social	 influence	 on	 decision-
making,	 the	studies	we	cited	above	as	examples	of	easy	boundary	specification	do
not	 look	 so	 simple:	 while	 the	 monks	may	 be	 fairly	 isolated,	 the	 employees	 of	 a
company	 are	 not.	 The	 principal	 influencers	 of	 an	 employee’s	 decisions	 (say,	 to
leave	the	company)	may	well	be	outside	the	company,	such	as	family	members	and
members	of	competing	companies.
To	 deal	 with	 this	 problem,	 we	 offer	 two	 suggestions.	 First,	 if	 your	 research

question	does	not	allow	you	to	restrict	the	set	of	alters	that	a	respondent	could	name,
use	a	personal-network	research	design.	You	still	have	to	decide	who	will	be	your
respondents,	but	this	could	be	as	simple	as	a	random	sample	from	the	population	to
which	 you	 wish	 to	 generalize.	 In	 a	 sense,	 the	 boundary	 specification	 problem
involves	 two	 sets	 of	 actors	 that	 need	 bounding:	 the	 egos	 (in	 whose	 ties	 we	 are
interested),	and	the	alters	(those	with	whom	egos	have	ties).	In	the	case	of	a	whole-
network	 study,	 these	 two	 sets	 of	 actors	 are	 the	 same.	 In	 personal-network	 studies,
however,	they	are	not,	and	this	is	quite	liberating.
The	 second	 suggestion	 is	 to	 consider	whether	 you	 are	 studying	 a	 sociological

group	 or	 not.	 The	 realist	 school	 of	 network	 research	 design	 restricts	 itself	 to
studying	 only	 groups,	 but	 the	 nominalist	 school	 sees	 no	 essential	 problem	 with
studying	 networks	 that	 are	 not	 groups	 (Laumann,	 Marsden	 and	 Pensky	 1983).
Groups	 are	 sociologically	 real	 –	 they	 are	 recognized	 by	 their	 members	 and,	 in
principle	at	least,	they	have	boundaries:	part	of	the	concept	of	a	group	is	that	there
are	 members	 and	 non-members,	 even	 if	 in	 fact	 the	 boundaries	 are	 fuzzy	 and/or
contested.	 If	 one	 is	 studying	 the	 internal	 network	 of	 a	 group,	 then	 getting	 the
boundaries	more	 or	 less	 right	 is	 important.	One	 does	 not	want	 to	miss	 bona	 fide
members	of	 the	group,	nor	does	one	want	 to	 include	non-members.	Both	of	 these
errors	threaten	the	validity	of	the	study,	and	the	inclusion	of	non-members	can	also



add	considerably	to	the	scope	and	complexity	of	the	project.
If	you	are	not	studying	natural	groups,	then	the	study	boundaries	are	determined

by	 the	 research	question	 (see	Table	3.4).	 For	 example,	 you	might	 be	 interested	 in
how	 the	 structure	 of	 the	 trust	 network	 in	 different	 classrooms	 affects	 the	 class’s
ability	to	successfully	perform	group	projects.	In	this	case,	the	network	of	trust	ties
within	each	classroom	is	assessed,	and	ties	outside	the	class	are	not	measured.	This
is	not	a	problem:	 it	does	not	 imply	 that	no	 ties	 to	 the	outside	world	exist,	nor	 that
these	ties	are	unimportant.	It	is	just	that	the	research	is	specifically	about	how	the	ties
within	a	classroom	affect	classroom	outcomes.	Whether	you	think	that	is	a	fruitful
research	 question	 is	 another	 matter.	 The	 point	 is	 that	 choosing	 an	 ‘artificial’
boundary	 (i.e.,	 one	 that	 may	 not	 correspond	 to	 a	 sociological	 group)	 is	 not
necessarily	a	threat	to	the	validity	of	the	research	design.	And,	as	explained	above,
even	 if	 one	 is	 studying	 a	 natural	 group	 and	 knows	 what	 the	 boundaries	 are,	 the
research	objectives	may	necessitate	studying	group	members’	ties	to	people	outside
the	group.

Table	3.4			Sampling	and	bounding	networks.

3.7.1	Strategies	for	finding	group	boundaries
Most	 groups	 have	 fuzzy	 boundaries.	 Even	 formal	 groups	 such	 as	 corporations
which	 have	membership	 lists	 have	 part-timers,	 virtual	workers,	 temps,	 new	hires,
current	 applicants,	 retirees,	 consultants,	 etc.	One	basic	 approach	 to	 approximating
the	boundaries	is	snowball	or	other	respondent-driven	sampling	methods	(Johnson
1990).	 In	 a	 study	 of	 communication	 networks	 in	 the	 king	mackerel	 fishery	 in	 the
southeastern	United	States,	Maiolo	and	Johnson	(1992)	used	key	informant	free-lists
(see	Borgatti,	1994,	for	a	description	of	the	technique)	and	commercial	license	lists
to	 identify	 an	 initial	 set	 of	 seeds	 for	 a	 snowball	 sample.	 Although	 a	 commercial



license	 list	 existed	 for	 commercial	 fisher	 and	 commercial	 dealers,	 there	 was	 no
such	 list	 for	 sportfishers	who	 targeted	king	mackerel,	which	 is	 both	 an	 important
commercial	 and	 sport	 species.	 In	 addition,	 the	 fact	 someone	 was	 a	 commercial
fisher	did	not	mean	they	necessarily	targeted	king	mackerel.	Key	informants	known
to	target	king	mackerel	in	both	the	commercial	and	recreational	sectors	were	asked
to	free-list	fishers	they	knew	who	regularly	targeted	that	species.	This	list	provided
a	seed	list	from	which	to	begin	the	snowball	sample	of	actors	‘who	talked	to	each
other	 about	 king	 mackerel	 fishing’.	 However,	 the	 problem	 was	 where	 to	 stop.
During	the	course	of	the	snowball	sample,	which	was	conducted	by	both	phone	and
face-to-face	 interviews	 across	 North	 Carolina,	 South	 Carolina,	 Georgia	 and
Florida,	there	were	periods	of	time	when	there	was	considerable	sample	saturation
or	 name	 redundancy	 in	 the	 elicitation	 of	 alters.	 This	 saturation	 represented	 fuzzy
boundaries	 around	 the	 fisher	 community	 that	 were	 often	 related	 to	 geographical
factors.	Thus,	boundaries	were	placed	on	the	basis	of	tie	intensity	and	redundancy	in
the	course	of	the	snowball	sample.	However,	it	should	be	noted	that	if	the	purpose	of
the	 study	 is	 to	 discover	 the	 nature	 of	 ties	 that	 connect	 various	 areas	 of	 high
redundancy	 or	 density	 in	 social	 networks,	 then	 ties	 bridging	 these	 areas	 of	 high
density	 need	 to	 be	 pursued	 and	 the	 redundancy	 criteria	 may	 need	 to	 be	 applied
across	several	waves	of	a	snowball	sample.
Many	 studies	 use	 a	 combination	 of	 nominalist	 (or	 etic)	 criteria	 and	 realist	 (or

emic)	 criteria.	 An	 example	 of	 this	 is	 Johnson’s	 (1986)	 study	 of	 the	 diffusion	 of
innovations	 through	 a	 network	 of	 commercial	 fishers.	 Initially	 Johnson	 used	 the
commercial	 license	 list	 obtained	 from	 the	 North	 Carolina	 Division	 of	 Marine
Fisheries	 to	 identify	 commercial	 license	 holders	 in	 a	 small	 fishing	 community	 in
North	Carolina.	He	could	have	used	the	list	as	the	boundary	for	the	network,	but	the
list	included	anyone	who	had	purchased	a	commercial	fishing	license	no	matter	the
extent	to	which	they	actually	fished	and	he	wanted	to	weed	out	the	people	who	really
were	 unconnected	 to	 the	 local	 fishing	world.	His	 solution	was	 to	 use	 the	 fishers’
own	perceptions	to	refine	the	sample.	Using	the	licensing	list,	he	wrote	the	names	of
each	fisher	on	a	card	and	asked	fishers	in	the	community	to	sort	the	names	into	piles
according	 to	 how	 similar	 they	 perceived	 the	 fishers	 to	 be	 to	 one	 another	 (i.e.,	 an
unconstrained	pile-sort	 task).	Based	on	 the	pile-sort	 results,	 it	was	clear	 that	 there
were	perceived	differences	among	the	various	license	holders	based	on	amount	of
income	 derived	 from	 commercial	 fishing.	 A	 multidimensional	 scaling	 plot	 (see
Chapter	6)	revealed	two	clear	clusters	that	basically	broke	down	by	those	perceived
as	full-time	fishers	as	opposed	to	those	viewed	as	part-time	fishers.	The	final	set	of
actors	used	for	the	network	survey	included	only	full-time	fishers	identified	in	the
analysis.	 Thus,	 actors’	 perceptions	 were	 used	 in	 combination	 with	 a	 researcher-
derived	list	to	determine	the	final	set	of	actors	used	in	the	study.



3.8	Sources	of	data	reliability	and	validity	issues

Errors	in	network	data	can	arise	from	a	multitude	of	sources.	The	way	questions	are
framed,	 the	manner	 in	which	network	boundaries	are	specified,	 the	willingness	of
respondents	to	answer	questions,	the	manner	in	which	data	is	aggregated,	informant
accuracy,	 the	erroneous	attribution	of	behaviors,	etc.,	can	all	create	error	 in	 terms
of	missing	data	or	 the	presence	of	data	 that	 lacks	validity	and	may	be	misleading.
Borgatti,	 Carley	 and	 Krackhardt	 (2006)	 examined	 the	 effect	 of	 data	 error	 on	 the
measurement	of	centrality.	They	examined	four	kinds	of	error:	omission	of	nodes,
omission	of	ties,	inclusion	of	false	nodes	and	inclusion	of	false	ties.	They	found	that
errors	 in	 various	 centrality	 measures	 resulting	 from	 the	 random	 exclusion	 and
inclusion	 of	 edges	 in	 random	 graphs	 vary	 as	 a	 function	 of	 characteristics	 of	 the
network	itself	(e.g.,	density,	sparseness),	and	that	the	accuracy	of	measures	declines
predictably	 with	 the	 amount	 of	 error	 introduced.	 The	 latter	 is	 good	 news	 for
network	 researchers	 but	 it	 must	 be	 remembered	 that	 Borgatti	 et	 al.	 studied	 only
artificial	networks,	not	empirically	collected	networks.	Moreover,	 their	 results	are
average	 values	 across	 thousands	 of	 trials.	 Even	 if	 the	 accuracy	 of	 a	 betweenness
measurement	declines	an	average	of	10%	when	10%	error	is	introduced	in	the	data,
there	 can	 be	 individual	 cases	where	 the	 introduction	 of	 10%	 error	 causes	 a	 great
deal	 more	 error	 in	 the	 measurement	 of	 betweenness.	 For	 example,	 consider	 the
network	shown	in	Figure	3.2.	A	missing	tie	between	nodes	4	and	5	in	the	top	figure
would	 completely	 hide	 the	 brokering	 importance	 of	 these	 two	nodes.	Conversely,
the	erroneous	addition	of	a	tie	between	nodes	3	and	8	would	make	node	3	look	far
more	important	than	it	really	was.	The	lower	graph	in	Figure	3.2	has	the	tie	between
3	and	8	added	and	the	changes	to	the	betweenness	scores	are	shown	in	the	panel	at
the	top	right.
Johnson,	Boster	and	Holbert	(1989)	used	a	Monte	Carlo	simulation	approach	to

study	error	 in	networks	derived	from	snowball	samples	employing	a	fixed-choice
methodology.	 They	 found	 that	 degree	 centrality	 was	 relatively	 robust	 under
different	sampling	conditions,	a	finding	echoed	by	Costenbader	and	Valente	(2003)
and	Wang	et	al.	(2012).
Compared	 to	 the	 collection	 of	 other	 types	 of	 data	 in	 the	 social	 sciences	 (e.g.,

attribute-based	 survey	 data),	 the	 collection	 of	 social	 network	 data	 can	 be	 quite
challenging.	 A	 major	 threat	 to	 validity	 in	 social	 network	 research	 stems	 from
problems	of	missing	data	that	are	due	to	a	number	of	different	sources	at	a	number
of	different	 stages	 in	 the	 research	process.	 In	addition,	errors	can	arise	 from	data
(e.g.,	a	network	tie)	that	is	erroneously	included,	what	we	have	been	referring	to	as
‘commission	errors’.	These	sources	of	error	all	can	lead	to	model	misspecification.
One	major	contributor	to	missing	data	is	non-response	in	network	surveys.	This

can	happen	 if	 the	network	boundaries	are	not	properly	specified	on	 theoretical	or



other	grounds.	Network	surveys	are	extremely	susceptible	 to	non-response	bias	 in
that	missing	actors	 and	 their	 links	can	affect	 structural	 and	analytical	outcomes	at
both	the	network	and	individual	levels.	Respondents	can	refuse	to	participate	in	the
survey	at	all	or	can	refuse	to	answer	some	or	all	survey	questions	due	to	such	things
as	 interviewee	burden	or	question	sensitivity;	 they	may	drop	out	of	a	 longitudinal
study	prematurely	as	a	result.

Figure	 3.2	 	 	 Effects	 of	 adding	 a	 tie	 on	 the	 betweenness	 centrality	 of	 nodes	 in	 a
network.

The	design	of	 the	study	and	subsequent	sample	or	 instrument	design	(e.g.,	 types
and	forms	of	relational	questions)	for	a	given	social	network	problem	and	context
can	 also	 be	 important	 in	 limiting	 threats	 to	 validity	 (and	 this	 can	 vary	 cross-
culturally).	 Respondent	 unreliability	 and	 inaccuracy	 have	 clearly	 been	 shown	 to
produce	 error	 of	 various	 kinds	 (but	 the	 error	 is	 often	well	 behaved,	 as	 discussed
below).
We	need	to	be	aware	of	factors	that	minimize	threats	to	validity	in	the	design	and

collection	of	social	network	data.	The	following	paragraphs	provide	a	summary	of
some	 types	 of	 error	 that	 are	 of	 concern,	 beginning	with	 two	 that	 were	 discussed
earlier	in	the	chapter.

Omission	errors.	Missing	edges	and	nodes	can	have	huge	impacts	on	errors	in



network	variables,	particularly	for	some	centrality	measures.	Such	missing
data	can	make	networks	appear	to	be	more	disconnected	than	they	really	are	or
make	other	nodes	and	edges	in	the	network	appear	to	be	more	important	than
they	really	are	(as	evidenced	by	the	missing	of	a	single	tie	between	nodes	4	and
5	in	Figure	3.2).	If	data	is	being	collected	in	surveys	using	open-ended	format
questions,	omission	errors	are	most	frequently	a	result	of	the	insufficient
elicitation	of	respondent’s	alters	(see	Chapter	4	for	more	discussion).
Commission	errors.	Like	omission	errors,	the	erroneous	inclusion	of	nodes
and	edges	can	affect	the	ultimate	determination	of	node-level	measures	and	the
identification	of	key	nodes	(as	is	clear	in	Figure	3.2).
Edge/node	attribution	errors.	These	result	from	assigning	a	behavior	or
attributing	something	to	either	an	edge	or	node	incorrectly.	Misassignment	of	a
behavior	to	a	node	can	yield	attributed	linkages	in	a	network	that	in	reality	do
not	exist.	Attribution	error	is	a	common	problem	in	the	interpretation	of	two-
mode	data	that	has	been	converted	to	one-mode.	For	example,	two	individuals
in	a	university	program	may	co-attend	a	large	number	of	classes.	We	therefore
assume	a	connection	(either	pre-existing	or	as	a	result	of	meeting	in	class).	But
it	could	easily	be	that	one	of	the	individuals	is	a	non-traditional	student	who	is
older	and	married	and	does	not	hang	out	with	other	students	in	the	program.
Treating	co-attendance	as	a	tie	is,	in	this	case,	a	mistake.	Collection	of	other
relational	data	could	help	in	determining	whether	an	active	tie	actually	exists	in
this	case	(e.g.,	triangulation).
Data	collection	and	retrospective	errors.	Care	should	likewise	be	taken	when
using	network	data	collected	from	individuals	where	the	network	elicitation
question	deals	with	reports	of	behavior,	particularly	having	to	do	with	social
interactions	of	a	temporally	discrete	nature.	For	example,	questions	that	are	of
the	kind	‘who	are	the	people	you	interacted	with	yesterday	in	the	plaza?’	are
notoriously	prone	to	error.	Bernard	and	Killworth	(1977),	Bernard,	Killworth
and	Sailer	(1980,	1982),	and	Killworth	and	Bernard	(1976,	1979)	conducted	a
series	of	studies	on	informant	accuracy	in	social	networks	involving	fraternity
members,	ham	radio	operators,	and	deaf	people	communicating	with	teletype
machines,	to	mention	a	few.	They	found	that	people	were	inaccurate	in	their
reporting	of	interactions	with	others.	For	example,	ham	radio	operators,	who
kept	logs	of	radio	conversations,	made	both	omission	and	commission	errors
in	their	retrospective	reporting	of	radio	interactions.	Bernard,	Killworth	and
Sailer	asked	the	operators	to	list	all	the	people	they	talked	to	on	the	radio	the
day	before;	the	researchers	then	checked	the	accuracy	of	the	reported
communications	with	the	actual	communications	as	recorded	in	the	log	books
and	found	them	to	be	woefully	inaccurate.	The	overall	conclusion	of	their
studies	was,	in	their	words,	that	‘what	people	say,	despite	their	presumed	good



intentions,	bears	no	useful	resemblance	to	their	behavior ’	(Bernard,	Killworth
and	Sailer	1982:	63).

The	Bernard,	Killworth	and	Sailer	research	led	to	a	flurry	of	other	studies	on	the
topic.	An	 important	 study	by	Freeman,	Romney	and	Freeman	(1987)	and	Freeman
and	Romney	(1987)	found	that	informants	are	more	accurate	in	reporting	long-term
patterns	 of	 behavior	 than	 behaviors	 at	 some	 point	 in	 time.	 They	 noted	 the
participants	in	a	colloquium	series	at	the	University	of	California	Irvine	throughout
the	 quarter.	 On	 the	 day	 after	 the	 last	 colloquium	 of	 the	 quarter,	 the	 people	 who
attended	were	asked	to	list	all	the	participants	present	at	that	last	colloquium.	There
were	 inaccuracies,	 as	 expected,	 but	 these	 inaccuracies	 were	 patterned	 and
predictable.	 Omission	 errors	 included	 people	 who	 normally	 did	 not	 attend	 the
colloquium	but	 happened	 to	 be	 at	 the	 last	 one,	while	 commission	 errors	 included
people	who	 usually	 came	 to	 the	 colloquium	 but	 happened	 to	 not	 be	 there	 for	 the
final	 one.	 Thus,	 individual	 informants	 were	 reporting	 more	 on	 what	 usually
happened	rather	than	on	what	happened	during	a	specific	colloquium.	A	better	way
to	 ask	 the	 question	posed	 at	 the	 beginning	of	 this	 section	 about	 plaza	 interactions
would	be	‘who	are	the	people	you	usually	interact	with	in	the	plaza?’	or	‘who	are	the
people	you	interacted	with	most	in	the	plaza	over	the	last	two	weeks?’.	These	reports
of	long-term	patterns	of	behavior	are	much	less	prone	to	error.
Research	 on	 ego	 biases	 in	 cognitive	 networks	 (Krackhardt	 1987,	 1990;

Kumbasar,	Romney	and	Batchelder	1994;	Johnson	and	Orbach	2002)	has	shown	that
some	 individuals	 in	 the	 network	 are	more	 accurate	 about	 reporting	 linkages	 than
others.	 They	 find	 that	 active,	 more	 powerful	 nodes	 tend	 to	 be	 more	 accurate.
Johnson	and	Orbach	(2002),	for	example,	found	that	the	more	central	an	actor	in	the
political	 network	 the	 more	 accurate	 their	 cognitive	 networks.	 These	 all	 have
implications	on	methods	for	assessing	and	weighting	the	reliability	and	validity	of
network	data	and	for	potentially	fixing	missing-data	problems.

Data	management/data	entry.	Errors	due	to	data	entry,	coding	and
transcription/translation	are	well	known	in	other	analytical	and	modeling
domains,	but	they	can	be	even	more	problematic	in	the	network	context	as	they
can	have	larger	effects.	Fischer	(2006),	for	example,	suggests	that	some	of	the
contested	results	of	the	McPherson,	Smith-Lovin	and	Brashears	(2006)
research	on	the	shrinking	of	Americans’	social	networks	in	a	longitudinal
study	of	the	General	Social	Survey	may	be	due	in	part	to	what	Fischer	refers	to
as	random	or	technical	errors	(e.g.,	software	problems,	interview	procedures,
coding	errors).
Data	fusion/aggregation.	Decisions	often	have	to	be	made	on	aggregating
data	on	different	temporal,	relational	and	spatial	scales.	Such	aggregations,	if
done	improperly,	can	create	errors	at	a	variety	of	levels.	For	example,	when



aggregating	longitudinal	real-time	or	streaming	data	for	analysis,	important
individual	nodes	and	edges	may	be	excluded	because	they	have	lost	their
importance	in	the	network.	As	in	the	boundary	specification	problem,	there
should	be	some	guiding	principles,	preferably	of	a	theoretical	nature,	for
making	aggregation	decisions	(e.g.,	before	and	after	a	hypothesized	important
event).
Errors	in	secondary	sources	and	data	mining.	Various	forms	of	secondary
source	data	may	have	inherent	biases	which	should	be	considered	in	any
analysis.	This	type	of	data	can	be	easier	to	collect	than	primary	types	of	data
(e.g.,	data	scraped	from	the	Web),	but	it	can	be	fraught	with	errors	at	a	variety
of	levels.	Examples	of	important	questions	one	should	ask	when	using
secondary	source	data	include:	if,	instead	of	obtaining	this	tie	from	some
records,	we	asked	a	survey	question,	what	survey	question	would	the	tie
correspond	to?	Are	nodes	really	the	same?	For	example,	telephone	records
show	ties	between	phones.	But	the	phones	may	be	used	by	multiple	people,	and
a	given	person	may	have	multiple	phones.	Does	the	observance	of	two
individuals	at	the	same	event	infer	a	tie?	Are	records	temporally	comparable,	at
the	same	scale,	etc.?	For	further	discussion	of	this	issue,	see	section	4.6	in
Chapter	4.
Formatting	errors.	In	data	mining	or	Web	scraping	there	are	errors	that	can
be	due	to	differences	in	document	or	website	formatting.	These	errors	can	lead
to	the	over-	or	under-representation	of	terms,	actors,	attributes,	etc.	in	the	data
retrieval	process.	Care	should	be	taken	that	any	relations	assigned	among
nodes	is	not	an	artifact	of	formatting	errors.	In	addition,	Web	scraping	and
automated	data	mining	methods	should	be	scrutinized	for	consistency	in	the
operationalization	of	important	concepts.	The	bottom	line	is	that	the	quality	of
a	study	is	a	function	of	the	quality	of	the	data:	garbage	in,	garbage	out.

3.9	Ethical	considerations

Network	research	is	different	from	conventional	person-based	research	in	a	number
of	ways	that	entail	differences	in	the	ethical	challenges	that	each	poses.	To	start	with,
a	key	data	collection	 issue	 in	full	network	research	designs	 is	 the	 impossibility	of
anonymity.	Personal-network	research	designs	can	be	anonymous,	both	with	respect
to	the	respondent	and	the	people	they	mention	(e.g.,	they	can	use	nicknames).	But	for
all	 practical	 purposes,	 full	 network	 designs	 require	 that	 the	 respondent	 identify
themselves,	which	means	the	researcher	can	only	offer	confidentiality.	This	makes	it
imperative	 that	 the	 research	make	 it	 clear	 to	 the	 respondent	who	will	 see	 the	 raw
data	what	can	reasonably	be	predicted	to	happen	to	the	respondent	as	a	result	of	an



accidental	breach	of	confidentiality.
A	related	issue	is	that,	unlike	other	research,	non-participation	by	a	respondent	in

a	network	 study	does	not	necessarily	mean	 that	 they	are	not	 included	 in	 the	 study.
Even	if	an	actor	chooses	not	 to	fill	out	 the	survey,	other	respondents	may	still	 list
that	person	as	a	friend,	enemy,	etc.	A	person	who	does	not	wish	to	be	embarrassed
by	their	poor	standing	in	the	group	will	still	be	found	to	be	the	person	most	often
named	 as	 difficult	 to	 work	 with.	 This	 can	 be	 remedied	 by	 eliminating	 all	 non-
respondents	 from	 the	 dataset	 altogether.	However,	 this	may	wreck	 the	 quality	 and
representativeness	 of	 the	 data,	 which	 introduces	 its	 own	 ethical	 issues.	 This	 is
particularly	 a	 problem	 in	 applied	 settings,	 where	 decisions	 will	 be	 based	 on	 the
results	 of	 the	 study.	 The	 researcher	 can,	 of	 course,	 consider	 it	 enough	 to	 warn
management	 of	 the	 problem,	 but	 realistically	 the	 researcher	 knows	 that	 the
management	 is	 not	 going	 to	 fully	 appreciate	 the	 depth	 of	 the	 problem,	 especially
since	 it	 may	 be	 difficult	 to	 explain	 just	 how	 the	 picture	 is	 misleading	 without
revealing	the	very	information	that	the	researcher	is	trying	to	suppress.
The	non-participation	issue	points	to	a	more	subtle	underlying	difference	between

network	 research	 (of	 all	 kinds)	 and	 conventional	 social	 science.	 Whereas	 in
conventional	 studies	 the	 respondent	 usually	 reports	 only	 on	 herself,	 in	 network
studies	the	respondent	reports	on	other	people,	some	of	whom	may	not	wish	to	be
reported	 on.	And	 if	 these	 people	were	 not	 also	 intended	 to	 be	 respondents	 in	 the
study,	 they	 will	 not	 have	 been	 contacted	 to	 sign	 consent	 forms.	 As	 a	 matter	 of
general	 principle,	 this	 does	 not	 seem	 unethical	 as	 the	 respondent	 owns	 her	 own
perceptions.	 This	 needs	 to	 be	 considered	 on	 a	 case-by-case	 basis,	 however.	 For
example,	if	the	respondent	reports	seeing	someone	engage	in	illegal	activities,	there
is	 a	 clear	 implication	 that	 the	 named	party	 does	 in	 fact	 do	 illegal	 things:	 it	 is	 not
‘just’	a	perception	as	in	‘I	think	John	respects	me’.	In	general,	the	researcher	needs
to	 balance	 his	 research	 need	 against	 the	 dangers	 posed	 by	 revelation	 to	 both	 the
alters	 and	 the	 respondents	 who	 tell	 on	 them.	 Also,	 an	 interesting	 aspect	 of	many
social	ties,	particularly	those	based	on	role	relationships	such	as	‘is	a	friend	of’,	is
that	neither	person	owns	the	relationship	exclusively:	it	is	a	joint	creation,	and	so	it
is	at	least	plausible	to	argue	that	neither	party	can	ethically	report	on	it	without	the
consent	of	the	other.
The	 issue	of	which	 ties	 it	 is	acceptable	 to	ask	about	 is	particularly	 important	 in

organizational	 research,	 especially	 when	 the	 price	 of	 getting	 access	 to	 the
organization	is	providing	feedback	to	management.	It	is	generally	accepted	that	the
behavior	 of	 employees	 of	 an	 organization	 is	 open	 to	 scrutiny	 by	 management.
Supervisors	 base	 their	 evaluations	 of	 subordinates	 on	 all	 kinds	 of	 factors,	 both
formal	 and	 informal.	How	employees	 relate	 to	 each	 other	 is	 something	 that	 is	 of
legitimate	 interest	 to	 managers	 and,	 indeed,	 in	 the	 case	 of	 sexual	 harassment,	 an
obligation.	 It	 is	 also	 generally	 accepted	 that	 some	 things	 are	 private:	 what



employees	do	 in	 the	privacy	of	 their	own	bedrooms	with	 their	spouses	 is	none	of
the	organization’s	business.	But	what	of	 employee	 friendships?	This	 is	one	of	 the
most	 commonly	 asked	 questions	 in	 organizational	 network	 studies.	 As	 a	 general
rule,	 the	 network	 researcher	 is	 far	 more	 interested	 in	 informal	 ties,	 including
negative	ties,	than	those	dictated	by	the	formal	structure	of	the	organization.	It	seems
at	least	plausible	to	argue	that	these	sorts	of	questions	fall	into	a	gray	area	between
acceptable	management	scrutiny	and	invasion	of	privacy.
Another	 way	 in	 which	 network	 studies	 (of	 the	 full	 network	 type)	 differ	 from

conventional	 social	 science	 studies	 is	 that	 missing	 data	 is	 exceptionally
troublesome.	 If	 a	 few	 highly	 central	 players	 are	 missing,	 the	 resulting	 network
could	be	quite	different	 than	 it	would	have	been	had	 those	people	 responded.	This
creates	 unfortunate	 incentives	 for	 network	 researchers	 to	 discourage	 respondents
from	 opting	 out	 of	 a	 study.	As	 a	 result,	 they	may	 not	 do	 a	 fully	 adequate	 job	 of
outlining	the	risks	to	respondents.	In	organizational	settings,	they	will	also	be	sorely
tempted	 to	 get	 the	 boss	 to	 send	 a	 clear	 message	 to	 employees	 that	 they	 should
participate	 in	 the	survey.	This	might	be	not	be	coercive	from	a	workplace	legality
standpoint,	 but	many	 academic	 human	 subject	 review	 boards	 (institutional	 review
boards	in	the	US)	would	disagree.
Another	 issue	 that	 is	 special	 to	 full	 network	 research	 has	 to	 do	 with	 data

visualization.	 In	most	 social	 science	 research	 it	 is	 variables,	 not	 respondents,	 that
are	 the	 focus	 of	 interest.	 Respondents	 are	 merely	 anonymous	 replications	 –	 the
more	 the	 better.	 Fundamentally,	 they	 are	 treated	 as	 bundles	 of	 attribute	 values.
Consequently,	 it	 is	 rarely	 useful	 to	 express	 the	 results	 of	 quantitative	 research	 by
providing	 displays	 of	 individual	 data.3	 But	 in	 network	 analysis	 it	 is	 extremely
common	to	present	a	network	diagram	that	shows	who	is	connected	to	whom.	Such
diagrams	are	not	highly	digested	outputs	of	analysis,	but	rather	 low-level	displays
that	represent	 the	raw	data:	 the	outgoing	arrows	from	any	node	have	a	one-to-one
correspondence	 with	 that	 person’s	 filled-out	 questionnaire,	 compactly	 revealing
each	person’s	 responses.	The	obvious	 solution,	of	course,	 is	 to	 suppress	 the	node
labels	or	identify	nodes	only	categorically,	such	as	by	department	or	gender.	But	the
level	 of	 risk	 to	 respondents	 here	 is	much	 higher	 than	most	 consent	 forms	would
suggest,	 because	 organizational	 members	 can	 often	 deduce	 the	 identity	 of	 one
person	 (e.g.,	 the	 only	 high-ranking	 woman	 in	 the	 Boston	 office)	 and	 once	 that
person	 has	 been	 identified,	 their	 known	 associates	 can	 sometimes	 be	 deduced	 as
well,	 eventually	 unraveling	 the	whole	 network.	 At	 the	 very	 least,	 participants	 can
often	 identify	 themselves	 (e.g.,	 when	 they	 remember	 listing	 exactly	 seven	 friends
and	no	other	node	in	the	graph	has	exactly	seven	ties).
A	final	point	of	difference	is	not	fundamental	 to	 the	field	but	has	 to	do	with	 the

fact	that	most	potential	respondents	do	not	know	much	about	it.	Most	people	today
have	a	great	deal	of	experience	of	filling	out	survey	questionnaires	in	a	variety	of



contexts	 from	 political	 polls	 to	marketing	 research	 to	 job	 applications.	 Although
new	media	 like	Facebook	 present	 some	 new	 challenges,	when	 it	 comes	 to	 simple
questionnaires	we	would	 argue	 that	 people	 have	 an	 intuitive	 feel	 for	 the	 potential
consequences	 of	 disclosing	 personal	 information.	 Coupled	 with	 explicit	 consent
forms	that	outline	some	of	the	risks,	most	researchers	would	agree	that	respondents’
common	sense	provides	adequate	protection.	Network	 surveys,	on	 the	other	hand,
are	 a	 whole	 new	 ballgame.	 Most	 respondents	 in	 a	 network	 study	 will	 not	 have
participated	 in	 one	 before,	 and,	 in	 organizational	 contexts,	 managers	 receiving
network	 information	 will	 not	 have	 done	 so	 either.	 As	 a	 result,	 there	 is	 a	 greater
burden	on	 researchers	 to	be	clear	about	 the	 risks.	Even	 if	a	consent	 form	were	 to
clearly	state	that	the	data	would	not	be	kept	confidential	and	would	be	reported	back
to	the	group,	many	respondents	would	do	a	bad	job	of	imagining	how	it	would	feel
to	be	identified	in	the	analysis	as	a	peripheral	player	whom	nobody	really	likes.
In	 short,	 the	 design	 of	 a	 network	 study	 generally	 requires	 more	 attention	 to

ethical	 issues	 than	 ordinary	 studies,	 particularly	 in	 organizational	 settings.	 We
advise	 using	 an	 expanded	 consent	 form	 that	 explains	 more	 about	 the	 outputs	 of
network	 analysis	 than	 is	 customary.	 For	 more	 suggestions,	 see	 the	 papers	 by
Borgatti	and	Molina	(2003,	2005).

3.10	Summary

Network	 studies	 need	 to	 be	 carefully	 designed	 to	 take	 account	 of	 the	 particular
features	 inherent	 in	 social	 networks.	Personal-network	 research	designs,	 in	which
information	is	gathered	from	a	random	sample	of	actors	who	give	information	on
their	connections,	pose	fewer	data	collection	problems	than	whole-network	designs.
However,	the	downside	is	that	ego-network	studies	fail	to	capture	the	full	structural
properties	of	the	whole	network.	Determining	which	actors	to	include	in	a	study	can
be	 challenging,	 and	 network	 boundaries	 are	 not	 always	 clear.	 Even	 when	 formal
groups	 are	 considered,	 there	 is	 often	 a	 degree	 of	 ambiguity	 about	 membership.
When	 the	 boundary	 is	 not	 clear,	 snowball	 or	 respondent-driven	 sampling	 can	 be
used	to	determine	a	population.	Errors	in	network	data	can	occur	from	a	variety	of
sources,	and	any	study	needs	to	take	steps	to	try	and	reduce	these	errors	as	much	as
possible.	The	nature	of	network	data	and	subsequent	analysis	and	visualization	give
rise	 to	a	number	of	ethical	considerations	which	are	particular	 to	network	studies,
and	these	need	to	be	clearly	thought	through	before	data	collection	begins.
	

1	In	the	literature,	what	we	have	called	‘whole’	network	studies	are	known	by	a	wide
variety	 of	 names,	 such	 as	 ‘socio-centric’,	 ‘complete’	 and	 ‘full’.	 Studies	 using	 a



personal-network	 research	 design	 are	 also	 known	 as	 ‘ego-network	 studies’	 and
‘ego-centered	studies’.
2	Institutional	review	boards	or	IRBs	in	the	US.
3	This	 is	not	 true	of	qualitative	research,	however,	where	 it	 is	common	to	provide
direct	quotations	(albeit	anonymously)	from	individual	respondents.
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Data	collection
	

Learning	Outcomes
	

1.	 Identify	sources	of	network	data
2.	 Design	effective	network	questionnaires
3.	 Mine	archival	and	electronic	sources	for	network	data

4.1	Introduction

On	 the	 surface,	 asking	 network	 questions	might	 seem	 pretty	 straightforward.	 For
example,	we	just	ask	‘Please	tell	me	the	names	of	all	your	friends’.	But	there	is	a	lot
more	to	it	than	that.	First,	how	will	respondents	interpret	the	term	‘friend’?	Can	we
expect	 ‘friend’	 to	have	 the	same	meaning	for	all	 respondents	no	matter	what	 their
ethnic,	regional,	educational	or	social	class?	Second,	do	we	ask	the	question	in	an
open-ended	 format,	 or	 do	 we	 provide	 the	 respondent	 with	 a	 roster	 of	 names	 to
choose	 from	 (i.e.,	 closed-ended	 format)?	 If	 we	 use	 an	 open-ended	 question,
respondents	may	forget	to	list	people,	and	if	we	use	a	list	or	aided	format	we	need	to
know	all	the	names	of	network	members	in	advance.	Third,	do	we	just	want	to	know
whether	or	not	a	tie	exists	between	two	people,	or	do	we	want	to	know	the	strength
of	 that	 tie?	 And	 if	 we	 want	 to	 know	 something	 about	 its	 strength,	 do	 we	 use	 an
absolute	 or	 relative	 scale?	 Finally,	 do	 we	 use	 pen	 and	 paper	 or	 some	 type	 of
electronic	 format	 for	 collecting	 the	 data?	 The	 answers	 to	 these	 questions	 will
ultimately	depend	on	characteristics	of	 the	population,	 the	 type	of	 social	 relations
being	studied	and,	above	all,	the	research	objectives.
In	this	chapter	we	discuss	a	variety	of	issues	relating	to	the	collection	of	primary

network	 data	 in	 full	 network	 research	 designs.	 This	 includes	 working	 around
respondent	sensitivities	and	selecting	 the	 right	question	 formats,	 including	closed-
ended	 versus	 open-ended	 rosters,	 use	 of	 rating	 scales,	 multi-item	 batteries,
electronic	 surveys,	 and	 so	 on.	Many	 of	 the	 issues	 we	 discuss	 apply	 to	 personal-



network	 research	designs	as	well,	but	we	note	 that	 there	 is	 a	chapter	 (Chapter	 15)
devoted	entirely	to	personal-network	designs.	We	close	the	chapter	with	a	discussion
of	collecting	archival	and	electronic	data.

4.2	Network	questions

In	principle,	we	can	study	networks	of	all	kinds	of	entities	and	all	kinds	of	relations.
Our	 research	 objectives,	 for	 example,	 may	 call	 for	 us	 to	 study	 trust	 ties	 among
terrorists	 over	 time.	 Unfortunately,	 that	 may	 not	 be	 possible.	 There	 are	 always
practical	considerations	that	get	in	the	way.	Even	if	we	can	get	respondents	to	talk	to
us,	we	will	rarely	have	carte	blanche	with	respect	to	what	we	ask,	and	how	much	we
ask.	Depending	on	the	context,	some	types	of	relational	questions	are	more	sensitive
than	others,	and	this	respondent	sensitivity	can	 impact	 interviewees’	willingness	 to
answer	 questions	 or,	 worse,	 answer	 honestly	 and	 competently.	 Further,	 such
sensitivity	 can	 vary	 by	 cultural	 context	 (e.g.,	 economic	 relations	 may	 be	 more
sensitive	 in	 some	 cultures	 than	 others),	 can	 vary	 over	 time	 (e.g.,	 some	 relational
questions	may	be	of	a	more	sensitive	nature	at	the	beginning	of	a	longitudinal	study
than	 toward	 the	 end),	 and	 can	 vary	 as	 a	 function	 of	 the	 data	 collection	 methods
employed	(e.g.,	face-to-face	versus	online	interviews).
The	 proper	 selection	 of	 the	 network	 questions	 and	 formats	 is	 critical	 to	 the

success	of	any	network	study.	The	structure	of	network	questions	greatly	influences
the	 validity	 and	 reliability	 of	 respondent	 answers	 due	 to	 such	 things	 as	 question
clarity,	 burden,	 sensitivity,	 and	 cognitive	 demand.	Many	 of	 the	 issues	 concerning
standard	 survey	 and	 questionnaire	 development	 and	 design	 apply	 equally	 to	 the
study	of	social	networks.	However,	social	network	questions	are	somewhat	unique
in	that	we	are	not	simply	asking	about	some	attribute	of	the	respondent	or	ego	(e.g.,
age);	 we	 are	 asking	 them	 about	 their	 web	 of	 social	 relations	 that	 may	 evoke
emotional	 responses	 or	 tax	 their	 abilities	 to	 remember	 or	 recall	 aspects	 of	 their
network	relations	and/or	network	behaviors.
A	 short	 case	 study	 illustrates	 the	 point.	 Johnson,	 Boster	 and	 Palinkas	 (2003)

studied	 the	 network	 dynamics	 at	 polar	 research	 stations.	 At	 the	 beginning	 of	 the
four-year	 study,	 the	 researchers	 were	 initially	 interested	 in	 the	 formation	 of
friendships	 and	 the	 ability	 of	 individuals	 to	 assess	 potential	 friendships	 one	 day
following	 the	 initial	 contact.	 One	 of	 the	 researchers	 attended	 the	 first	 training
exercise	of	the	first	winter-over	crew	preparing	to	deploy	to	the	South	Pole	station.
During	 a	 break	 in	 training,	 the	 crew	members	were	 given	 a	 questionnaire	 asking
them	 to	 rank	 the	other	members	of	 the	crew	 from	1	 to	n	–	1	with	 respect	 to	 how
likely	 they	were	 to	 form	a	 friendship	with	 each	 one	 over	 the	 coming	winter.	The
exact	request	was	as	follows:	



Please	rank	the	following	members	of	the	winter-over	crew	in	order	of	their
friendship	or	potential	friendship	to	you	from	1	to	20.	The	member	you	feel
closest	to	should	be	ranked	‘1’	while	the	individual	you	feel	most	distant	from
should	 be	 ranked	 20.	 We	 realize	 this	 task	 is	 difficult	 because	 of	 the	 short
amount	of	time	you	have	known	other	members	of	the	group;	your	judgments
may	be	based	more	on	your	sense	of	the	potential	for	friendship	than	on	any
current	relationship.	Whatever	 the	difficulty	it	 is	 important	you	fill	 the	form
out	completely.	Thank	you!

Immediately,	 several	 of	 the	 crew	 began	 to	 grumble	 and	 protest	 and	 one	 crew
member	threw	down	his	pencil	and	walked	out	of	the	room.	One	respondent	wrote
on	 the	 survey	 form	 ‘I	would	 really	 like	 to	 do	my	 best	 to	 cooperate	 and	 help	 but
please	[respondent’s	emphasis]	no	more	rankings’,	while	yet	another	put	‘1’	next	to
each	 crew	member ’s	 name.	 This	 resistance	 to	 the	 administered	 network	 question
was	related	to	two	primary	problems.	First,	it	was	discovered	that	the	initial	period
of	 group	 formation	 was	 filled	 with	 great	 optimism	 (i.e.,	 a	 utopian	 stage),	 where
there	was	a	general	perception	 that	everyone	would	get	along	and	be	friends	over
the	course	of	the	austral	winter.	The	task	of	having	people	rank-order	one	another	in
terms	of	potential	friendship	created	quite	a	negative	emotional	response	on	the	part
of	crew	members,	since	they	believed	at	this	point	in	the	group	formation	process
that	‘everyone’	would	be	friends	and	ranking	people	meant	that	some	people	would
be	 ranked	 near	 the	 bottom	 of	 people’s	 list,	 therefore	 implying	 a	 possible	 lack	 of
friendship.	Thus,	both	the	type	of	relation	and	how	it	was	measured	(i.e.,	rank-order)
were	 problematic	 in	 practice.	 The	 mix	 of	 a	 rank-order	 collection	 method	 and
actors’	 judgments	 as	 to	 expectations	 of	 friendship	 fostered	 a	 ‘perfect	 storm’	 in
terms	of	sensitivity	and	interviewee	burden.	Eventually	the	researcher	met	with	the
crew	 at	 an	 ‘all-hands	 meeting’.	 They	 all	 discussed	 the	 survey,	 and	 agreed	 on	 a
compromise:	the	survey	would	ask	the	crew	about	‘who	one	interacts	with	socially’
rather	than	‘friendship’	and	would	measure	it	on	an	11-point	Likert	scale	(from	0	to
10)	anchored	with	words	from	never	(0)	to	most	often	(10),	as	shown	in	Figure	4.1.
Thus,	 the	 relational	 question	 and	 the	 method	 of	 measurement	 were	 ultimately
determined	 in	 concert	 with	 those	 being	 studied.	 A	 beneficial	 side-effect	 of	 this
process	was	 that	 it	 created	a	 sense	of	 investment	 in	 the	design	of	 the	 study	on	 the
part	 of	 the	 crew	 and	 helped	 foster	 an	 extremely	 high	 and	 sustained	 response	 rate
over	the	winter	and	in	subsequent	years.

Figure	4.1			Relative	interaction	scale	developed	in	cooperation	with	the	South	Pole
winter-over	crew.



It	 is	 worth	 noting	 that	 while	 respondents	 were	 initially	 very	 sensitive	 about
discussing	their	feelings	about	each	other,	they	had	fewer	problems	doing	so	later,
and	 were	 even	 willing	 to	 answer	 questions	 about	 their	 negative	 feelings	 toward
others.	This	 reflects	 a	 temporal	 component	 in	 question	 sensitivity	 and	 its	 ultimate
impact	on	potential	non-response	bias.	Thus,	 the	maturity	and	other	characteristics
(e.g.,	 cultural	 context)	 of	 the	 group	 itself	 may	 have	 an	 impact	 on	 the	 level	 of
emotional	 reaction	 to	 one	 or	 a	 given	 set	 of	 network	 questions.	 This	 variability
means	 that	network	surveys	have	 to	be	pre-tested	and	 in	some	cases	co-developed
with	 the	 research	 subjects.	 This	 is	 particularly	 true	 in	 management	 consulting
settings	where	the	reason	for	collecting	the	network	data	is	that	there	is	some	kind
of	political	or	interpersonal	problem.	Under	those	conditions,	people	become	very
wary	of	 researchers	 asking	 sensitive	questions	 like	 ‘who	do	you	 trust?’	 and	 ‘who
don’t	you	get	along	with?’.
It	is	essential	to	do	some	ethnographic	background	research	to	explore	the	types

of	 network	 relations	 and	 labels	 or	 terms	 that	 are	 appropriate	 for	 a	 study	 and	 to
discover	the	best	way	to	word	the	questions.	Once	the	questions	are	developed	they
should	be	pre-tested	to	make	sure	respondents	are	clear	about	what	they	mean.	The
greater	the	heterogeneity	of	the	backgrounds	of	the	members	of	the	social	network,
the	more	critical	this	becomes.
It	 is	 also	very	useful	 to	do	 some	ethnographic	work	at	 the	back	end	of	a	 study.

Patterns	 found	 in	 the	 analysis	 can	 often	 be	 quickly	 explained	 quite	 readily	 by	 the
members	of	the	group	themselves.	It	is	also	useful	to	test	the	results	–	which	could
be	 spurious	 –	 against	 their	 insider	 knowledge	 to	 see	 if	 they	 have	 validity	 from	 a
native’s	point	of	view.	We	refer	to	the	practice	of	doing	ethnography	at	either	end	of
a	quantitative	study	as	‘the	ethnographic	sandwich’.

4.3	Question	formats

A	fundamental	issue	in	the	design	of	network	questions	is	whether	to	use	an	open-
or	closed-ended	format.	Figure	4.2	provides	examples	of	the	types	of	questions	used
in	 each.	 With	 a	 closed-ended	 question	 format,	 the	 set	 of	 nodes	 comprising	 the
network	must	be	chosen	in	advance;	respondents	are	then	presented	with	a	roster	of
network	members	 to	 answer	 the	network	questions..	The	main	advantage	of	using
rosters	 (besides	 guaranteeing	 that	 the	 set	 of	 respondents	matches	 the	 set	 of	 actors
being	asked	about)	is	that	respondents	are	less	subject	to	recall	error.	All	they	have
to	 do	 is	 respond	 to	 each	 name	 they	 are	 asked	 about.	 Some	may	 think	 this	 recall
problem	 in	 open-ended	 question	 formats	 is	 overblown,	 but	 a	 simple	 empirical
example	 provides	 some	 insight.	 In	 the	 South	 Pole	 study	 discussed	 extensively
throughout	 this	 book,	winter-over	 crews	were	 debriefed	 by	 the	 researchers	 at	 the



end	 of	 each	winter.	 The	 crew	 sizes	 across	 three	 separate	 years	 were	 quite	 small,
ranging	from	22	to	28	people.	The	crews	in	each	station	had	been	together	for	well
over	a	year	and	spent	8.5	months	together	in	total	isolation	over	the	austral	winter.	If
asked	 about	 any	 randomly	 chosen	 crewmate,	 crew	 members	 could	 fill	 books	 of
information	about	them.	But	when	asked	in	the	debriefing	interviews	to	list	all	their
crewmates,	it	was	found	that	they	would	commonly	forget	about	up	to	25%	of	their
fellows.	So	it	is	a	significant	issue.
Another	 advantage	 of	 the	 roster	 is	 that	 it	 limits	 potential	 biases	 affecting	 the

probability	 of	 an	 actor	 being	 selected	 by	 a	 respondent.	 Imagine	 someone	 in	 an
organization	who	works	in	the	basement	in	a	physically	isolated	part	of	the	building.
If	actors	in	the	organization	were	asked	in	an	open-ended	format	to	list	‘people	that
they	don’t	know	but	would	like	to	get	to	know’,	this	person	may	systematically	be
left	 out	 because	of	 the	 limitations	of	 human	 recall.	The	 lack	of	 selection	of	 these
physically	isolated	people	may	not	have	anything	to	do	with	who	they	are	as	human
beings	 or	 as	 potential	 friends;	 it	may	 just	 be	 a	matter	 of	 people	 forgetting	 about
them	because	of	their	location.	The	disadvantages	of	the	roster	method	are	that	(a)	it
requires	deciding	ahead	of	time	which	nodes	will	be	asked	about,	and	(b)	it	can	be
cumbersome	and	intimidating	when	the	list	of	potential	alters	gets	large	–	say,	more
than	500	names.	The	latter	problem	can	be	ameliorated	by	the	use	of	hierarchically
organized	rosters	(especially	in	online	surveys),	such	as	having	the	respondent	first
select	 an	 organizational	 unit,	 then	 respond	 to	 each	 of	 the	 names	 in	 that	 unit.	 The
same	can	be	done	with	lists	organized	alphabetically.
In	 comparison,	 unaided	 or	 open-ended	 question	 formats	 require	 no	 prior

decisions	 about	 who	 to	 obtain	 information	 about.	 So,	 in	 cases	 where	 the	 list	 of
potentially	 relevant	 alters	 is	 large	 (e.g.,	 the	 population	 of	 American	 consumers)
and/or	insufficient	ethnographic	work	has	been	done	to	have	a	clear	idea	of	who	to
ask	about,	 the	open-ended	approach	may	be	 the	only	way	 to	 ask	questions.	 In	 this
case	respondents	are	asked	to	list	people	that	 they,	for	example,	‘talk	to’	or	‘share
needles	 with’.	 Besides	 recall	 issues,	 open-ended	 questions	 have	 a	 number	 of
potential	 disadvantages	 in	 a	 full	 network	 research	 context.	 The	 biggest	 issue	 is
identifying	the	actor	whom	a	respondent	names.	If	they	mention	‘Bob	Smith’,	is	that
the	same	as	the	‘Bobby	Smith’	whom	someone	else	mentioned?	And	is	it	the	same	as
another	respondent	in	the	study	whom	the	researchers	know	as	‘Robert	Smith’?	This
is	particularly	a	problem	 in	populations	where	 full	or	 even	 real	names	are	 rarely
known,	such	as	drug	injectors	on	the	streets	of	Hartford,	CT	(Weeks	et	al.	2002).	In
personal-network	research	designs,	this	is	not	a	problem	because	we	do	not	need	to
draw	connections	across	different	respondents.
Another	 potential	 problem	 with	 the	 open-ended	 format	 concerns	 the	 size	 of

respondent	 lists.	For	example,	 in	an	unlimited	choice	format,	 if	 respondent	A	 lists
30	alters	while	respondent	B	lists	15	alters,	can	we	conclude	that	respondent	A	has	a



larger	network	than	respondent	B?	That	might	be	the	case,	but	it	might	not.	Perhaps
A	 is	very	energetic	and	 really	 thinks	 long	and	hard	about	 the	question,	while	B	 is
tired	and	bored	with	the	survey	and	just	wants	to	get	it	over	with.	One	way	to	deal
with	this	is	to	limit	the	number	of	names	people	can	provide.	Unfortunately,	this	has
problems	 as	 well	 because	 people	 use	 varying	 heuristics	 for	 recalling	 names
(Brewer	 1995a,	 1995b).	 In	 the	 South	 Pole	 debriefing,	 it	 was	 apparent	 that	 some
respondents	were	mentally	walking	 through	 the	 station	 to	 remember	names.	They
moved	from	the	garage	through	the	carpenter	shop	to	the	generator	room	into	the
bar	then	the	galley,	and	so	on,	as	they	recalled	fellow	crew.	Others	recalled	names
based	 on	 social	 groupings.	 All	 of	 this	 is	 to	 say	 that	 limiting	 names	 to	 a	 certain
number	can	systematically	bias	the	resulting	networks.

Figure	4.2			Examples	of	open-	and	closed-ended	network	question	formats.

The	recall	problem	in	open-ended	elicitation	can	be	somewhat	ameliorated	with
the	 use	 of	 different	 types	 of	 interview	probes	 (Brewer	 2000).	 For	 instance,	 in	 the
free-list	example	above,	if	the	interviewer	had	verbally	repeated	the	names	listed	by
each	respondent	and	simply	asked	‘So	you	have	listed	John,	Susie,	…	and	Sarah:	are
there	any	other	crew	not	listed	that	wintered-over	with	you?’,	possibly	followed	by
‘Can	you	think	of	anyone	else?’,	there	would	be	a	good	chance	that	the	respondent
would	 have	 noticed	 the	 missing	 crew	 member(s)	 and	 provided	 the	 additional
name(s).	Of	course,	the	use	of	probes	can	be	readily	done	in	face-to-face	interviews
but	 would	 be	 much	 more	 difficult	 in	 other	 types	 of	 self-administered	 survey
formats.	In	some	settings,	such	as	organizations,	it	is	possible	to	use	visual	aids	to



help	 stimulate	 recall,	 such	 as	 providing	 office	 maps	 or	 unit-level	 organizational
charts.

Figure	4.3			Repeated	roster	versus	multigrid	formats.

If	 a	 roster	 format	 is	 chosen,	 there	 are	 a	 number	 of	 further	 decisions	 to	 make
about	how	the	questions	and	lists	should	be	structured.	The	two	primary	formats	for
closed-ended	 questions	 are	 repeated	 rosters	 and	 multigrids.	 Figure	 4.3	 provides
examples	 of	 each	 type	 of	 format.	 In	 repeated	 rosters	 the	 same	 list	 of	 network
members	is	repeated	following	each	network	question.	Respondents	can	then	circle
or	check	the	appropriate	names	in	response	to	each	of	the	questions.	The	multigrid
format	 places	 the	 lists	 in	 a	 series	 of	 columns	with	 each	 column	associated	with	 a
relational	question.	Again,	respondents	can	check	or	circle	the	appropriate	answers.
Both	are	similar	in	terms	of	potential	reliability	and	validity,	but	the	multigrid	is	a
more	compact	format;	if	one	is	using	pencil-and-paper	collection,	the	latter	format
can	help	reduce	the	number	of	pages	in	the	survey.	Sometimes	this	has	a	beneficial
psychological	effect	on	respondents	in	that	it	makes	the	survey	appear	shorter	than	it
would	 using	 the	 repeated	 roster.	 There	 is	 probably	 nothing	 more	 daunting	 to	 a
potential	 respondent	 than	when	a	 researcher	pulls	out	 a	one-inch	 thick	 survey	and
places	it	on	the	table	in	front	of	them.
The	 roster	 examples	 in	 Figure	 4.3	 involve	 respondents	 making	 simple	 yes/no

decisions	 about	 a	 given	 tie:	 either	 there	was	 a	 tie	 or	 there	was	not.	This	 checklist
method	 has	 an	 advantage	 in	 that	 it	 is	 less	 cognitively	 demanding	 on	 respondents.



Moreover,	 it	 is	 quick	 and	 easy	 to	 administer.	 However,	 one	 drawback	 is	 that	 it
provides	 no	 discrimination	 with	 respect	 to	 a	 tie’s	 value	 such	 as	 tie	 frequency	 or
strength.	For	that,	we	need	to	use	some	kind	of	ratings	approach	that	allows	for	the
assessment	 of	 the	 frequency	 of	 contacts	 or	 the	 strength	 of	 relationships.	We	 can
handle	 the	 elicitation	 of	 tie	 values	 by	 using	 either	 an	 absolute	 or	 a	 relative	 scale.
Figure	4.4	shows	types	of	questions	in	the	two	approaches.	With	absolute	scales,	we
are	 attempting	 to	 assign	 to	 each	person	on	 the	 list	 that	 is	 given	 to	 respondents	or
listed	by	respondents	the	degree	of	interaction	within	a	specified	period	of	time.	So
we	might	ask	‘Do	you	seek	advice	from______	once	a	year,	once	a	month,	once	a
week	…?’	When	using	absolute	scales,	 it	 is	 important	 to	do	sufficient	preliminary
research	 to	 determine	 the	 appropriate	 time	 intervals,	 or	 risk	 getting	 no	 variance
(e.g.,	 all	 respondents	choose	 ‘every	day’	because	 in	 that	 setting	everyone	 interacts
multiple	 times	 a	 day).	 Another	 issue	 with	 absolute	 scales	 is	 that	 people	 are	 not
particularly	good	at	them.	Given	two	alters,	respondents	probably	have	a	good	idea
which	one	they	interact	with	more	often,	but	they	may	be	inaccurate	about	whether	it
is	once	a	week,	or	once	every	couple	weeks,	or	once	a	month.
Some	researchers	use	questions	that	are	more	explicitly	ordinal	and	generic,	such

as	 an	 n-point	 Likert	 scale	 anchored	 with	 words	 such	 as	 ‘very	 infrequently’,
‘somewhat	 infrequently’,	 ‘neither	 infrequently	 nor	 frequently’,	 ‘somewhat
frequently’	 and	 ‘very	 frequently’.	 Such	 questions	 are	 easier	 to	 write,	 since	 the
researcher	does	not	have	to	know	what	range	of	frequencies	to	ask	about.	However,
such	 scales	 are	 also	quite	vulnerable	 to	 response	 sets.	Some	 respondents	 are	very
liberal	 and	 rate	 everyone	 as	 somewhat	 or	 very	 frequent,	 while	 others	 are	 more
conservative,	 rarely	 venturing	 above	 the	middle	 point.	Others	 are	 conservative	 in
another	way:	 they	 rarely	venture	 far	 from	 the	middle	point	 in	either	direction.	An
attempt	 to	mitigate	 this	problem	 is	 to	use	 a	 relative	 scale	 such	as	 ‘much	 less	 than
average’,	‘less	than	average’,	‘about	average’,	‘more	than	average’	and	‘much	more
than	 average’.	 A	 thoughtful	 respondent	 should	 see	 this	 as	 an	 invitation	 to	 use	 all
ends	of	the	scale.	Unfortunately,	there	is	also	less	information	in	this	scale	than	in	an
absolute	scale.	Greater	 than	average	interaction	for	one	person	may	be	interacting
once	a	day	but	for	another	person	it	is	once	every	two	weeks,	and	there	is	no	way	to
distinguish	them.	A	value	of	‘4’	for	one	person	may	refer	to	wildly	different	levels
of	interaction	than	a	‘4’	for	someone	else.



Figure	4.4			Question	formats	for	assessing	frequency	of	contact.

The	same	kinds	of	trade-offs	are	seen	in	full	ranking	data.	In	the	full	ranking	task,
the	respondent	is	asked	to	rank	every	other	person	from	1	to	n	–	1.	Ranking	has	the
advantage	 of	 asking	 for	 only	 ordinal	 judgments	 (is	 A	more	 than	 B?).	 These	 are
more	 natural	 than	 rating	 scales,	 which	 ask	 the	 respondent	 to	 assign	 a	 number
between,	say,	1	and	7	to	represent	their	feelings	about	each	other	person.	However,
as	the	list	of	names	gets	longer,	respondents	find	full	rankings	increasingly	difficult
to	do,	and	find	ratings	much	easier	and	faster	to	do.
One	 other	 technique	 that	 is	 worth	 mentioning	 is	 the	 idea	 of	 breaking	 a	 single

complicated	 question	 into	 more	 numerous	 but	 simpler	 questions.	 Rating	 every
individual	on	a	 list	on	a	1–5	 scale	 is	 a	pretty	 slow	process	compared	 to	checking
names	off.	So	one	possibility	is	to	convert	the	rating	question	into	multiple	check-
off	 tasks.	 For	 example,	 instead	 of	 asking	 ‘How	 often	 do	 you	 see	 each	 of	 the
following	people?’	using	a	scale	of	1	=	once	a	year,	2	=	once	a	month,	and	3	=	once
a	week,	we	can	instead	ask	a	three	separate	questions:	‘who	are	the	people	on	this	list
you	see	at	least	once	a	year?’,	‘who	are	the	people	on	this	list	you	see	at	least	once	a
month?’,	and	‘who	are	the	people	on	this	list	you	see	at	least	once	a	week?’.	It	may
seem	counterintuitive,	but	it	is	often	faster	and	easier	this	way.	This	is	especially	true
if	electronic	surveys	are	used	because	the	second	question	only	has	to	list	the	names
that	were	 selected	 in	 the	 first	 question,	 and	 the	 third	 question	 only	 has	 to	 list	 the
names	checked	off	in	the	second	question.	This	can	be	lightning	fast.

4.4	Interviewee	burden

Sometimes	 the	 size	 and	 particular	 boundaries	 for	 a	 network	 are	 dictated	 by	 the
methods	 employed.	 Some	 data	 collection	 methods	 are	 labor-intensive	 and
burdensome,	where	such	burden	varies	as	a	function	of	network	size.	Two	examples



of	 this	 are	 personal-network	 studies	 and	 cognitive	 social	 structure	 studies,	where
respondents	are	asked	to	report	on	the	network	connections	of	all	other	actors	in	the
network	(Krackhardt	1987;	Kumbasar,	Romney	and	Batchelder	1994;	Johnson	and
Orbach	2002).	 In	 these	 types	 of	 studies,	 the	 number	 of	 data	 points	 needed	 from	a
respondent	increases	with	the	square	of	the	number	of	alters,	rapidly	increasing	the
burden	on	the	respondent.
In	a	study	by	Johnson	and	Orbach	(2002)	on	political	networks	and	the	passing	of

a	piece	of	environmental	 legislation,	 there	were	potentially	over	400	actors	 in	 the
political	 network	 involving	 legislators,	 staff,	 resource	 managers,	 lobbyists	 and
private	 citizens.	 The	 researchers	 were	 interested	 in	 the	 relationship	 between
knowledge	of	the	political	landscape	and	political	power.	However,	the	respondents
were	 very	 high-status	 people	 (e.g.,	 the	 President	 Pro	 Tem	 of	 the	 North	 Carolina
Senate,	 cabinet-level	 secretaries,	 legislative	 committee	 chairs	 and	 co-chairs,	 etc.),
who	will	not	grant	you	a	3-hour	 interview.	To	deal	with	 this,	 the	study	began	with
interviews	of	10	politically	knowledgeable	key	informants	(Johnson	1990)	to	free-
list	 actors	 who	 were	 seen	 as	 ‘important’	 in	 the	 development	 and	 passing	 of	 a
particular	 piece	 of	 environmental	 legislation.	 The	 top	 45	 names	 most	 frequently
listed	by	the	key	informants	were	used	to	bound	the	network.	This	is	like	the	data-
driven,	 emic	 or	 realist	 strategy	 for	 bounding	 a	 network	 discussed	 in	 Chapter	 3,
except	 that	 in	 the	 legislative	 case	 described	 here	 methodological	 realities	 were
partially	driving	boundary	specifications.
In	addition,	for	the	cognitive	network	data	collection,	the	respondents	were	asked

to	name	only	three	people	on	the	list	whom	they	thought	each	of	the	political	actors
talked	 to	most	 about	 a	 given	 piece	 of	 environmental	 legislation	 over	 a	 period	 of
time.	This	reduced	the	task	to	approximately	135	reported	dyads,	which	was	much
more	reasonable,	although	still	daunting,	given	the	research	population.	As	we	shall
see	in	the	chapter	on	personal	networks,	this	is	also	a	very	important	consideration
in	designing	personal-network	surveys.
Interviewee	burden,	more	generally,	can	lead	to	various	kinds	of	non-response	on

the	 part	 of	 actors.	 There	 is	 plenty	 of	 literature	 discussing	 these	 issues	 in	 survey
research,	 and	 these	 apply	 here	 as	well	 (Dillman	1977;	Church	2001)	 and	 this	 is	 a
real	 concern	 in	 personal-network	 approaches.	 However,	 unlike	 typical	 survey
research	where	researchers	are	willing	to	accept	at	least	some	level	of	missing	data
and	 non-response	 bias,	 in	 whole-network	 surveys	 such	 levels	 are	 totally
unacceptable	 and	 pose	 real	 threats	 to	 the	 validity	 of	 any	 study	 (as	 discussed	 in
Chapter	3).	As	we	have	seen	from	earlier	examples,	respondents	are	more	likely	to
respond	to	questions	that	are	structured	in	ways	that	minimize	respondent	anger	and
frustration.	One	potential	source	of	respondent	frustration	and	anger	is	the	length	of
the	interview	itself,	particularly	if	respondents	feel	time	constraints.	A	major	reason
people	 state	 for	 their	unwillingness	 to	participate	 in	 surveys	often	concerns	being



‘too	busy’	or	a	lack	of	motivation	(Sosdian	and	Sharp	1980).	Thus,	it	is	important	to
keep	in	mind	that	network	interviews	and	the	complexity	of	certain	social	network
methods	can	place	huge	temporal	and	cognitive	demands	on	respondents.
There	are	no	hard-and-fast	rules	about	what	makes	an	interview	too	long	or	too

demanding.	 However,	 the	 shorter	 the	 network	 survey	 instrument,	 the	 better,
particularly	if	one	is	engaged	in	a	longitudinal	study	where	sustained	participation
is	 crucial.	 One	 rule	 of	 thumb	 for	 achieving	 an	 optimally	 sized	 network	 survey
instrument	 is	 to	 include	 only	 those	 questions	 that	 are	 theoretically	 critical	 for	 the
study	 at	 hand	 –	 no	 more	 and	 no	 less.	 If	 you	 are	 uncertain	 about	 the	 theoretical
relevance	of	a	network	question,	you	should	conduct	exploratory	or	ethnographic
research	 to	 find	 out.	Again,	 conducting	 ethnographic	work	 prior	 to	 conducting	 a
network	survey	can	help	in	assuring	the	reliability	and	validity	of	network	questions
and	in	understanding	the	capacity	of	respondents	 to	answer	 instruments	of	a	given
size	(e.g.,	chief	executives	of	companies	and	fishers	in	Cuba	may	face	different	time
constraints	and	different	levels	of	enthusiasm).
One	 final	 note	 is	 that	 the	 placement	 of	 network	 questions	 in	 any	 survey	 may

impact	 outcomes.	 As	 discussed	 earlier,	 network	 questions	 are	 often	 cognitively
demanding.	 If	such	questions	are	placed	at	 the	end	of	an	already	extensive	survey,
there	are	chances	that	respondents	may	be	less	thorough	in	their	responses	or	may
even	 refuse	 to	 answer.	 It	 is	 to	 issues	of	 cognitive	demand	and	 interviewee	burden
that	we	now	turn.

4.5	Data	collection	and	reliability

As	discussed	 in	Chapter	3,	whole	network	approaches	 can	be	 sensitive	 to	missing
data	 (Borgatti,	Carley	 and	Krackhardt	 2006).	 This	 is	 particularly	 true	 for	 smaller
networks,	where	the	absence	of	actors	or	ties	can	have	relatively	large	effects.	The
manner	 in	 which	 we	 collect	 network	 data	 can	 have	 a	 profound	 impact	 on	 actor
participation	and	on	the	reliability	and	validity	of	the	social	network	data	sought.
Table	4.1	shows	some	of	 the	ways	in	which	researchers	have	typically	collected

network	data.	The	columns	in	the	table	represent	a	few	of	the	trade-offs	one	should
consider	in	the	course	of	choosing	a	data	collection	method	for	a	network	study.	As
we	have	seen	from	the	polar	research	station	network	earlier	in	this	chapter,	some
network	questions	may	be	more	emotionally	sensitive	than	others.	Self-administered
network	surveys,	including	mail-out	and	online	surveys,	may	minimize	the	degree
of	 self-consciousness	 on	 the	 part	 of	 respondents.	 In	 addition,	 they	 do	 not	 suffer
from	reactions	to	 the	 interviewer,	and	they	are	very	convenient	for	 the	researcher.
On	 the	other	 hand,	 self-administered	 surveys	 that	 are	 not	 hand-delivered	 typically
have	much	lower	response	rates.



An	 important	 means	 for	 reducing	 non-response	 on	 the	 part	 of	 actors	 is	 the
building	 of	 rapport	 with	 respondents	 before	 administering	 the	 survey	 (Johnson
1990).	 This	 is	 particularly	 a	 problem	 with	 self-administered	 mail-out	 and	 online
surveys,	 where	 there	 is	 limited	 opportunity	 to	 establish	 contact	 and	 create	 a
relationship.	 Dillman	 (1977)	 provides	 suggestions	 for	 overcoming	 some	 of	 the
disadvantages	of	mail-out	and	phone	surveys	in	terms	of	increasing	response	rates.
However,	 face-to-face	 data	 collection	 provides	 the	 greatest	 opportunity	 for
establishing	 rapport	 with	 respondents.	 Additionally,	 it	 facilitates	 the	 use	 of
elicitation	 interviewing	 techniques	 for	 the	 collection	 of	 network	 data,	 such	 as
various	 probing	 techniques	 to	 improve	 respondent	 recall	 (Brewer	 2000;	 Johnson
and	Weller	2002).	Network	elicitation	is	difficult	to	do	in	a	less	interactive	context
and	limited	in	phone	and	group	interview	formats.	Mail-out	surveys	are	particularly
at	a	disadvantage	when	using	network	questions	that	are	open-ended.

Table	4.1			Features	of	different	survey	types.

Some	 studies	 have	 argued	 that	 low	 response	 rates	 in	 surveys	 are	 due	 less	 to
potential	 respondents’	 resistance	 to	 participation	 and	 more	 to	 the	 researcher ’s
inability	to	simply	find	and	interview	respondents	(Sosdian	and	Sharp	1980).	These
issues	have	become	 increasingly	problematic	 for	methods	 such	as	phone	 surveys,
where	people	may	have	been	overwhelmed	by	telemarketers,	donation	solicitations
and	 political	 canvassing.	 In	 addition,	 the	 use	 of	 mobile	 phones	 is	 creating	 new
challenges	to	the	valid	use	of	phone	interviews	and	surveys.	With	technologies	such
as	 caller	 ID,	 people	 can	 now	monitor	 calls	 and	 choose	 not	 to	 answer	 the	 phone.
Johnson	 (1990),	 for	 example,	 found	 that	 using	 respondents	 to	 call	 ahead	 to	 their
listed	 alters	 (who	would	 be	more	 likely	 to	 answer	 phone	 calls	 from	 friends)	 in	 a
snowball	sample	limited	this	problem,	particularly	in	a	population	of	older	adults	in
a	 small	Midwestern	 town	who	were	suspicious	of	 strangers	 (Johnson	and	Griffith
2010).
Comparative	 research	 has	 shown	 that	 the	 different	 survey	 approaches	 vary	 in

response	or	return	rates.	Such	studies	have	also	found	that	differences	in	response
rates	 can	 vary	 depending	 on	 the	 social,	 organizational	 or	 cultural	 context.	 For
example,	in	a	comparison	of	different	survey	approaches,	whereas	mail-out	surveys



win	out	in	one	context,	they	may	just	as	readily	lose	out	to	other	methods,	such	as
online	 surveys,	 in	 another.	 The	 point	 here	 is	 that	 the	 data	 collection	method	 you
choose	should	be	sensitive	to	the	given	cultural	and	social	context	in	which	you	plan
to	 work	 (Church	 2001).	 In	 addition,	 we	 advocate	 making	 as	 much	 contact	 with
potential	 respondents	 as	 possible	 independent	 of	 the	 type	 of	 data	 collection
approach.	In	fact,	the	more	you	can	engage	in	ethnographic	on-the-ground	efforts,
the	 better	 your	 chances	 for	maximizing	 response	 rates	 in	 network	 surveys.	 In	 the
polar	 research	 example	 (Johnson,	 Boster	 and	 Palinkas	 2003),	 two	 of	 the
investigators	 spent	 months	 training	 and	 deploying	 with	 winter-over	 crews.	 This
enabled	them	to	build	rapport	so	as	to	maximize	the	chances	of	study	participation
over	 the	 austral	 winter,	 a	 period	 when	 members	 of	 the	 research	 team	 were	 not
present	and	monthly	questionnaires	were	distributed	by	the	station	physician.

4.6	Archival	data	collection

In	order	for	data	collected	from	archival	sources	to	be	of	use	in	the	study	of	social
networks,	it	must	contain	information	on	social	relations	that	are	amenable	to	either
a	 one-mode	 or	 two-mode	 network	 format.	 Some	 archival	 sources	 are	 inherently
relational	and	very	structured,	such	as	church	marriage	records,	records	of	business
partnerships,	 legislative	 voting	 records,	 ledger	 sheets,	 and	 accounts	 of	 trades.	 In
such	cases,	ties	may	be	readily	determined	among	and	between	social	entities	such
as	 individuals,	 firms,	 families,	 tribes,	 and	 businesses	 (one-mode).	Or	 they	 can	 be
inferred	 indirectly	 through	 co-occurrences,	 such	 as	 overlaps	 in	 voting	 behavior
among	members	of	Parliament	 at	 the	 start	 of	World	War	 II,	 the	 co-occurrence	of
patrons	 among	 seventeenth-century	 scientists	 in	 Italy,	 or	 co-attendance	 at	 early
twentieth-century	political	rallies	or	events	in	New	York	(two-mode).	Additionally,
the	nature	and	structure	of	 the	archival	data	 frames	 just	which	network	relations	a
study	 can	 use.	 If	 you	 are	 interested	 in	 economic	 exchange	 among	 villagers	 in
Tuscany	 in	 the	 sixteenth	 century,	 but	 all	 that	 exists	 are	marriage	 records,	 then	 the
relational	data	available	is	not	suitable	for	your	research	problem.
Relational	 data	 in	 archival	 sources	 can	 also	 be	 extracted	 from	 less	 structured

historical	sources.	Many	accessible	historical	records	may	not	be	as	well	structured
as	in	the	examples	above	and	may	be	freer	flowing,	as	in	the	form	of	a	narrative.	If
these	 narratives	 –	 such	 as	 letters	 between	 luminaries	 of	 some	 historical	 period	 –
mention	names,	events,	 locations,	etc.,	 then	 it	 is	possible	 to	build	a	social	network
database	by	coding	the	narratives.	For	example,	in	a	series	of	letters	from	Galileo’s
daughter,	Maria	Celeste,	to	her	father,	there	are	many	mentions	of	people	and	places
that	can	be	used	to	piece	together	social	relations	among	actors	of	 the	time.	In	the
following	excerpt	from	Maria’s	letter	of	10	August	1623,	there	is	clear	reference	to



an	exchange	of	letters	between	Galileo	and	the	new	Pope:1	

The	happiness	I	derived	from	the	gift	of	the	letters	you	sent	me,	Sire,	written
to	 you	 by	 that	 most	 distinguished	 Cardinal,	 now	 elevated	 to	 the	 exalted
position	of	Supreme	Pontiff,	was	ineffable,	for	his	 letters	so	clearly	express
the	 affection	 he	 has	 for	 you,	 and	 also	 show	 how	 highly	 he	 values	 your
abilities.	 I	have	read	and	reread	 them,	savoring	 them	in	private,	and	I	 return
them	to	you,	as	you	insist,	without	having	shown	them	to	anyone	else	except
Suor	Arcangela,	who	has	 joined	me	 in	drawing	 the	utmost	 joy	 from	seeing
how	much	our	father	is	favored	by	persons	of	such	caliber.	May	it	please	the
Lord	to	grant	you	the	robust	health	you	will	need	to	fulfill	your	desire	to	visit
His	Holiness,	 so	 that	 you	 can	 be	 even	more	 greatly	 esteemed	 by	 him;	 and,
seeing	how	many	promises	he	makes	you	in	his	 letters,	we	can	entertain	 the
hope	 that	 the	 Pope	 will	 readily	 grant	 you	 some	 sort	 of	 assistance	 for	 our
brother.

This	excerpt	clearly	reveals	relationships	among	Galileo’s	family	as	well	as	other
relationships,	 even	 providing	 information	 on	 the	 possible	 strength	 of	 Galileo’s
relationship	to	the	Pope.	The	coding	of	relations	from	the	124	letters	Maria	wrote	to
her	 father	 might	 describe	 much	 about	 aspects	 of	 Galileo’s	 familial	 and	 political
networks	from	the	period	1623–1633.
Another	 example	 comes	 from	 the	 same	 Galileo	 Project	 database.	 Relations

among	scientists	and	the	structure	of	the	scientific	community	of	Galileo’s	time	can
be	 derived	 using	 archival	 sources	 that	 include	 scientists’	 university	 attendance,
scientific	disciplinary	 training,	patronage	 (often	a	major	 source	of	 support	 for	an
academic	 of	 the	 time),	 correspondence	 among	 scientists,	 and	 membership	 in
scientific	 societies.	 From	 these	 sources,	 two-mode	 data	 can	 be	 constructed	 from
patronage	 (scientist-by-patron),	 university	 attendance	 (scientists-by-university)	 and
scientific	societies	(scientist-by-scientific	societies).	One-mode	data	can	be	derived
from	the	correspondence	among	scientists	–	the	equivalent	of	emails	today.	This	can
be	 coupled	with	 attribute	 data	 in	 records	 and	narratives,	 such	 as	 date	 of	 birth	 and
death,	father ’s	status	and	occupation,	nationality,	aspects	of	education,	religion,	and
means	 of	 support	 (e.g.,	 inherited	wealth),	 to	 test	 any	 number	 of	 hypotheses	 about
power	or	the	dominance	of	scientific	thought	in	Galileo’s	time.2
There	 are	 a	 number	 of	 classic	 studies	 that	 have	 extracted	 social	 network	 data

from	archival	sources.	In	a	study	of	social	change,	Bearman	(1993)	looked	at	local
elite	social	networks	in	Norfolk,	England,	between	1540	and	1640.	The	network	data
for	the	study	was	derived	from	various	archival	records	on	kinship	relations	over
that	 time	 period	 and	was	 related	 to	 various	 attributes	 such	 as	 status	 (i.e.,	 class	 of
gentry),	 occupation	 and	 religion.	 Similarly,	 Padgett	 and	Ansell	 (1993)	 coded	 data
from	a	major	historical	work	on	social	dynamics	in	fifteenth-century	Florence,	with



a	 particular	 focus	 on	 the	 rise	 of	 the	 Medici	 (Kent	 1978),	 to	 build	 a	 multiplex
network	 dataset	 (intermarriage	 ties,	 business	 ties,	 joint	 ownerships,	 partnerships,
bank	employment,	real	estate	ties,	patronage,	personal	loans,	friendships,	and	what
they	call	‘surety	ties’	–	actors	who	put	up	bond	for	someone	in	exile).	Attribute	data
was	also	coded	from	the	various	historical	accounts	and	included	economic	wealth
obtained	from	tax	records	(catasto),	a	family	status	measure	based	on	‘date	of	first
Prior	(a	monastic	superior)’,	neighborhood	residence,	and	tax	assessments	for	 the
richest	600	households	in	Florence	in	1403.	In	these	two	examples	the	authors	were
able	 to	build	datasets	 that	 included	dynamic	networks	 involving	multiple	 relations
and	modes	(both	one-	and	two-mode)	and	a	variety	of	attributes	that	could	be	used	to
test	hypotheses.
One	of	the	real	advantages	of	archival	sources	for	the	study	of	social	networks	is

that	 archival	 data	 is	 often	 longitudinal	 in	 nature.	 This	 allows	 for	 the	 study	 of
network	 dynamics	 and	 evolution	 and	 facilitates	 the	 study	 of	 social	 change.
Longitudinal	 research	 that	 involves	 the	 collection	 of	 primary	 data	 must	 use	 a
prospective	design	 in	which	data	 is	 collected	periodically	over	 some	 time	period.
This	 can	 be	 very	 costly	 and	 time-consuming.	 Imagine	 having	 to	 prospectively
collect	 network	 data	 over	 a	 100-year	 period	 as	 in	 the	 Bearman	 example	 above
(1540–1640).
It	is	important	to	make	one	final	comment	about	the	validity	of	archival	sources.

As	discussed	in	the	chapter	on	research	design,	secondary	or	archival	sources	can
suffer	 from	 a	 number	 of	 reliability	 and	 validity	 issues.	 Archival	 records	 can
actually	 document	 non-events	 (e.g.,	 Congressional	 Record)	 or	 represent	 a
reconstruction	 of	 the	 past	 or	 an	 event	 to	 meet	 some	 agenda	 where	 narratives	 or
numbers	are	constructed	 to	make	a	group	or	a	 single	actor	 look	good	 in	 light	of
poor	 outcomes.	 Often	 these	 records	 include	 elements	 of	 scapegoating	 and	 false
attribution.	 Thus,	 records	 may	 be	 biased	 in	 that	 they	 are	 constructed	 to	 fit	 some
agenda	or	reflect	actor	biases	(e.g.,	state-owned	newspaper	reports).	For	example,	in
the	 South	 Pole	 research	 Johnson	 reviewed	 15	 years	 of	 managers’	 end-of-year
reports	 and	 found	 them	 to	 contain	 inaccuracies	 (he	 compared	 ethnographic
historical	interviews	with	the	reports).	This	was	understandable	in	that	these	reports
were	an	attempt	to	put	a	more	positive	spin	on	the	winter	events	to	make	the	station
manager	 look	 good	 and	 to	 place	 blame	 for	 any	 problems	 on	 others.	 Had	 these
reports	been	used	to	construct	some	valid	historical	account	of	the	social	dynamics
and	 life	 at	 the	 stations,	 any	 resulting	 conclusions	 drawn	 from	 an	 analysis	 would
have	had	some	likelihood	of	being	wrong.	It	 is	always	best	to	use	triangulation	of
multiple	independent	sources	so	that	the	data	can	be	verified	and	validated.

4.7	Data	from	electronic	sources



The	collection	of	data	from	electronic	sources	 is	very	similar	 to	 the	collection	of
network	data	 in	 archival	or	historical	 research.	Many	 sites	on	 the	 Internet	 contain
information	that	is	inherently	network-oriented.	There	is	a	large	amount	of	existing
data	 on	 –	 or	 data	 that	 can	 be	 mined	 from	 –	 email	 communications,	 social
networking	 sites,	 movie,	 music	 and	 book	 databases,	 scientific	 citation	 databases,
wikis,	 Web	 pages,	 digital	 news	 sources,	 and	 so	 on.	 Many	 of	 these	 already	 have
information	 available	 in	 a	 one-mode	 or	 two-mode	 network	 format,	 while	 others
require	the	writing	of	programs	for	data	mining	in	order	to	put	it	into	data	formats
that	can	be	more	readily	analyzed.	Twitter	readily	affords	network	data	in	the	form
of	 follower	 and	 followee	 ties,	 while	 social	 networking	 sites,	 such	 as	 Facebook,
consist	 of	 literally	 millions	 of	 ego	 networks.	 Electronic	 sources	 offer	 almost
endless	opportunities	to	collect	and	analyze	network	data	of	one	kind	or	another.
An	 example	 of	 a	 useful	 electronic	 data	 source	 is	 the	 Internet	 Movie	 Database

(IMDb)	which	has	a	tremendous	amount	of	data	on	virtually	every	movie	ever	made.
For	example,	 it	has	–	 in	machine-readable	form	–	the	cast	and	crew,	storyline	and
plot	 summaries,	 news	 articles	 about	 the	movie,	 trivia,	 quotes,	 references,	movies
that	reference	a	given	movie,	company	credits,	technical	specs	and	so	on.	Some	of
this	information	can	be	used	to	construct	two-mode	data	matrices,	such	as	actor-by-
movie,	 movie-by-keyword,	 movie-by-news	 article	 and	 so	 on,	 which	 can	 then	 be
converted	into	one-mode	networks	(see	Chapters	5	and	13	on	this).	As	an	illustration
of	 the	 use	 of	 IMDb	 data,	 we	 examined	 the	 following	 research	 question:	 do
conservatives	and	liberals	in	Hollywood	work	together	on	films?	We	obtained	a	list
of	 the	 top	 20	most	 liberal	 and	 the	 top	 20	most	 conservative	 actors	 in	Hollywood
from	 a	 (now	 defunct)	 website	 called	 celepolitics.com.	 Looking	 at	 only	 movies
involving	these	40	actors	yielded	a	40	×	96	two-mode	network.	Figure	4.5	shows	the
affiliation	 network	 for	 the	 40	 actors.	 Despite	 having	 different	 ideologies,	 at	 first
glance	 it	 appears	 that	 conservative	 and	 liberal	 actors	 do	 in	 fact	work	 together	 in
Hollywood.	 In	 looking	 at	 the	 network	 visualization,	 however,	 there	 appears	 to	 be
some	 segregation	 by	 ideological	 stance,	 with	 conservatives	 cooccurring	more	 to
the	left	and	liberals	more	to	the	right	of	the	graph.

http://celepolitics.com


Figure	4.5			Collaboration	ties	among	Hollywood	actors.	Squares	are	conservatives
and	circles	are	liberals.

The	 above	 analysis	 is	 just	 a	 simple	 example	 but	 does	 show	 how	 an	 online
database	 can	 be	 studied	 from	 a	 network	 perspective.	However,	 like	 archival	 data,
electronic	 sources	 of	 data	 can	have	 reliability	 and	validity	 problems.	The	Web	of
Science	database,	for	example,	provides	some	important	lessons	on	potential	errors
in	 electronic	 sources.	 This	 source	 contains	 data	 on	 citations	 between	 scientific
papers	which	can	be	analyzed	in	terms	of	networks	among	scientists.	One	obvious
problem	with	many	databases	of	 this	kind	 is	 that	 some	of	 the	data	 is	 copied	 from
original	 sources	 by	 hand	 or	 via	 optical	 character	 recognition	 software,	 and
therefore	 contains	 errors.	 In	 addition,	 the	 sources	 themselves	may	 contain	 errors:
the	authors	might	use	different	initials	than	in	other	papers,	and	they	may	misspell
the	names	of	the	authors	they	cite.	Electronic	data	needs	to	be	cleaned	and	checked
just	 like	 primary	 data	 does.	 These	 databases	 are	 sometimes	 so	 large	 that	 the	 data
cleaning	task	can	be	daunting,	but	it	is	an	important	one	nevertheless.
Although	 electronic	 sources	 afford	 almost	 unlimited	 opportunities	 for	 the

collection	of	network	data,	caution	should	be	exercised	in	inferring	the	meaning	of
social	ties	in	such	sources.	Although	Facebook	ties	are	called	‘friends’,	these	need
not	 correspond	 to	 the	 usual	 meaning	 of	 friends	 and	 can	 in	 fact	 include	 a	 wide
variety	 of	 types	 and	 strengths.	On	 the	 other	 hand,	with	 sufficient	 creativity,	 effort
and	access	to	data	it	is	possible	to	add	quite	a	bit	of	richness	to	Facebook	data.	For
example,	we	might	declare	a	tie	from	A	to	B	to	be	strong	to	the	extent	that	A	tags	B
in	A’s	pictures.	This	can	also	be	used	to	establish	directionality,	which	is	otherwise



absent	in	the	Facebook	friend	tie.
The	 same	 is	 true	 for	 micro-blogging	 sites	 such	 as	 Twitter.	 Although	 clear

directed	ties	exist	between	followers	and	the	followed,	there	is	no	direct	indicator	of
strength	of	tie,	and	it	is	difficult	to	know	what	the	followership	ties	entail.	We	can	be
sure	that	information	is	flowing	from	the	followed	to	follower,	at	least	in	the	case
where	the	follower	retweets	a	message,	but	can	we	infer	an	emotional	bond	between
follower	 and	 followed?	 Should	 we	 expect	 structural	 hole	 theory	 to	 apply	 to	 the
follower	relation?

4.8	Summary

The	collection	of	 primary	 social	 network	data	via	questionnaires	or	 interviews	 is
very	different	from	that	of	standard	survey	data.	Problems	of	recall	make	it	difficult
for	a	respondent	to	name	others	in	their	network	on	an	unaided	basis,	so	the	free-list
method	should	only	be	used	when	it	is	not	possible	to	use	a	roster.	It	is	important	to
use	precise	 terms	when	 asking	 respondents	 about	 any	 association.	For	 example,	 a
question	such	as	‘who	did	you	socialize	with	last	month?’	is	preferable	to	a	vaguer
one	 such	 as	 ‘who	 is	 your	 friend?’.	 Likert	 scales	 are	 less	 demanding	 on	 the
respondent	 than	 absolute	 scales	 and	 therefore	 are	 often	 the	 preferred	method	 for
collecting	 valued	 data.	 However,	 they	 do	 have	 the	 drawback	 that	 different
respondents	can	interpret	the	questions	differently.	These	effects	can	be	lessened	by
normalization,	 but	 they	 cannot	 be	 eliminated.	 Pre-testing	 questions	 and	 using
ethnographic	 methods	 to	 help	 develop	 questions	 and	 scales	 will	 help	 ensure
question	 relevance	 and	 validity.	 Historical	 sources	 rarely	 contain	 social	 network
data,	so	associations	between	actors	usually	have	to	be	deduced	from	attendance	at
events	 or	 meetings	 or	 inferred	 indirectly	 from	 narratives.	 Data	 from	 electronic
sources	 does	 not	 usually	 suffer	 from	 these	 issues,	 since	 it	 is	 often	 already	 in
network	form.	However,	sources	such	as	Twitter	or	Facebook	present	challenges	of
interpretation,	since	the	connections	made	do	not	always	reflect	those	in	the	offline
world.
	

1	Galileo	Project:	http://galileo.rice.edu/fam/letters/10aug1623.html.
2	http://galileo.rice.edu/Catalog/Docs/categories.html.

http://galileo.rice.edu/fam/letters/10aug1623.html
http://galileo.rice.edu/Catalog/Docs/categories.html


5

Data	management
	

Learning	Outcomes
	

1.	 Configure	network	and	attribute	data	for	standard	software	packages
2.	 Apply	elementary	transformations	to	matrix	data
3.	 Extract	and	reconfigure	network	and	attribute	data

5.1	Introduction

In	 this	 chapter	we	 discuss	 how	 to	 format	 network	 data	 for	 import	 into	 a	 network
analysis	 software	package,	 how	 to	 transform	network	data	 to	make	 it	 suitable	 for
different	 analyses,	 and	 how	 to	 export	 network	 data	 and	 results	 for	 use	 in	 other
programs,	such	as	statistical	packages.	For	obvious	reasons,	 this	chapter	 is	a	 little
more	 specific	 to	 the	UCINET	 program	 than	most	 chapters	 of	 the	 book.	 The	 data
import	section	discusses	the	various	choices	available	for	formatting	network	data
in	 electronic	 files.	 We	 also	 make	 suggestions	 for	 checking	 and	 cleaning	 newly
imported	data.	The	section	on	data	transformation	focuses	on	common	adjustments
made	 to	 network	 data,	 such	 as	 imputing	 missing	 values,	 symmetrizing,
dichotomizing,	 aggregating	 and	 subsetting	 network	 data.	 We	 do	 not	 discuss
converting	two-mode	data	to	one-mode	data	as	we	devote	a	separate	chapter	to	that
topic	(see	Chapter	13).	The	data	export	section	discusses	ways	of	 transferring	data
and	 results	 to	 statistical	 programs	 as	well	 as	 to	 spreadsheet	 and	word-processing
software.

5.2	Data	import

One	of	the	most	important	steps	in	any	network	analysis	is	formatting	the	data	for
import	 into	 a	 network	 analysis	 software	 package.	 Familiarizing	 yourself	 with



standard	data	formats	before	entering	or	downloading	data	can	save	a	great	deal	of
time	–	it	can	be	very	costly	to	have	to	reformat	data	later	on.
Regardless	 of	 how	 data	 is	 obtained,	 eventually	 it	must	 be	 held	 in	 an	 electronic

file,	 such	 as	 a	 spreadsheet,	 database,	 or	 text	 file.	 For	 large	 datasets,	 a	 proper
database	 such	 as	 Microsoft	 Access	 or	 MySQL	 is	 useful,	 but	 since	 few	 network
analysis	 programs	 can	 read	 database	 files	 directly,	 they	 entail	 an	 extra	 step	 of
converting	 to	 something	 the	 programs	 can	 read.	 For	most	 users,	 we	 recommend
using	Microsoft	Excel	 as	 a	 sort	of	universal	 translator.	Current	versions	of	Excel
can	 handle	 large	 datasets,	 and	 the	 fact	 that	 each	 datum	 is	 stored	 in	 its	 own
spreadsheet	cell	solves	the	parsing	issues	that	arise	when	programs	have	to	read	text
files,	such	as	having	to	decide	whether	‘Pitney	Bowes’	refers	to	two	nodes	or	one,
and	whether	‘7,100’	represents	seven	thousand	one	hundred,	seven	and	one	tenth,	or
a	pair	of	numbers	seven	and	one	hundred.	In	the	case	of	UCINET,	Excel	files	can	be
imported	 directly	 or	 simply	 cut	 and	 pasted	 into	 the	 DL	 Editor.	 Other	 programs
require	 text	 files,	 but	 it	 is	 relatively	 easy	 to	 convert	Excel	 files	 to	 text	 as	 needed.
Several	network	analysis	programs	read	text	files	written	in	the	DL	(Data	Language)
data	entry	language.	We	give	some	examples	later	in	this	chapter.
The	issue	of	which	type	of	file	to	use	for	storing	data	is	not	as	important	as	the

format	of	the	data.	The	UCINET	program	can	read	a	wide	variety	of	formats	(such
as	 matrix	 formats	 and	 list	 formats),	 allowing	 the	 user	 to	 choose	 one	 that	 is
convenient	 for	 their	 situation	 (e.g.,	 typed	 in	 from	 paper	 surveys,	 saved	 from
electronic	 surveys,	 downloaded	 from	 archival	 sources).	 We	 begin	 by	 discussing
matrix	formats.

5.2.1	Matrix	formats
A	 conceptually	 straightforward	 data	 format	 is	 the	 full	 matrix	 format.	 Figure	 5.1
shows	a	screenshot	of	a	network	in	full	matrix	format	held	in	a	Microsoft	Excel	file.
The	 example	 shows	 a	 standard	 one-mode	 dataset,	 meaning	 that	 the	 rows	 and
columns	are	the	same.	Note	that	the	first	row	and	column	are	used	for	node	labels,
and	 these	 particular	 labels	 happen	 to	 contain	 spaces.	 It	 is	 also	 possible	 to	 use
numeric	labels,	or	no	labels	at	all	(in	which	case	nodes	will	be	assigned	the	ordinal
numbers	from	1	to	N	as	labels).	Note	also	that	these	matrix	entries	are	tie	strengths,
meaning	 there	 are	 values	 other	 than	 simple	 1s	 and	 0s.	 The	 matrix	 can	 be	 easily
transferred	 to	 UCINET	 by	 cutting	 and	 pasting	 into	 the	 UCINET	 DL	 Editor.	 A
screenshot	of	the	DL	Editor	is	shown	in	Figure	5.2,	using	a	different	dataset.
In	 general,	matrix	 formats	 are	 best	 used	with	 dense	 networks.	 If	 the	 network	 is

very	 sparse,	 as	 most	 networks	 are,	 the	 adjacency	 matrix	 will	 consist	 mostly	 of
zeros,	 in	which	case	it	 is	more	economical	to	use	a	format	where	non-ties	are	not
entered,	 such	 as	 the	 list	 formats.	 Many-valued	 datasets,	 such	 as	 one	 giving	 the



physical	 distances	 between	 pairs	 of	 nodes,	 are	 completely	 dense,	 since	 there	 is	 a
value	for	every	pair	of	nodes.	For	these	kinds	of	data,	matrix	formats	do	a	good	job.

Figure	5.1			Full	matrix	format.

The	matrix	format	is	also	useful	for	importing	attribute	data,	where	each	column
in	 the	 matrix	 is	 an	 attribute.	 For	 example,	 Figure	 5.2	 shows	 a	 screenshot	 of	 the
UCINET	 DL	 Editor	 with	 four	 attributes	 pertaining	 to	 a	 network	 of	 five	 nodes.
Unfortunately,	most	network	analysis	programs	require	attributes	 to	have	numeric
values,	so	a	codebook	must	be	kept	in	order	to	know	whether	a	‘1’	under	‘gender ’
means	male	or	 female.1	We	 include	a	 fuller	discussion	of	working	with	 attributes
later	in	the	chapter.

Figure	5.2			Attribute	data	formatted	as	a	full	matrix	in	UCINET’s	DL	Editor.



5.2.2	List	formats
When	the	number	of	links	that	actually	exist	in	a	network	is	much	smaller	than	the
number	that	could	exist,	the	most	economical	thing	to	do	is	store	only	the	ties	and
leave	 out	 the	 non-ties.	 There	 are	 a	 number	 of	 formats	 that	 do	 this,	 including	 the
nodelist	and	edgelist	formats.

Nodelists

The	nodelist	format	is	the	simplest	and	most	economical	of	all	the	formats.	It	is	used
only	 for	 binary	 data	 (i.e.,	 presence/absence	 of	 ties;	 no	 tie	 strengths).	 Figure	 5.3
shows	 a	 screenshot	 of	 the	UCINET	DL	Editor	 spreadsheet	with	 data	 in	 a	 nodelist
format	 representing	 a	 six-node	 undirected	 network.	 The	 first	 name	 in	 each	 row
gives	the	node	that	 is	‘sending’	a	 tie	–	 the	ego.	The	names	that	follow	in	the	same
row	 are	 the	 nodes	 receiving	 each	 tie	 –	 the	 alters.	 Hence,	 the	 first	 row	with	 ‘Bill
Smith’,	‘Carrie	Jones’,	‘Doug	Johnson’	and	‘Eric	Morrison’	states	that	there	is	a	tie
from	‘Bill	Smith’	to	‘Carrie	Jones’,	and	from	‘Bill	Smith’	to	‘Doug	Johnson’,	and
so	 on.	 In	 addition,	 because	 the	 ‘force	 symmetry’	 option	 is	 on,	 the	 program
automatically	 supplies	 a	 tie	 from	 ‘Carrie	 Jones’	 to	 ‘Bill	 Smith’,	 from	 ‘Doug
Johnson’	to	‘Bill	Smith’,	and	so	on	for	all	the	others.	From	this	data,	the	program
constructs	an	adjacency	matrix	(see	Matrix	5.1).	The	order	of	rows	and	columns	in
the	adjacency	matrix	 is	determined	by	 the	order	 in	which	 the	program	encounters
the	 names	 of	 the	 nodes.	 (This	 order	 is	 overridden	 if	 ‘sort	 alphabetically’	 is
checked.)	A	visualization	of	this	network	is	given	in	Figure	5.4.

Figure	5.3			Nodelist	data.



Matrix	5.1			Matrix	generated	from	a	nodelist.

In	any	 list	 format,	 the	node	 identifiers	 can	be	numbers	 instead	of	names.	Using
numbers	can	be	more	economical	than	typing	long	names	over	and	over	again,	and
the	labels	for	the	nodes	can	be	added	later.	One	thing	to	note,	if	using	labels	directly,
is	 to	make	 sure	always	 to	 spell	 the	names	exactly	 the	 same	way	and	use	 the	 same
case	each	time.	Programs	like	UCINET	are	case-sensitive	and	will	regard	‘Bill’	as	a
different	 label	 from	 ‘bill’.	 Another	 thing	 to	 watch	 out	 for,	 particularly	 in	 larger
studies,	is	different	individuals	who	happen	to	have	the	same	name.

Figure	5.4			Network	constructed	using	nodelist	format.

Figure	5.5	shows	the	same	data	as	Figure	5.3	placed	in	a	text	file	using	the	DL	data
description	 language	 mentioned	 at	 the	 beginning	 of	 the	 chapter.	 The	 ‘dl’	 at	 the
beginning	tells	the	software	to	expect	the	DL	syntax.	The	‘n=6’	gives	the	number	of
actors,	 while	 ‘format=nodelist1’	 tells	 the	 program	 to	 expect	 a	 one-mode	 nodelist
format,	 and	 ‘symmetric=yes’	 states	 that	 this	 is	 symmetric	 data,	 so	 that	 every	 link
should	be	treated	as	reciprocated,	and	‘data:’	indicates	the	end	of	information	about
the	data	and	the	beginning	of	the	data	itself.	Note	that	node	labels	are	surrounded	by
full	 quotation	 marks.	 If	 this	 were	 not	 done,	 the	 program	 reading	 the	 data	 would



interpret	Bill	as	one	node	and	Smith	as	another.

Figure	 5.5	 	 	 Data	 from	 Figure	 5.3	 in	 a	 text	 file	 using	 the	 DL	 data	 description
language.

When	dealing	with	two-mode	data,	we	need	to	indicate	both	the	number	of	rows
and	columns.	For	example,	the	data	file	in	Figure	5.6	describes	a	person-by-activity
matrix.	This	time	we	have	to	take	stock	of	both	the	number	of	actors	(‘nr=3’),	which
will	be	the	rows	in	the	matrix,	and	the	number	of	events	(‘nc=5’),	which	will	be	the
columns	in	the	matrix.	No	quotes	were	used	around	labels	because	none	contained
any	punctuation	marks	like	spaces	or	commas,	although	it	never	hurts	to	include	the
quotes.

Figure	5.6			Two-mode	nodelist	data	in	a	text	file	using	the	DL	syntax.

Edgelists

The	edgelist	format	consists	of	a	set	of	rows	in	which	each	row	represents	a	tie	in
the	network.	Each	row	has	two	columns	indicating	the	pair	of	nodes	that	have	the	tie.
Optionally,	a	third	column	can	be	included	which	gives	the	strength	of	the	tie.	When
network	data	is	stored	in	databases,	it	is	frequently	organized	in	this	way	(recall	the
IMDb	 example	 in	 Chapter	 4).	 Figure	 5.7	 shows	 a	 screenshot	 of	 the	 UCINET	 DL
Editor	 spreadsheet	 with	 data	 in	 a	 simple	 edgelist	 format	 representing	 a	 six-node
undirected	 network.	 This	 type	 of	 format	 is	 also	 applicable	 to	 two-mode	 data	 (in
which	case	it	is	referred	to	as	edgelist2).
Most	 network	 studies	 collect	 multiple	 relations	 on	 the	 same	 set	 of	 nodes.	 For

example,	 a	 researcher	 might	 ask	 respondents	 about	 their	 friendships,	 their
professional	 relationships,	 family	 ties,	 and	 so	 on.	 One	 way	 of	 entering
multirelational	data	is	using	a	variation	on	the	edgelist	called	the	edgelist23	format.



This	 consists	 of	 node–node–relation	 triples,	 as	 shown	 in	 Figure	 5.8.	 The	 data	 is
from	UCINET’s	Padgett	 dataset,	which	 contains	 two	different	 kinds	of	 social	 ties,
marriage	and	business.

Figure	5.7			Edgelist	format	for	the	same	data	as	in	Figure	5.3.



Figure	5.8			Padgett	data	in	edgelist23	format.

5.3	Cleaning	network	data

Once	 the	 data	 is	 imported,	 it	 is	 advisable	 to	 examine	 it	 in	 some	 detail.	 There	 are
usually	 a	number	of	 problems,	 and	 if	 these	 are	detected	 early	 it	 can	 save	 a	 lot	 of
time	in	repeating	analyses	done	on	the	flawed	data.	One	kind	of	problem	to	look	for
is	 repeated	 nodes.	 This	 occurs	 when	 an	 actor	 has	 been	 entered	 twice,	 or	 more
commonly	 when	 there	 are	 slight	 differences	 in	 how	 the	 node’s	 name	 was	 typed.
Another	 common	 problem	 is	 that	 there	 are	 some	 missing	 actors.	 This	 could	 be
because	 of	 non-response	 or	 an	 error	 in	 entering	 or	 copying	 the	 data.	 The	 non-
response	issue	is	a	serious	problem	to	which	we	return	later.
It	 is	always	worth	 thinking	about	whether	 the	data	should	 logically	have	certain

characteristics	 and	 checking	 that	 those	 are	 in	 fact	 present.	 For	 example,	 many
relations,	 such	as	 ‘had	 lunch	with’,	 are	 supposed	 to	be	 symmetric,	 and	 it	 is	worth



examining	 the	 data	 to	 make	 sure	 that	 is	 true.	 If	 it	 is	 not,	 you	 need	 to	 determine
whether	 this	 is	 due	 to	 some	mistake	 in	 the	 process	 of	 entering	 and	 importing	 the
data,	or	whether	it	simply	reflects	what	the	respondents	said	(due	to	recall	problems
or	problems	with	the	way	the	questionnaire	was	worded).
Another	 thing	 to	 look	 for	 is	 isolates.	 In	 some	 data	 collection	 designs	 a	 node

cannot	be	in	the	study	unless	it	has	ties,	so	any	isolates	you	find	suggest	a	problem
with	the	data.
In	many	studies,	the	researcher	will	have	some	ethnographic	feel	for	the	data.	For

example,	you	might	have	a	pretty	good	idea	of	which	nodes	should	be	central,	and
which	ones	not.	Running	a	quick	centrality	analysis	early	on	will	let	you	check	the
data	against	your	intuition.
In	many	cases,	one	of	the	most	useful	things	you	can	do	is	construct	a	picture	of

the	network	(see	Chapter	7).	Often	you	can	 tell	 at	 a	glance	 that	 something	 is	very
wrong.	 For	 example,	 you	might	 see	 that	 the	 network	 is	 divided	 into	 a	 number	 of
unconnected	fragments,	which	might	not	make	any	sense	given	how	you	collected
the	data.

5.4	Data	transformation

Here	we	discuss	a	small	sample	of	the	myriad	transformations	that	are	often	applied
to	 data	 in	 the	 course	 of	 an	 analysis.	 These	 include	 transposing	 matrices,
symmetrizing,	 dichotomizing,	 imputing	 missing	 values,	 combining	 relations,
combining	nodes,	extracting	subgraphs,	and	many	more.

5.4.1	Transposing
To	transpose	a	matrix	is	 to	interchange	its	rows	with	its	columns	(see	Figure	5.9).
When	applied	to	a	non-symmetric	adjacency	matrix,	this	has	the	effect	of	reversing
the	direction	of	all	the	arcs	(see	Figure	5.10).	This	can	be	helpful	in	maintaining	a
consistent	 interpretation	 of	 the	 ties	 in	 a	 network.	 When	 we	 construct	 adjacency
matrices	from	surveys,	we	generally	do	it	in	such	a	way	that	the	rows	correspond	to
respondents	 (egos)	 and	 the	 columns	 correspond	 to	 the	 people	 mentioned	 by	 ego
(alters).	However,	 it	 is	 also	convenient	 to	 think	of	 the	 row	node	as	 sending	 to	 the
column	node,	as	in	sending	information	or	resources.	These	two	conventions	can	be
in	conflict.	For	example,	suppose	the	survey	asks	‘who	do	you	seek	advice	from?’.
A	‘1’	in	cell	(3,	7)	means	that	person	3	says	they	seek	advice	from	person	7.	But	in
which	direction	does	advice	flow?	Advice	is	flowing	from	person	7	to	person	3.	In
this	 case,	 it	might	 be	 useful	 to	 transpose	 the	matrix	 and	 think	 of	 it	 as	who	 gives



advice	to	whom.	A	similar	situation	occurs	with	food	webs,	where	we	have	data	on
which	species	eat	which	other	species.	Ecologists	like	to	reverse	the	direction	of	the
arrows	 because	 they	 think	 in	 terms	 of	 the	 direction	 of	 energy	 flow	 through	 the
ecosystem	(e.g.,	carbon	flowing	from	the	prey	to	the	predator).

Figure	5.9	 	 	A	matrix	and	 its	 transpose:	 (a)	who	 likes	whom;	 (b)	who	 is	 liked	by
whom.



Figure	 5.10	 	 	 Transposing	 an	 adjacency	 matrix	 is	 equivalent	 to	 reversing	 the
direction	of	the	arrows.

So	 far	we	have	only	 considered	 transposing	 two-dimensional	matrices.	Stacked
datasets	can	be	seen	as	three-dimensional	matrices	consisting	of	rows,	columns	and
layers	 or	 slices.	 In	 these	 matrices,	 three	 different	 transpositions	 can	 be	 done:
interchanging	rows	with	columns,	rows	with	 layers,	and	columns	with	 layers.	The
column–layer	 transposition	 is	 particularly	 useful.	 Suppose,	 for	 example,	we	 have
run	a	centrality	analysis	on	UCINET’s	Padgett	dataset,	which	we	encountered	earlier.
This	 dataset	 contains	 two	 matrices	 corresponding	 to	 marriage	 and	 business	 ties
among	Florentine	families	during	the	Renaissance.	When	we	run	centrality	on	it,	the
result	 is	 a	 new	 three-dimensional	 dataset	 consisting	 of	 two	 person-by-centrality
measure	 layers,	 one	 for	 each	 type	 of	 tie,	 as	 shown	 in	 Matrix	 5.2.	 This	 way	 of
organizing	 the	 results	 lends	 itself	 to	 answering	 a	 question	 like	 ‘how	 does	 the



Medici’s	centrality	vary	depending	how	we	measure	centrality?’	but	is	not	as	helpful
for	answering	‘how	does	the	Medici’s	centrality	in	the	marriage	network	compare
with	 their	 centrality	 in	 the	business	network?’.	For	 that,	we	would	 rather	 have	 the
results	for	 the	two	networks	side	by	side	and	have	the	measures	correspond	to	the
different	 matrices,	 as	 shown	 in	Matrix	 5.3.	We	 can	 accomplish	 this	 transposition
easily	in	UCINET’s	Matrix	Algebra	command-line	facility.	Assuming	the	centrality
results	are	in	a	dataset	called	PADGETT-CENT,	we	would	type:

-->display	transpose(padgett-cent	col	layer)

5.4.2	Imputing	missing	data
Missing	data	can	be	a	problem	in	full	network	research	designs.	The	most	common
kind	of	missing	data	is	where	a	respondent	has	chosen	not	to	fill	out	the	survey.	This
creates	 a	 row	 of	 missing	 values	 in	 the	 network	 adjacency	 matrix.	 For	 some
analyses,	such	as	the	QAP	regressions	that	are	discussed	in	Chapter	8,	 this	is	not	a
big	 problem.	 Many	 graph-theoretic	 procedures,	 however,	 such	 as	 centrality
measures,	will	treat	the	missing	values	as	non-ties,	which	is	simply	incorrect.
An	 obvious	 solution	 is	 to	 eliminate	 that	 node	 from	 the	 analysis	 altogether

(deleting	both	 their	 row	and	their	corresponding	column	in	 the	adjacency	matrix).
The	 trouble	 with	 this	 is	 that	 the	 remaining	 network	 is	 a	 little	 misleading.	 If	 the
missing	 node	 is	 the	 most	 important	 in	 the	 network	 –	 and	 it	 is	 not	 unusual	 for
important	people	not	to	have	time	to	fill	out	the	survey	–	the	picture	we	get	will	be
very	different	from	what	we	should	have	had.	Moreover,	since	the	other	nodes	made
responses	 about	 that	 node,	 removing	 them	 means	 wasting	 a	 lot	 of	 good	 data.	 It
would	seem	worthwhile,	then,	to	search	for	ways	to	retain	the	problematic	node.



Matrix	5.2			Three-dimensional	matrix	containing	centrality	measures	computed	on
the	Padgett	dataset.



Matrix	5.3			Centrality	measures	after	transposing	columns	and	layers	of	Matrix	5.2
(some	measures	omitted	for	brevity).

In	 the	case	of	 symmetric	or	undirected	 relations,	 a	 simple	cure	 is	 to	 fill	 in	 any
missing	rows	with	the	data	found	in	the	corresponding	column.	The	assumption	is
that,	if	the	respondent	had	been	able	to	answer,	they	would	have	listed	all	the	actors
that	mentioned	them.	This	may	not	be	exactly	right,	but	it	will	be	more	accurate	than
treating	the	missing	values	as	zeros.2	UCINET	has	a	command	called	REPLACENA
within	Matrix	Algebra	 to	do	 this.	For	example,	given	a	matrix	called	MARRIAGE
with	a	couple	of	rows	of	missing	data,	you	would	type:

-->cleanedmarriage	=	replacena(marriage	transpose(marriage))

This	tells	the	program	to	construct	a	transposed	version	of	the	MARRIAGE	matrix



(in	which	 the	 columns	become	 the	 rows	 and	vice	 versa),	 then	 replace	 all	missing
values	 in	 the	MARRIAGE	matrix	 with	 the	 corresponding	 value	 in	 the	 transposed
matrix.	 This	 effectively	 replaces	 the	 missing	 rows	 in	 MARRIAGE	 with	 the
corresponding	columns,	yielding	a	new	file	called	‘cleanedmarriage’.
For	non-symmetric	 relations,	such	as	 ‘seeks	advice	from’,	 this	 technique	would

not	make	sense.	However,	if	you	were	wise	enough	to	have	asked	your	respondents
both	‘who	do	you	seek	advice	from?’	and	‘who	seeks	advice	from	you?’,	you	can
use	 the	 transpose	of	 the	 second	matrix	 to	 fill	 in	 the	missing	 rows	 in	 the	 first,	 and
vice	versa.	In	other	words,	you	assume	that	if	someone	says	Bill	seeks	advice	from
them,	then	if	Bill	had	been	able	to	answer	the	survey,	he	would	have	said	he	seeks
advice	from	that	person.
For	more	sophisticated	ways	of	imputing	missing	values,	the	reader	is	advised	to

consult	 the	 relevant	 literature.	 For	 example,	 Butts	 (2003)	 presents	 a	 Bayesian
approach	 intended	 for	 the	 case	 of	 cognitive	 social	 structure	 data.	 For	 general
matrices,	 Candès	 and	 Recht	 (2012)	 present	 ingenious	 methods	 for	 recovering
missing	cells.	In	general,	it	is	a	good	idea	to	run	the	analyses	with	different	ways	of
handling	missing	values,	including	simply	removing	nodes	with	missing	data,	to	see
if	the	results	are	robust.	If	they	are	not,	there	is	the	danger	that	any	findings	are	an
artifact	of	the	method	used	to	handle	missing	values.

5.4.3	Symmetrizing
Symmetrizing	refers	to	creating	a	new	dataset	in	which	all	ties	are	reciprocated	(and
perhaps	regarded	as	undirected).	There	are	many	reasons	to	symmetrize	data.	One
very	practical	 reason	 is	 that	 some	analytical	 techniques,	 such	as	multidimensional
scaling,	 assume	 symmetric	 data.	 In	 other	 cases,	 symmetrizing	 is	 part	 of	 data
cleaning.	 For	 example,	 when	 we	 ask	 respondents	 to	 name	 their	 friends	 using	 an
open-ended	 questionnaire	 item,	 we	 often	 find	 unintended	 asymmetry	 because
respondents	 simply	 forget	 to	mention	 people,	 as	 noted	 in	 the	 previous	 chapter.	 In
these	cases,	we	often	create	a	new,	symmetric	adjacency,	using	the	rule	that	if	either
person	mentioned	the	other,	 then	there	is	a	tie.	We	call	 this	the	OR,	or	union,	rule.
Alternatively,	if	we	suspect	name-dropping,	we	might	adopt	a	stricter	rule,	namely
that	only	if	both	people	mention	each	other	will	we	consider	it	a	tie.	This	is	called
the	AND,	 or	 intersection,	 rule.	Obviously,	 the	 union	 rule	 creates	 networks	 denser
than	 the	 original,	while	 the	 intersection	 rule	makes	 them	 sparser.	As	 discussed	 in
Chapter	14,	the	latter	can	be	helpful	when	dealing	with	large	networks.
In	 other	 cases,	 we	 symmetrize	 in	 order	 to	 study	 an	 underlying	 symmetric

relationship	 that	 is	 not	 quite	 the	 same	 thing	 as	 the	 observed	 ties.	 For	 example,
suppose	we	have	asked	respondents	from	whom	do	they	receive	advice.	In	seeking
advice,	we	know	that	an	actor	reveals	 the	problem	they	are	 trying	 to	solve.	 In	 this



sense,	there	is	an	exchange	of	information.	It	may	be	that	this	is	the	social	relation
we	 are	 really	 interested	 in	 studying,	 perhaps	 because	 we	 see	 it	 as	 a	 proxy	 for	 a
certain	level	of	collaboration	or	intimacy.	In	this	case,	we	symmetrize	using	the	rule
that	if	either	gives	advice	to	the	other,	we	say	there	is	an	exchange	tie.
From	the	point	of	view	of	a	matrix	representing	a	network,	when	we	symmetrize

we	are	comparing	an	(i,	j)	entry	with	the	corresponding	(j,	i)	entry	and,	 if	needed,
making	them	the	same.	The	union	rule	corresponds	to	taking	the	larger	of	the	two
entries.	The	 intersection	 rule	 takes	 the	smaller	of	 the	 two.	Many	other	options	are
possible	as	well.	For	valued	data	we	might	consider	 taking	 the	average	of	 the	 two
entries.	For	example,	if	i	estimates	having	had	lunch	with	j	eight	times	in	a	month,
but	 j	 estimates	 having	 lunched	 with	 i	 ten	 times,	 we	 can	 view	 these	 as	 two
measurements	 of	 the	 same	 underlying	 quantity,	 and	 use	 the	 average	 as	 the	 best
estimate	of	that	quantity.

5.4.4	Dichotomizing
Another	common	data	transformation	is	dichotomizing,	which	refers	to	converting
valued	data	to	binary	data.	In	this	case,	we	take	a	valued	adjacency	matrix	and	set	all
cells	with	a	value	greater	than	(or	less	than,	or	exactly	equal	to)	a	certain	threshold
to	1,	and	set	all	the	remaining	cells	to	0	(see	Matrices	5.4	and	5.5).	The	usual	reason
for	 doing	 this	 is	 again	 very	 practical:	 some	 methods,	 especially	 graph-theoretic
methods,	are	only	applicable	to	binary	data.	Also,	dichotomizing	with	a	high	cut-off
can	 serve	 to	 reduce	 the	 density	 of	 the	 network,	which	 is	 useful	 in	 handling	 large
networks	(see	Chapter	14).

Matrix	5.4			Original	valued	data.



Matrix	5.5			Dichotomized	data.

When	 dichotomizing	 for	 these	 very	 practical	 reasons	 it	 is	 usually	 advisable	 to
dichotomize	at	different	levels	and	run	the	analyses	on	each	of	the	resulting	datasets.
This	 approach	 retains	 the	 richness	 of	 the	 data	 and	 can	 reveal	 insights	 into	 the
network	structure	that	would	not	be	easy	to	deduce	from	techniques	designed	to	deal
with	 valued	 data	 directly.	 It	 also	 gives	 you	 an	 idea	 of	 the	 extent	 to	 which	 your
findings	 are	 robust	 across	 different	 definitions	 of	 ties.	 Unless	 theoretically
motivated,	 you	 do	 not	 want	 results	 that	 hinge	 on	 a	 particular,	 perhaps	 arbitrary,
choice	of	dichotomization	thresholds.3
In	 other	 cases	 we	 dichotomize	 because	 different	 research	 questions	 call	 for

different	kinds	of	ties.	For	example,	we	might	have	measured	ties	using	a	scale	like
this:	0	=	don’t	know,	1	=	acquaintance,	2	=	friend,	3	=	best	 friend.	With	respect	 to
estimating	 the	 chance	 of	 hearing	 some	 random	 bit	 of	 information,	 perhaps	 we
would	 dichotomize	 at	 anything	 greater	 than	 0.	 But	 with	 respect	 to	 estimating	 a
person’s	feeling	of	having	emotional	support,	we	might	count	only	friendships,	and
dichotomize	at	larger	than	1.

5.4.5	Combining	relations
As	noted	in	the	discussion	of	edgelist23	data	formats,	most	network	studies	collect
multiple	 relations	on	 the	 same	set	of	nodes.	For	 some	analyses,	however,	we	will
combine	 some	 of	 these	 separate	 relations	 into	 one.	 For	 example,	 we	 might	 take
three	separate	network	questions,	such	as	‘who	do	you	attend	sports	events	with?’,
‘who	do	you	go	to	the	theatre	with?’,	and	‘who	do	you	go	out	to	dinner	with?’	and
combine	 them	 into	 a	 more	 general,	 analytically	 defined,	 relation,	 such	 as	 ‘who



socialized	 with	 whom’.	More	 broadly,	 we	might	 take	 several	 relations	 involving
friendship,	 support,	 liking	 and	 so	 on	 and	 combine	 them	 to	 create	 a	 category	 of
relations	that	we	might	call	‘expressive	ties’.	Similarly,	we	might	take	a	number	of
network	questions	about	coordinating	at	work,	getting	work	advice	from,	and	so	on,
and	build	an	instrumental	tie	matrix.
To	actually	construct	the	adjacency	matrix	for	an	aggregated	relation	we	can	use

tools	like	UCINET’s	Boolean	Combination	procedure,	or	simply	sum	the	individual
adjacency	 matrices.	 For	 example,	 in	 UCINET	 we	 might	 use	 the	 Matrix	 Algebra
procedure	 to	 add	 a	 set	 of	 matrices	 corresponding	 to	 positive	 relations.	 The
following	command	creates	a	new	relation	called	‘positive’	from	all	the	relations	in
the	Sampson	dataset	(Sampson	1969)	that	we	deem	to	be	positive:

-->positive	=	add(samplk1	samplk2	samplk3	sampes	sampin	samppr)

If	desired	we	can	then	dichotomize	the	matrix	so	that	a	tie	in	any	of	these	relations
constitutes	a	tie	in	the	new	relation.	Otherwise,	we	could	use	the	raw	numbers	as	an
indication	of	the	strength	of	the	positive	tie.
Alternatively,	 we	 can	 take	 an	 empirical	 approach	 and	 try	 to	 discover	 which

relations	 are	 highly	 correlated.	 In	 UCINET	 we	 can	 do	 this	 by	 using	 the
Tools|Similarities	procedure	 to	compute	Pearson	correlations	between	all	pairs	of
adjacency	 matrices,	 and	 then	 running	 Tools|Scaling|Factor	 Analysis	 on	 the
correlation	matrix	to	obtain	varimax-rotated	factor	loadings.	When	we	do	this	with
the	Sampson	data,	we	find	two	factors,	corresponding	to	positive	and	negative	ties
(see	Matrix	5.6).	It	is	worth	noting	that	the	positive	and	negative	relations	form	two
separate	and	orthogonal	factors	rather	than	two	poles	of	the	same	factor.	The	results
suggest	 it	 would	 be	 sensible	 to	 sum	 the	 positive	 matrices	 and,	 separately,	 the
negative	matrices	to	obtain	two	final	networks	for	analysis.



Matrix	5.6			Rotated	factor	loadings	for	relations	in	the	Sampson	monastery	dataset.

5.4.6	Combining	nodes
Sometimes	we	collect	data	at	an	individual	level,	but	want	to	analyze	it	at	a	higher
level.	 For	 example,	 we	 collect	 data	 on	 who	 collaborates	 with	 whom	 in	 an
organization,	 but	 what	 we	 are	 really	 interested	 in	 is	 the	 pattern	 of	 ties	 between
departments	 (see	 Figure	 5.11).	 As	 a	 result,	 we	 want	 to	 aggregate	 the	 nodes	 into
departments	 such	 that	 a	 tie	 between	 any	 two	 nodes	 becomes	 a	 tie	 between	 their
departments.	The	 inter-departmental	 ties	could	be	defined	as	a	simple	count	of	 the
individual-level	ties,	or	we	could	normalize	the	count	to	account	for	the	number	of
people	in	each	department.	One	normalization	is	to	divide	the	count	of	ties	between
department	A	and	department	B	by	the	number	possible,	which	is	simply	the	size	of
department	A	multiplied	by	the	size	of	department	B.4	These	are	called	densities.

Figure	5.11			Collaboration	ties	among	960	scientists,	shaded	by	department.

Another	normalization	is	to	divide	by	the	total	number	of	ties	sent	by	members	of
a	given	department.	The	resulting	matrix	gives	the	proportion	of	a	department’s	ties
that	are	going	to	each	department	(including	itself).	Still	another	normalization	is	to
divide	the	number	of	ties	between	departments	by	the	expected	value,	given	a	model
of	independence	–	that	is,	nodes	make	ties	without	regard	for	what	department	they
are	 in.	 These	 are	 the	 values	 shown	 in	 Matrix	 5.7.	 Regardless	 of	 the	 choice	 to
normalize,	the	valued	matrix	can	also	be	dichotomized.	The	result	is	a	new	network
–	in	which	the	nodes	are	departments	–	which	can	be	analyzed	in	all	the	usual	ways,
such	as	running	a	subgroup	analysis	to	find	out	which	departments	cluster	together.
Figure	5.12	shows	 the	network	of	 ties	based	on	a	dichotomized	version	of	Matrix
5.7.



Matrix	 5.7	 	 	 Ties	 between	 departments.	 Values	 are	 observed	 counts	 divided	 by
expected.

Figure	5.12			Ties	between	departments	based	on	Matrix	5.7.

5.4.7	Subgraphs
Finally,	it	may	happen	that	we	do	not	want	analyze	the	whole	network.	We	may	wish
to	delete	a	node	or	nodes	from	the	network.	This	may	be	because	they	are	outliers	in
some	respect,	or	because	we	need	to	match	the	data	to	another	dataset	where	some
but	not	all	of	the	same	nodes	are	present.	Or	we	may	wish	to	combine	nodes	to	form
one	node	that	is	connected	to	the	same	nodes	as	the	individuals	were.	One	reason	for
combining	nodes	may	be	that	the	data	was	collected	at	too	fine	a	level	and	we	need
to	take	a	courser-grained	analysis.	Combining	nodes	in	the	same	departments	would
be	an	example	of	moving	up	from	the	individual	level	to	the	department	level.



5.5	Normalization

There	may	be	times	when	we	want	to	re-express,	standardize	or	normalize	network
data	 to	 ensure	 we	 are	 making	 fair	 comparisons	 across	 rows,	 columns	 or	 entire
matrices.	In	Chapter	4	there	was	a	discussion	of	the	concern	that	in	the	use	of	ratings
scales	 for	 collecting	 strength	 of	 tie	 data	 there	 could	 be	 a	 problem	 due	 to
respondents’	use	and	interpretations	of	the	scales.	Some	respondents	may	have	more
readily	used	the	high	end	of	the	scale	while	others	used	the	lower	end	for	reporting
on	essentially	the	same	tie	strength.	In	another	example,	if	respondents	are	asked	to
assess	the	physical	distance	from	their	homes	to	the	homes	of	all	other	actors	in	the
network,	it	may	be	that	some	respondents	answer	in	feet,	others	in	yards,	and	others
in	meters.	 In	both	of	 these	cases,	 it	 is	necessary	 to	 reduce	each	 row	 to	a	common
denominator	 in	 order	 to	 make	 the	 data	 comparable.	 One	 way	 to	 get	 around	 this
different	 scale	 issues	 would	 be	 to	 normalize	 the	 data.	 One	 classic	 normalization
procedure	 is	 to	 compute	 z-scores	 for	 each	 row	 so	 they	 have	 a	 mean	 of	 0	 and	 a
standard	 deviation	 of	 1.	 There	 are	 a	 range	 of	 procedures	 and	 one	 can	 normalize
with	 respect	 to	 means,	 marginals,	 standard	 deviations,	 means	 and	 standard
deviations	 together,	Euclidean	norms,	and	maximums.	Each	 type	of	normalization
can	be	performed	on	each	row	separately,	on	each	column	separately,	on	each	row
and	each	column,	and	on	the	matrix	as	a	whole.

5.6	Cognitive	social	structure	data

As	introduced	earlier	in	Chapter	2,	cognitive	social	structure	data	(Krackhardt	1987)
is	data	collected,	from	each	actor	in	a	network,	on	the	perception	of	who	is	tied	to
whom.	We	 can	 think	 of	 this	 as	N	 adjacency	 matrices,	 each	N	 ×	N	 in	 size.	 If	 the
relation	in	question	is	who	likes	whom,	we	can	also	think	of	this	data	as	comprising
a	 single	 three-dimensional	 matrix	 LIKE	 in	 which	 LIKE(k,	 i,	 j)	 =	 1	 if	 person	 k
perceives	 that	 person	 i	 has	 a	 tie	 to	 person	 j.	 Note	 that,	 depending	 on	 how	 we
collected	the	data,	 the	perceived	ties	may	be	directed	so	that	LIKE(k,	 i,	 j)	need	not
equal	LIKE(k,	j,	i).
Typically,	one	of	the	reasons	for	collecting	data	of	this	type	is	to	investigate	the

accuracy	 of	 people’s	 perception	 of	 the	 network.	 For	 example,	 Krackhardt	 (1987)
found	that	managers	who	had	more	accurate	views	of	the	network	had	more	power
in	the	organization.	However,	measuring	accuracy	entails	defining	a	right	answer	–
the	 ‘true’	 network.	 There	 are	 several	 approaches	 to	 doing	 this.	 Perhaps	 the	most
commonly	 used	 is	 what	 Krackhardt	 calls	 the	 ‘row-dominated	 locally	 aggregated
structure’	 (RLAS).	 In	 the	RLAS,	we	 assume	 that	 the	person	 sending	 a	 tie	 (such	 as



trust)	to	another	is	the	authority	on	that	tie,	and	we	take	their	word	for	it.	This	means
that	 to	 construct	 the	 RLAS	 matrix,	 we	 simply	 define	 RLAS(i,	 j)	 to	 be	 equal	 to
LIKE(i,	 i,	 j).	 The	 RLAS	 is	 the	 matrix	 you	 would	 have	 obtained	 had	 you	 simply
collected	ordinary	network	data.
Another	way	to	construct	the	true	matrix	is	the	intersection	method.	Here	the	idea

is	that	a	tie	exists	from	i	to	j	if	i	says	they	have	a	tie	to	j,	and	j	perceives	an	incoming
tie	from	i.	This	is	not	reciprocity,	which	would	be	that	i	says	they	like	j	and	j	 says
they	 like	 i.	Rather,	 it	 is	agreement:	 i	 says	 they	 like	 j,	and	 j	 says	 that	 i	 likes	 j.	 This
matrix	can	be	defined	as	ILAS(i,	j)	=	1	if	LIKE(i,	i,	j)	=	1	and	LIKE(j,	i,	j)	=	1.	The
logic	of	the	intersection	approach	is	that	you	have	more	confidence	in	a	tie	if	both
people	involved	report	that	tie.
An	 alternative	 approach	 is	 a	 consensus	 method	 that	 takes	 into	 account	 the

perceptions	not	just	of	the	two	people	involved	in	a	tie,	but	everyone	else’s	as	well.
For	example,	we	could	use	a	threshold	model	that	declares	a	tie	from	i	to	j	if	at	least
a	 certain	 percentage	 of	 people	 (say,	 50%)	 see	 it	 that	way.	There	 are	 a	 number	 of
more	 sophisticated	 versions	 of	 this	 approach	 as	 well	 (Romney,	 Weller	 and
Batchelder	1986;	Butts	2003).
Once	a	‘true’	network	is	constructed,	we	can	then	evaluate	the	similarity	of	each

person’s	individual	perceived	network	with	the	true	network.	This	is	simply	a	matter
of	 measuring	 the	 similarity	 between	 each	 person’s	 perceived	 matrix	 and	 the
adjacency	matrix	of	the	true	network.

5.7	Matching	attributes	and	networks

A	quirk	of	network	analysis	programs	such	as	Pajek	and	UCINET	(but	not	NetDraw)
is	 that	 they	 identify	 nodes	 by	 position	 in	 the	 data	 file	 rather	 than	 using	 unique
identifiers.	They	allow	node	labels,	such	as	‘John	Smith’	and	‘101–2’,	but	 the	way
they	identify	nodes	internally	is	simply	by	their	ordinal	position	in	the	list	of	nodes.
As	a	result,	if	you	delete	node	15,	what	used	to	be	node	16	will	now	be	seen	as	node
15	in	the	program.
Among	other	 things,	 this	means	 that	 to	combine	network	and	attribute	data	 in	a

single	analysis,	you	must	be	careful	to	ensure	that	the	nodes	are	in	the	same	order	in
the	 two	files.	For	example,	 if	 the	data	consists	of	Matrices	5.8	(a	network)	and	5.9
(an	attribute	matrix),	an	analysis	that	uses	the	network	and	the	attribute	data	together
(incorrectly)	assumes	that	the	person	in	the	second	row	of	the	network	matrix	(Jeff)
is	female,	because	the	second	person	in	the	attribute	matrix	is	female.	Similarly,	if
you	 have	 attribute	 data	 on	 1000	 people	 but	 collected	 network	 ties	 only	 among	 a
subset	 of	 50	 people,	 a	 network	 analysis	 program	 like	UCINET	 (unlike	NetDraw)
will	 not	 know	 how	 to	 look	 up	 the	 values	 of	 the	 50	 people	 in	 the	 larger	 attribute



dataset.

Matrix	5.8			A	directed	network.

Matrix	5.9			Attribute	matrix	of	Matrix	5.8	in	alphabetical	order.

As	a	result,	the	researcher	needs	to	take	steps	to	ensure	their	attribute	datasets	are
properly	 matched	 to	 their	 network	 datasets,	 and	 of	 course,	 if	 one	 has	 different
matrices	 for	 different	 social	 relations,	 such	 as	 a	 friend	 network	 and	 an	 advice
network,	these	need	to	be	matched	as	well.	An	easy	way	to	do	this	in	UCINET	is	to
run	‘Match	Net	and	Attrib	datasets’	or	‘Match	Multiple	Datasets’,	as	shown	in	Figure
5.13.	 This	 generates	 new	 versions	 of	 all	 the	 input	 datasets,	 whether	 attribute	 or
network,	 that	are	matched	by	node	 labels.	Extra	nodes	found	 in	some	files	but	not
others	are	ignored.



Figure	5.13			Data	menu	in	UCINET.

5.8	Converting	attributes	to	matrices

In	 network	 analysis	 we	 frequently	 need	 to	 make	 a	 matrix	 out	 of	 an	 attribute.	 In
general,	what	we	are	doing	is	changing	a	node	quality	 into	a	relational	quality,	so
that	instead	of	height	we	have	‘is	taller	than’	and	instead	of	gender	we	have	‘is	same
gender	as’.	Often	the	purpose	is	to	use	the	‘matrified’	attribute	as	a	dyadic	predictor
of	 ties	 in	a	QAP	regression	(Chapter	8).	For	example,	suppose	we	have	a	directed
relation	 such	 as	 ‘likes’	 and	we	want	 to	 predict	who	 likes	whom.	One	 idea	 is	 that
people	 like	people	who	are	similar	 to	 themselves	on	socially	significant	attributes
such	as	 race,	gender,	age,	and	status.	For	 race	and	gender	we	can	construct	 ‘same
race	as’	and	‘same	gender	as’	matrices,	as	shown	in	Figure	5.14.	For	age,	we	might
use	 absolute	 difference	 in	 age,	 as	 shown	 in	 Figure	 5.15.	 For	 status,	 we	 might
anticipate	 that	 low-status	 individuals	 have	 a	 bias	 for	 higher-status	 individuals	 and
against	 lower-status	 individuals.	 In	 this	 case	 we	 might	 use	 simple	 difference	 in
status,	as	shown	in	Figure	5.16.	Alternatively,	we	might	argue	that	the	probability	of
liking	someone	increases	with	their	status,	even	if	that	status	is	still	lower	than	one’s
own.	In	that	case	what	we	want	to	do	is	to	create	a	matrix	in	which	the	values	in	each
column	equal	the	status	of	the	node	corresponding	to	that	column.	Effectively,	it	is
like	writing	the	status	vector	as	a	row	vector	and	then	copying	it	n	–	1	times.	This	is
shown	in	Figure	5.17.



Figure	5.14			Converting	gender	into	‘same	gender	as’.

Figure	5.15			Converting	age	into	‘difference	in	age’.

Figure	5.16			Converting	status	into	relative	status	using	a	simple	difference.

Figure	5.17			Converting	status	into	‘status	of	alter ’.

5.9	Data	export

Data	 analysis	 can	 be	 seen	 as	 a	 series	 of	 transformations	where	 the	 output	 of	 one
analysis	 becomes	 the	 input	 to	 another.	 In	 analyzing	 social	 network	 data,	 for
example,	 we	 might	 start	 with	 an	 Excel	 file,	 convert	 it	 to	 a	 UCINET	 system	 file,



dichotomize	 it,	 symmetrize	 the	 dichotomized	 matrix,	 run	 centrality	 on	 the
symmetrized	and	dichotomized	matrix,	 factor-analyze	 the	centrality	measures,	and
regress	 some	 outcome	 variable	 on	 the	 resultant	 principal	 factor.	Anywhere	 along
the	 line,	 we	 might	 want	 to	 output	 data	 to	 another	 software	 package	 (such	 as	 a
statistical	package)	or	create	a	table	or	figure	for	a	presentation	or	paper.
As	with	data	import,	we	usually	recommend	using	Excel	as	an	intermediary	that

can	 communicate	with	many	 kinds	 of	 software.	 Programs	 like	UCINET	 typically
produce	two	kinds	of	output:	an	output	log	file	which	is	a	text	file	meant	for	humans
to	peruse,	and	a	data	file	that	is	not.	While	it	is	possible	to	cut	and	paste	the	contents
of	a	log	file	into	Excel	(and	use	Excel’s	text-to-columns	feature),	it	is	a	cumbersome
and	needlessly	complicated	way	to	transfer	data.	A	better	approach	is	to	open	in	the
UCINET	spreadsheet	 the	data	 file	 that	was	created	by	any	analysis,	and	 then	 to	cut
and	 paste	 it	 into	 Excel.	 This	 spreadsheet-to-spreadsheet	 transfer	 is	 much	 more
efficient.
Sometimes	 we	 want	 to	 reformat	 the	 data	 before	 transferring	 it	 to	 another

program.	For	example,	suppose	we	are	analyzing	longitudinal	network	data,	such	as
friendships	among	17	college	men	measured	at	15	points	in	time	(this	the	Newfrat
dataset	 in	 UCINET).	 The	 data	 is	 stored	 in	 a	 single	 ‘stacked’	 UCINET	 dataset
consisting	of	15	person-by-person	matrices	that	can	be	thought	of	as	layers	or	slices
in	 a	 three-dimensional	 data	 object.	 If	 we	 run,	 say,	 centrality	 on	 a	 dichotomized
version	of	 this	dataset,	 the	program	will	produce	a	new	stacked	dataset	containing
the	centrality	scores	for	each	person	on	each	centrality	measure	for	each	time	point,
arranged	as	15	person-by-measure	matrices.	To	analyze	 this	using,	 say,	 a	 random
effects	regression	in	Stata,	we	execute	the	following	series	of	steps.
First,	join	all	the	matrices	together	‘vertically’	to	create	a	new	matrix	that	has	255

rows	 and	 as	 many	 columns	 as	 there	 centrality	 measures	 (say,	 six	 columns).	 The
rows	are	person–time	pairs	which	are	appropriate	for	longitudinal	analyses.	We	can
do	 this	 in	 UCINET’s	 Matrix	 Algebra	 command-line	 environment	 by	 typing	 the
following:

-->newmat	=	appendasrows(‘newmat-cent’

The	 result	 is	 a	 new	 matrix	 called	 newmat	 which	 can	 be	 opened	 in	 the	 UCINET
spreadsheet,	and	pasted	into	Excel,	and	then	transferred	to	Stata.	Before	transferring
to	 Stata,	 however,	 it	 is	 useful	 to	 open	 another	 matrix	 –	 automatically	 created	 by
APPENDASROWS	and	named	newmat-id	–	in	the	UCINET	spreadsheet,	and	cut	and
paste	the	contents	into	the	Excel	file.	The	newmat-id	matrix	consists	of	two	variables
that	give	the	person-ID	and	the	time-period-ID	for	each	of	the	255	cases.

5.10	Summary



Network	 data	 needs	 to	 be	 in	 specific	 formats	 in	 order	 to	 efficiently	 enter	 it	 into
computer	programs.	Most	networks	are	sparse,	so	list	formats	are	one	of	the	most
efficient	 ways	 to	 enter	 data.	 Binary	 data	 can	 be	 formatted	 as	 nodelists,	 whereas
valued	data	requires	edgelists.	We	normally	have	attribute	information	on	the	nodes
of	a	network.	This	information	is	in	the	form	of	full	matrices	or	vectors	and	can	be
imported	using	spreadsheet	 formats.	Once	 imported,	data	should	be	examined	and
cleaned,	 if	 necessary,	 to	 make	 sure	 it	 is	 as	 accurate	 as	 possible.	 Then	 various
transformations	such	as	symmetrizing,	dichotomizing,	normalizing	and	transposing
can	 be	 applied.	 Note	 that	 if	 the	 transformations	 have	 fundamentally	 changed	 the
nature	of	 the	relation,	 this	must	be	 taken	 into	account	when	interpreting	 the	output
obtained	 from	 any	 analysis.	 For	 example,	 if	 an	 advice	 network	 has	 been
symmetrized	via	the	maximum	method,	we	can	no	longer	interpret	xij	as	indicating
that	 node	 i	 gives	 advice	 to	 node	 j.	 However,	 we	 can	 reasonably	 regard	 xij	 as
indicating	that	i	and	j	are	involved	in	an	exchange	of	information.
	

1	An	exception	is	NetDraw,	which	allows	text	values	in	variables.
2	 Of	 course,	 one	 should	 not	 do	 this	 when	 calculating	 reciprocity	 rates,	 as	 it	 will
artificially	inflate	those	values.
3	 UCINET	 includes	 a	 routine	 which	 seeks	 a	 ‘natural’	 dichotomization	 threshold.
Essentially,	 it	 searches	 for	 a	 cut-off	 such	 that	 the	 gap	 between	 the	 average	 value
above	 the	 cut-off	 and	 the	 average	 value	 below	 the	 cut-off	 is	 as	 large	 as	 possible.
This	is	similar	to	finding	a	large	drop	in	a	scree	plot.
4	When	A	and	B	refer	to	the	same	department	and	the	network	is	non-reflexive,	we
use	n2	–	n,	to	account	for	the	impossibility	of	ties	from	a	node	to	itself.



6

Multivariate	techniques	used	in
network	analysis

	

Learning	Outcomes
	

1.	 Represent	one-	and	two-mode	data	in	a	two-dimensional	map
2.	 Cluster	data	into	groups	using	hierarchical	clustering
3.	 Correctly	interpret	the	information	contained	in	the	clusters	and	maps

6.1	Introduction

In	 this	 chapter	 we	 briefly	 introduce	 the	 reader	 to	 a	 number	 of	 data	 analysis
techniques	that	are	not	specific	to	network	analysis,	but	are	often	used	as	an	integral
part	 of	 network	 analysis	 procedures.	We	 use	 these	 throughout	 the	 book.	 For	 the
most	 part,	 they	 consist	 of	 exploratory	 multivariate	 statistics,	 such	 as
multidimensional	scaling,	correspondence	analysis	and	hierarchical	clustering.

6.2	Multidimensional	scaling

The	 purpose	 of	 multidimensional	 scaling	 (MDS)	 is	 to	 provide	 a	 visual
representation	of	the	pattern	of	proximities	among	a	set	of	objects.	By	proximities
we	 mean	 any	 symmetric,	 one-mode	 matrix	 of	 similarities,	 tie	 strengths,
dissimilarities,	 distances,	 etc.	 among	 a	 set	 of	 objects.	 MDS	 places	 points
(corresponding	 to	our	objects)	 in	 space	 such	 that	 the	distances	between	 the	points
correspond	 in	 a	 predetermined	way	 to	 the	 proximities	 among	 objects	 in	 the	 data.
For	example,	if	the	input	data	is	physical	distances	between	US	cities,	what	MDS	will
do	is	to	draw	a	map	of	the	USA.	Matrix	6.1	gives	an	example	of	driving	distances
between	nine	US	cities.	An	MDS	map	based	on	that	data	is	shown	in	Figure	6.1.



Matrix	6.1			Distances	between	cities	in	the	USA.

Figure	6.1			Cities	MDS	output.

When	 running	 an	MDS	 analysis,	 the	 user	must	 specify	whether	 their	 proximity
data	is	to	be	regarded	as	distances	or	similarities.	If	distances,	the	program	tries	to
place	objects	A	and	B	near	each	other	when	the	input	value	X(A,	B)	is	small,	and	far
apart	when	the	input	value	is	large.	If	similarities,	the	program	puts	pairs	of	objects
with	the	largest	values	near	each	other	on	the	map.
MDS	 can	 draw	 maps	 in	 any	 number	 of	 dimensions,	 but	 for	 the	 purposes	 of

visualizing	data	on	a	screen	or	sheet	of	paper	we	use	just	one	or	two	dimensions.	Of
course,	 limiting	 the	dimensionality	may	 force	 the	map	 to	be	distorted.	 If	 the	 input
data	consists	of	distances	between	cities	all	over	the	world,	it	will	be	impossible	to



draw	a	map	 in	 just	 two	dimensions	without	 introducing	significant	distortion.	The
amount	 of	 distortion	 in	 a	 map	 is	 known	 as	 ‘stress’,	 and	 the	 objective	 of	 MDS
algorithms	is	to	minimize	stress.
In	metric	MDS,	stress	is	evaluated	on	the	basis	of	a	linear	relationship	between	the

input	proximities	and	the	resulting	map	distances,	very	much	like	the	least	squares
criterion	of	ordinary	regression.	As	a	rule	of	 thumb,	we	consider	stress	values	of
less	than	0.2	to	be	acceptable	when	using	metric	MDS.	In	non-metric	MDS	(Kruskal
1964),	 stress	 is	 evaluated	 based	 on	 a	 monotonic	 (ordinal)	 relationship	 such	 that
stress	is	zero	if	the	rank	order	of	input	proximities	matches	the	rank	order	of	map
distances.	By	convention,	we	consider	stress	values	of	less	than	0.12	acceptable	for
non-metric	scaling.	The	map	shown	in	Figure	6.1	was	drawn	using	metric	MDS	and
the	stress	was	0.014,	which	is	nearly	perfect.
When	 stress	 is	 high,	 caution	must	 be	 used	 in	 interpreting	 the	map,	 since	 some

distances	 will	 not	 be	 right.	 The	 distortions	 may	 be	 spread	 out	 over	 all	 pairwise
relationships,	or	concentrated	in	just	a	few	egregiously	distorted	pairs.	In	general,
however,	 because	 most	 MDS	 algorithms	 minimize	 squared	 residuals,	 longer
distances	tend	to	be	more	accurate	than	shorter	distances,	so	larger	patterns	are	still
visible	even	when	stress	is	high.
There	are	two	important	things	to	realize	about	an	MDS	map.	The	first	is	that	the

axes	 are,	 in	 themselves,	meaningless,	 and	 the	 second	 is	 that	 the	 orientation	of	 the
picture	 is	 arbitrary.	 Thus,	 an	MDS	 representation	 of	 distances	 between	 US	 cities
need	not	be	oriented	such	that	north	 is	up	and	east	 is	right.	 In	fact,	north	might	be
diagonally	down	to	the	left	and	east	diagonally	up	to	the	left.	All	that	matters	in	an
MDS	map	is	which	point	is	close	to	which	others.
There	 are	 two	 things	 to	 look	 for	 in	 interpreting	 an	MDS	 picture:	 clusters	 and

dimensions.	Clusters	are	groups	of	items	that	are	closer	to	each	other	than	to	other
items.	For	example,	in	an	MDS	map	of	perceived	similarities	among	animals,	it	is
typical	to	find	that	the	barnyard	animals	such	as	chicken,	cow,	horse,	and	pig	are	all
very	near	each	other,	 forming	a	cluster.	Similarly,	 the	 ‘zoo’	animals	 such	as	 lion,
tiger,	antelope,	monkey,	elephant	and	giraffe	form	a	cluster.
Dimensions	 are	 item	attributes	 that	 seem	 to	order	 the	 items	 in	 the	map	 along	 a

continuum.	For	example,	an	MDS	of	perceived	similarities	among	breeds	of	dogs
may	show	a	distinct	ordering	of	dogs	by	size.	The	ordering	might	go	from	right	to
left,	 top	 to	 bottom,	 or	move	diagonally	 at	 any	 angle	 across	 the	map.	At	 the	 same
time,	an	independent	ordering	of	dogs	according	to	viciousness	might	be	observed.
This	 ordering	 might	 be	 perpendicular	 to	 the	 size	 dimension,	 or	 it	 might	 cut	 a
sharper	angle.

6.3	Correspondence	analysis



Correspondence	 analysis	 refers	 to	 a	 collection	 of	 closely	 related	 techniques,
including	 optimal	 scaling	 and	 biplot	 analysis,	 which	 are	 used	 for	 a	 variety	 of
purposes.	In	this	book,	we	use	correspondence	analysis	primarily	as	a	visualization
technique,	 very	 much	 like	 MDS,	 but	 applied	 to	 two-mode	 data.	 Ideally,
correspondence	analysis	is	applied	to	frequency	tables,	such	as	Greenacre’s	(1984)
example	of	the	number	of	doctorates	awarded	by	field	and	year	(see	Table	6.1).
The	output	of	correspondence	analysis	is	a	set	of	coordinates	in	multidimensional

space	for	both	the	row	items	and	the	column	items,	which	can	then	be	plotted.	Figure
6.2	shows	a	correspondence	analysis	plot	 in	 two	dimensions.	The	 row	 items	–	 the
disciplines	 –	 are	 located	 in	 space	 such	 that	 two	 disciplines	 with	 similar	 profiles
across	 time	 are	 placed	 near	 each	 other.	 For	 example,	 sociology	 and	 psychology
both	 have	 rising	 profiles	 and	 are	 right	 next	 to	 each	 other.	 Similarly,	 the	 column
items	–	the	years	–	are	placed	so	that	years	with	the	same	profiles	across	disciplines
are	near	each	other.	Since	things	take	time	to	change,	we	typically	see	adjacent	years
near	each	other,	as	in	the	sequence	1970,	1971,	1972	and	1973.	In	addition	(although
there	 is	 some	 controversy	 about	 this),	 the	 disciplines	 are	 located	 near	 the	 years
where	they	are	relatively	strong,	and	vice	versa.
The	term	‘relatively	strong’	here	means	that	the	data	value	is	large	relative	to	the

row	and	column	averages.	The	way	correspondence	analysis	 is	computed	is	based
on	 a	 singular	 value	 decomposition	 (SVD)	 of	 a	 normalized	 version	 of	 the	 data
matrix,	where	 the	data	matrix	 is	normalized	by	dividing	each	value	by	 the	 square
root	of	the	product	of	the	corresponding	row	and	column	sums.	We	do	not	discuss
SVD	here,	but	the	interested	reader	can	look	this	up	in	a	standard	book	on	matrices.
In	essence,	it	decomposes	the	matrix	into	factors	which	can	be	interpreted	rather	like
factoring	 a	 number	 as	 a	 product	 of	 primes.	 The	 normalization	 removes	 the
influence	of	rows	and	columns	with	particularly	large	values	across	the	board.	The
SVD	of	this	matrix	then	delivers	row	and	column	scores	that	are	defined	in	terms	of
each	other	–	that	is,	the	score	of	a	given	row	is	proportional	to	the	sum	of	the	values
in	 the	 row,	 weighted	 by	 the	 column	 scores.	 As	 a	 result,	 a	 row	 item’s	 position	 is
something	like	the	centroid	of	the	cloud	of	column	items	surrounding	it.	Similarly,
the	score	of	a	given	column	is	proportional	to	the	sum	of	the	values	in	the	column,
weighted	by	the	row	scores.

Table	6.1			Number	of	doctorates	by	year	and	field	of	study.



Figure	6.2			Correspondence	analysis.

One	 way	 we	 use	 correspondence	 analysis	 in	 network	 analysis	 is	 to	 help	 find
patterns	in	a	collection	of	measures.	For	example,	suppose	we	compute	four	well-
known	 centrality	measures	 (see	Chapter	 10)	 on	 the	 network	 shown	 in	 Figure	 6.3.
The	resulting	scores	are	shown	in	Table	6.2.	A	quick	way	to	get	an	overview	of	the
results	is	to	run	a	correspondence	analysis	on	Table	6.2,	as	shown	in	Figure	6.4.	We
can	easily	see	which	nodes	scored	high	on	eigenvector	centrality	(bottom	left),	or
closeness	(top	left)	or	betweenness	(bottom	right).	Note	that	degree	centrality	shows
up	 in	 the	center	of	 the	graph,	 indicating	 that	 it	 is	highly	 related	 to	all	of	 the	other



measures.

Figure	6.3			Example	of	a	symmetric	network.

Table	6.2			Centrality	scores	of	network	in	Figure	6.3.



Figure	6.4			Correspondence	analysis	plot	of	centrality	scores	in	Table	6.2.

6.4	Hierarchical	clustering

Cluster	 analysis	 is	 a	 set	 of	 techniques	 for	 assigning	 items	 into	 groups	 or	 classes
based	 on	 the	 similarities	 or	 distances	 between	 them.	 Typically,	 these	 groups	 are
mutually	 exclusive,	 forming	 a	 partition.	 Johnson’s	 (1967)	 hierarchical	 clustering
produces	 a	 series	 of	 successive	 partitions	 that	 are	 nested	within	 each	 other	 in	 the
sense	 that	 you	 can	 get	 from	 the	 partition	 with	 fewer	 (but	 larger)	 classes	 to	 the
partition	 with	 more	 (smaller)	 classes	 by	 subdividing	 one	 or	 more	 of	 the	 larger
classes.	 Johnson’s	 is	 an	agglomerative	method,	which	means	 that	 it	 starts	with	 the
partition	that	places	each	item	in	its	own	cluster	and	then	joins	two	of	the	clusters	to
form	the	next	partition,	continuing	this	joining	process	until	all	items	are	in	a	single
cluster.
Given	a	set	of	N	actors	 to	be	clustered,	and	an	N	×	N	 distance	matrix,	 the	basic

process	of	Johnson’s	(1967)	hierarchical	clustering	is	this:

1.	 Start	by	assigning	each	item	to	its	own	cluster,	so	that	if	you	have	N	items,	you
now	have	N	clusters,	each	containing	just	one	item.	Let	the	distances	between
the	clusters	equal	the	distances	between	the	items	they	contain.



2.	 Find	the	closest	pair	of	clusters	and	merge	them	into	a	single	cluster,	so	that
now	you	have	one	less	cluster.

3.	 Compute	distances	between	the	new	cluster	and	each	of	the	old	clusters.
4.	 Repeat	steps	2	and	3	until	all	items	are	clustered	into	a	single	cluster	of	size	N.

Step	3	can	be	done	in	different	ways,	which	is	what	distinguishes	single-link	from
complete-link	and	average-link	clustering.	In	single-link	clustering	(also	called	the
nearest	neighbor,	the	connectedness	method	and	the	minimum	method),	we	consider
the	 distance	 between	 one	 cluster	 and	 another	 cluster	 to	 be	 equal	 to	 the	 shortest
distance	 from	 any	member	 of	 one	 cluster	 to	 any	member	 of	 the	 other	 cluster.	 In
complete-link	 clustering	 (also	 called	 the	 diameter	 or	 maximum	 method),	 we
consider	 the	 distance	 between	 one	 cluster	 and	 another	 cluster	 to	 be	 equal	 to	 the
longest	 distance	 from	 any	 member	 of	 one	 cluster	 to	 any	 member	 of	 the	 other
cluster.	In	average-link	clustering,	we	consider	the	distance	between	one	cluster	and
another	cluster	to	be	equal	to	the	average	distance	from	any	member	of	one	cluster
to	any	member	of	the	other	cluster.	More	recently,	Newman	(2004)	has	introduced
another	 criterion,	 which	 joins	 the	 pair	 of	 clusters	 that	 would	 maximize	 Q
modularity,	a	measure	of	clustering	quality.
Example.	The	following	example	traces	the	first	steps	of	a	hierarchical	clustering

of	 distances	 in	 miles	 between	 US	 cities,	 shown	 in	 Matrix	 6.2.	 The	 method	 of
clustering	is	single-link.

Matrix	6.2			Input	distance	matrix.

The	nearest	 pair	 of	 cities	 is	Boston	 and	NY,	 at	 distance	206.	These	 are	merged
into	a	single	cluster	called	‘Boston/NY’.
Then	 the	 distance	 from	 this	 new	 compound	 object	 to	 all	 other	 objects	 is

computed.	In	single-link	clustering	the	rule	is	that	the	distance	from	the	compound
object	 to	 another	 object	 is	 equal	 to	 the	 shortest	 distance	 from	any	member	of	 the
cluster	to	the	outside	object.	So	the	distance	from	‘Boston/NY’	to	DC	is	chosen	to	be
233,	which	is	the	distance	from	NY	to	DC	(Matrix	6.3).	Similarly,	the	distance	from
‘Boston/NY’	to	Denver	is	chosen	to	be	1771.



Matrix	6.3			After	merging	Boston	with	NY.

The	 nearest	 pair	 of	 objects	 is	 Boston/NY	 and	 DC,	 at	 distance	 233.	 These	 are
merged	into	a	single	cluster	called	‘Boston/NY/DC’.	Then	we	compute	the	distance
from	this	new	cluster	to	all	other	clusters,	to	get	a	new	distance	matrix	(Matrix	6.4).

Matrix	6.4			After	merging	DC	with	Boston/NY.

Now,	the	nearest	pair	of	objects	is	SF	and	LA,	at	distance	379.	These	are	merged
into	 a	 single	 cluster	 called	 ‘SF/LA’.	Then	we	 compute	 the	 distance	 from	 this	 new
cluster	to	all	other	objects,	to	get	a	new	distance	matrix	(Matrix	6.5).

Matrix	6.5			After	merging	SF	with	LA.

This	 is	 then	 continued	 until	 we	 obtain	 in	 the	 penultimate	 merger	 the	 distance
matrix	shown	in	Matrix	6.6.	Here	we	see	the	clusters	have	been	merged	so	that	we
have	two	clusters,	one	consisting	of	Miami	and	all	the	other	cities.
The	whole	process	is	summarized	in	UCINET	by	the	cluster	diagram	as	shown	in

Figure	6.5.	 In	 the	diagram	the	columns	are	associated	with	 the	 items	and	 the	 rows
are	 associated	 with	 levels	 (stages)	 of	 clustering.	 An	 ‘X’	 is	 placed	 between	 two



columns	in	a	given	row	if	 the	corresponding	items	are	merged	at	 that	stage	in	the
clustering.	Hence	we	can	see	at	level	808	the	clusters	are	(Miami),	(Seattle,	SF,	LA),
(Boston,	NY,	DC,	Chicago)	and	(Denver).	We	see	a	clear	split	between	the	east	coast
and	the	west	coast	and	so	the	clusters	make	sense.	Unfortunately,	not	every	dataset	is
as	clearly	structured	and	it	has	to	be	remembered	that,	regardless	of	whether	distinct
groups	 exist,	 the	method	will	 always	 start	with	 everyone	 in	 a	 separate	 cluster	 and
finish	with	everyone	together,	so	care	is	needed	in	interpreting	the	results.

Matrix	6.6			Penultimate	distance	matrix	merger.

Figure	6.5			Output	of	clustering	of	US	cities.

6.5	Summary

We	 can	 represent	 square	 symmetric	 non-binary	 matrices	 as	 n-dimensional	 maps,
with	the	distances	between	points	equating	to	the	values	in	the	matrix,	by	a	process
known	 as	 multidimensional	 scaling.	 For	 visualization	 purposes,	 we	 are	 usually
interested	 in	 two-dimensional	 maps.	 The	 accuracy	 of	 the	 map	 is	 measured	 by	 a
stress	coefficient.	In	metric	multidimensional	scaling,	stress	measures	the	extent	to
which	the	distances	in	the	map	correspond	in	a	linear	way	to	the	input	proximities.
In	non-metric	multidimensional	scaling,	stress	measures	the	extent	to	which	the	rank
order	 of	 distances	 corresponds	 to	 the	 rank	 of	 input	 proximities.	We	 can	 produce
similar	 maps	 for	 non-square	 matrices	 using	 correspondence	 analysis.	 Both



multidimensional	 scaling	 and	 correspondence	 analysis	 maps	 are	 often	 used	 to
subjectively	 identify	 clusters	 of	 points.	 However,	 we	 can	 also	 use	 clustering
algorithms	to	detect	groups	in	proximity	data.	Hierarchical	clustering	is	a	clustering
approach	 that	 yields	 a	 series	 of	 nested	 partitions	 of	 the	 points	 into	 groups.	 Each
partition	in	the	series	is	a	refinement	of	the	one	above	it.



7

Visualization
	

Learning	Outcomes
	

1.	 Visualize	networks	with	or	without	node	attributes	in	a	meaningful	way
2.	 Embed	edge	characteristics	in	network	diagrams
3.	 Represent	network	change	over	time	graphically

7.1	Introduction

One	of	the	first	things	most	people	want	to	do	with	network	data	is	construct	a	visual
representation	 of	 it	 –	 in	 short,	 draw	 a	 picture.	 Seeing	 the	 network	 can	 provide	 a
qualitative	 understanding	 that	 is	 hard	 to	 obtain	 quantitatively.	 A	 network	 diagram
consists	 of	 a	 set	 of	 points	 representing	 nodes	 and	 a	 set	 of	 lines	 representing	 ties.
Various	characteristics	of	the	points	and	lines,	such	as	color,	size,	and	shape,	can	be
used	 to	 communicate	 information	 about	 the	 nodes	 and	 the	 relationships	 among
them.
This	 chapter	 discusses	 the	 ins	 and	 outs	 of	 visualizing	 social	 networks.	 In	 the

discussion	 to	 follow,	 note	 that	we	distinguish	 carefully	 between	network	 elements
and	 their	 graphical	 representation	 –	 that	 is,	 between	 nodes	 and	 the	 points	 that
represent	them,	and	between	ties	and	the	lines	that	represent	them.	In	the	sections	that
follow	 we	 examine	 aspects	 of	 the	 graphical	 representation	 of	 structural	 and
compositional	 information	 using	 the	 capabilities	 of	 the	UCINET’s	NetDraw.1	 The
first	part	of	this	chapter	discusses	methods	for	the	spatial	orientation	of	nodes	and
things	that	are	considered	important	in	visualizing	properties	and	attributes	of	nodes
and	 edges	 or	 ties	 in	 network	 graphs.	 This	 is	 followed	 by	 a	 series	 of	 examples
illustrating	some	possible	ways	 to	address	 these	visualization	 issues	and	to	reduce
network	complexity,	particularly	in	large	networks.



7.2	Layout

The	layout	of	a	network	diagram	refers	to	the	position	of	the	points	in	the	diagram.
It	 is	 the	most	 important	 aspect	 of	 network	visualization.	A	badly	 laid-out	 network
diagram	 communicates	 very	 little	 information	 or	 can	 lead	 to	 errors	 in	 the
interpretation	 of	 a	 given	 graph	 (McGrath,	 Blythe	 and	 Krackhardt	 1997).	 As	 an
example,	consider	the	diagram	in	Figure	7.1.	In	this	figure	the	actors	from	the	bank
wiring	 room	 dataset	 introduced	 in	 Chapter	 2	 (see	 Figure	 2.2a)	 are	 laid	 out	 at
random	and	 their	 ties	 shown.	 It	 is	hard	 to	 see	 from	 this	graph	 the	 structure	of	 the
network	in	terms	of	any	clustering	or	grouping,	something	that	would	be	important
to	 know.	 However,	 the	 nodes	 can	 be	 rearranged	 in	 such	 a	 way	 that	 the	 inherent
clustering	or	grouping	in	the	network	is	revealed,	as	can	be	seen	in	Figure	7.2.
There	 are	 three	basic	 approaches	 to	 laying	out	networks:	 attribute-based	 scatter

plotting,	 ordination	 (in	 particular,	 multidimensional	 scaling	 or	MDS),	 and	 graph
layout	algorithms.	We	discuss	each	of	these	in	turn.

Figure	7.1			Random	layout	of	the	games	relation	in	the	bank	wiring	room	dataset.



Figure	7.2			Games	relation	rearranged	to	reveal	structure.

7.2.1	Attribute-based	scatter	plots
In	this	approach,	we	position	points	based	on	attributes	of	the	nodes.	For	example,
we	can	plot	the	points	based	on	the	age	and	income	of	the	corresponding	nodes.	We
then	 draw	 lines	 between	 the	 points	 to	 represent	 ties.	 These	 kinds	 of	 displays	 are
useful	when	we	are	interested	in	visualizing	how	attributes	of	the	nodes	affect	who
is	 connected	 to	 whom.	 Scatter	 plots	 are	most	 successful	 when	 both	 attributes	 are
continuous	(i.e.,	not	categorical	like	gender	or	department),	and	when	the	attributes
in	fact	do	affect	who	is	tied	with	whom.
Figure	7.3	shows	a	graph	of	trade	in	minerals	among	63	countries	in	1981	(Smith

and	White	1992).	In	this	graph	the	nodes	are	placed	in	the	space	according	to	rates
of	 secondary	school	enrollment	 ratio	 (X-axis)	 and	energy	consumption	per	 capita
(Y-axis).	 If	we	 thought	 that	 the	relationship	between	school	enrollment	and	energy
consumption	were	 theoretically	 important	 for	understanding	 the	 structure	of	 trade
relations,	this	would	be	a	reasonable	way	to	position	the	nodes	in	a	two-dimensional
space.	Spatial	information	among	the	countries,	such	as	GIS	coordinates,	could	also
be	use	to	position	the	nodes	in	space	where	the	latitude	and	longitude	correspond	to
the	X	and	Y	attributes	in	this	example.

7.2.2	Ordination
In	this	approach	we	locate	points	based	on	multivariate	statistics	techniques	such	as
principal	 components,	 correspondence	 analysis	 and	MDS.	 Typically,	 the	 inputs	 to
these	 procedures	 are	 valued	 proximity	 matrices,	 such	 as	 a	 matrix	 of	 distances
between	 cities,	 or	 a	matrix	 of	 correlations	 among	 variables.	 In	 these	 layouts,	 the



distances	 between	 points	 are	 meaningful	 in	 the	 sense	 that	 there	 is	 a	 known
mathematical	 relationship	 between	 the	 distances	 and	 the	 social	 proximities	 of	 the
nodes.	For	example,	in	metric	MDS,	if	the	data	contains	information	on	the	strength
of	ties	between	nodes,	the	resulting	layout	positions	the	points	so	that	the	points	near
each	other	are	the	ones	that	are	strongly	connected	to	each	other,	and	the	nodes	that
are	far	apart	are	the	ones	that	are	only	weakly	connected.

Figure	7.3	 	 	Trade	 in	minerals	among	63	countries	with	countries	positioned	 in	a
scatter	plot	by	school	enrollment	ratios	(X)	and	energy	consumption	(Y)	in	1981.

When	no	strengths	of	tie	data	are	available	(i.e.,	binary	data),	the	standard	thing	to
do	 is	 compute	 geodesic	 distances	 between	 nodes.	 As	 discussed	 in	 Chapter	 2,	 by
‘geodesic	distance’	we	mean	the	number	of	links	in	the	shortest	path	between	a	pair
of	 nodes.	The	ordination	 algorithm	would	 then	 lay	out	 the	 points	 such	 that	 nodes
with	high	geodesic	distance	between	them	would	be	far	apart	in	the	diagram,	and	the
points	corresponding	to	nodes	with	short	geodesic	distance	would	be	close	together.
Ordinations	based	on	geodesic	distance	typically	work	very	well	in	the	sense	that

the	 resulting	 diagrams	 are	 relatively	 uncluttered,	 cohesive	 subgroups	 are	 clearly
visible,	and	points	corresponding	to	the	more	central	nodes	tend	to	be	found	in	the
center	of	 the	diagram.	In	addition,	 they	have	the	advantage	of	interpretability	–	we
know	exactly	why	some	nodes	are	further	apart	than	others.	Figure	7.4	is	an	MDS	of
the	geodesic	distances	for	the	trade	in	minerals	for	the	63	countries	discussed	above
(ties	were	dichotomized	 for	 any	 trade	 in	minerals	between	 two	countries	 that	was
greater	 than	0).	 In	 this	graph	the	more	central	countries,	such	as	 the	United	States,
are	 in	 the	 center	 of	 the	 graph	 while	 less	 central	 countries	 are	 on	 the	 periphery.
Additionally,	 there	appears	 to	be	some	geographical	dimensionality	as	one	moves
from	the	lower	left	to	the	upper	right.



Figure	 7.4	 	 	 MDS	 of	 the	 geodesic	 distances	 for	 the	 trade	 in	 minerals	 for	 63
countries.

7.2.3	Graph	layout	algorithms
A	wide	variety	of	graph	layout	algorithms	exist.	Some	are	best-regarded	as	heuristic
algorithms	that	are	well	defined	in	terms	of	the	steps	one	takes	to	arrive	at	a	layout,
but	 it	 may	 be	 difficult	 to	 characterize	 the	 resulting	 output.	 Other	 graph	 layout
algorithms	consist	of	a	function	optimization	algorithm	that	is	used	to	maximize	a
specific	mathematical	function.	The	choice	of	optimization	algorithms	may	vary	–
what	defines	the	layout	is	the	function	being	optimized.	This	is	the	approach	taken	in
UCINET’s	 NetDraw	 procedure	 (activated	 via	 the	 ‘lightning	 bolt	 button’).	 The
function	 optimized	 has	 three	 terms	 that	 capture	 three	 criteria	 that	 are	 optimized
simultaneously.	The	first	criterion	–	the	correspondence	between	point	distance	and
path	 distance	 between	 nodes	 –	 is	 the	 same	 as	 in	 the	 multidimensional	 approach
described	above.	The	second	criterion	is	that	nodes	should	not	appear	too	close	to
each	other	so	as	to	obscure	one	another.	In	MDS,	if	two	nodes	are	the	same	distance
from	all	third	parties,	they	will	be	located	on	top	of	each	other.	The	third	criterion
implements	a	preference	for	equal-length	lines.	This	gives	the	pictured	networks	a
kind	 of	 boxy	 appearance	 that	 makes	 it	 easier	 to	 spot	 symmetries.	 The	 result	 of
trying	 to	 optimize	 all	 three	 criteria	 is	 a	 layout	 that	 tends	 be	 more	 readable	 and
aesthetically	 pleasing	 than	 one	 based	 on	 ordination	 or	 node	 attributes.	 The
disadvantage,	 however,	 is	 that	 distances	 between	 points	 in	 the	 diagram	 no	 longer
correspond	in	a	one-to-one	way	to	path	distances	between	nodes.	Thus,	we	give	up	a
measure	 of	 interpretability,	 in	 the	 mathematical	 sense,	 in	 order	 to	 get	 cleaner
diagrams	that	are	easier	to	read.



It	is	important	to	realize	that	the	information	in	graph	layouts	is	contained	in	the
pattern	of	which	nodes	are	connected	to	which	others.	The	locations	of	the	points	do
not	 necessarily	 reflect	 any	 mathematical	 or	 sociological	 properties	 –	 they	 are
chosen	based	on	essentially	aesthetic	criteria.	As	such,	one	must	not	attach	too	much
meaning	to	the	exact	location	of	a	node	since	the	algorithm	is	not	explicitly	trying
to	identify	cliques	or	place	central	nodes	in	the	center.
Ultimately,	any	arrangement	of	nodes	in	space	is	equally	valid	as	long	as	no	ties

are	added	or	dropped.	In	other	words,	if	we	drag	a	node	out	of	the	center	and	put	it
on	the	periphery	(dragging	all	of	its	ties	along	with	it),	the	resulting	diagram	is	no
less	 valid	 than	 the	 original.	 This	 is	 not	 true	 of	 attribute-based	 scatter	 plots	 and
ordinations,	in	which	the	physical	distances	between	the	points	have	meanings	which
would	be	violated	if	the	points	were	moved	arbitrarily.
Figure	7.5	is	a	graph	with	the	countries	arranged	in	space	using	NetDraw’s	graph

layout	algorithm.	The	structure	is	similar	to	Figure	7.4	in	many	ways	but	the	graph
is	much	easier	to	read	and	the	nodes	are	distributed	more	evenly	across	the	space.

Figure	7.5			Network	diagram	using	a	graph	layout	algorithm.

7.3	Embedding	node	attributes

In	 generating	 network	 diagrams,	we	 often	want	 to	 embed	 additional	 information,
such	 as	 attributes	 of	 the	 nodes.	 For	 example,	 in	 the	 trade	 data,	 we	might	want	 to
indicate	 the	continent	 that	 each	country	 is	 located	on,	or	 the	 total	 amount	of	 trade
done	 by	 each	 country.	 Typically,	 we	 do	 this	 by	 mapping	 these	 node	 attributes	 to
visual	 properties	 of	 the	 points.	 For	 example,	 continuous	 variables	 such	 as	 a



country’s	wealth	can	be	nicely	represented	by	the	size	of	the	point	corresponding	to
a	 country.	Color	 gradients,	 such	 as	 light	 to	 dark,	 can	 also	 be	 used.	The	values	 of
categorical	variables	can	be	nicely	represented	by	colors	or	shapes	of	the	points.
In	programs	like	NetDraw,	points	have	a	number	of	visual	properties	that	can	be

used	 to	 communicate	 information	 about	 the	 nodes	 they	 represent.	 For	 example,
points	can	be	many	different	shapes,	sizes	and	colors.	The	shapes	can	be	drawn	with
rims	of	different	sizes	and	colors.	Points	can	have	textual	labels	attached,	which	can
vary	in	terms	of	size,	color	and	type	of	font.	Taken	all	together,	a	very	large	number
of	node	attributes	can	be	simultaneously	 represented	 in	a	single	network	diagram.
However,	in	our	experience,	using	more	than	two	or	three	properties	at	a	time	can
be	more	distracting	than	informative.2
An	example	is	given	in	Figure	7.6,	which	depicts	the	Campnet	dataset	we	briefly

encountered	in	Chapter	2	(Figure	2.3).	 In	 this	visualization	 the	size	of	 the	nodes	 is
used	to	represent	the	betweenness	centrality	of	each	node	(see	Chapter	10),	while	the
shape	of	nodes	is	used	to	represent	gender.
Color	can	also	be	used	to	represent	the	nominal	properties	of	nodes	in	terms	of

such	 things	 as	 gender,	 membership	 in	 groups,	 political	 party	 affiliation,	 tribal
membership,	and	ethnicity.	Any	qualitative	property	of	the	node	can	be	represented
by	color.	There	are	a	number	of	considerations	for	the	selection	of	colors	that	may
either	 facilitate	 or	 hinder	 the	 communication	 of	 information.	 Aside	 from	 the
number	 of	 colors,	 there	 may	 be	 colors	 that	 are	 more	 intuitive	 or	 culturally
appropriate	for	the	communication	of	specific	sorts	of	information.	Some	might	see
red	 as	 an	 action	 color	 or	 blue	 as	 a	 color	of	 status	or	 gender.	We	all	 know	 in	US
culture	 that	 the	 appropriate	 color	 for	 boys	 is	 blue	 and	 for	 girls	 pink.	 Although
possibly	 not	 politically	 correct	 in	 today’s	 world,	 such	 use	 of	 colors	 does	 have
cultural	 foundations	 and	 does	 often	 aid	 in	 conveying	 complex	 information.	 For
example,	 in	 trying	 to	 show	 gradients	 (e.g.,	 ratings	 scales)	 cool	 colors	 can	 show
‘comfortable’	atomic	contacts	while	red	might	signal	trouble	spots.	Selective	use	of
bright,	contrasting	colors	draws	the	eye	very	effectively	to	points	of	emphasis,	but
overuse	can	easily	overwhelm	the	transfer	of	real	information.	Therefore	relatively
paler,	dimmer,	or	similar	colors	work	very	well	for	large	amounts	of	ordinary	or
framework	data.



Figure	 7.6	 	 	 Campnet	 dataset.	 Circle	 shapes	 indicate	 women	 and	 square	 shapes
indicate	men.	Size	corresponds	to	each	node’s	betweenness	centrality.	Solid	lines	are
used	for	same-gender	ties,	dotted	lines	for	cross-gender	ties.
	
Color	background	is	also	an	important	issue.	A	white	background	works	well	for

most	applications	but	a	black	background	can	provide	the	illusion	of	empty	space,
giving	the	perception	of	higher	dimensionality.	However,	for	some	applications	in
which	 the	use	of	certain	colors	 is	 important,	or	non-network	 information	 is	being
mapped	on	to	the	structure,	a	white	background	may	be	most	effective.

7.4	Node	filtering

It	is	often	useful	to	see	what	a	network	looks	like	when	certain	classes	of	nodes	are
removed.	 Sometimes	 this	 is	 done	 to	 remove	 nodes	 that	 are	 peripheral	 to	 a	 given
research	 interest.	Other	 times,	 it	 is	 to	 gauge	 the	 importance	 of	 the	 selected	 set	 of
nodes	in	connecting	others.	Programs	like	NetDraw	make	it	easy	to	click	points	on
and	off.	Looking	again	at	Figure	7.6	the	Campnet	dataset	above	with	the	nodes	for
men	being	squares	and	the	nodes	for	women	being	circles.	We	see	that	even	with	a
relatively	small	network	like	this	it	is	still	difficult	to	see	possible	relationships	of
interest.	For	 this	we	may	want	 to	 remove	edges	or	nodes,	particularly	nodes	with
certain	 attributes.	 If	 one	 were	 interested	 in	 the	 ties	 among	 women	 in	 the	 current
graph,	in	this	case	one	can	easily	see	how	the	women	are	connected	to	one	another,
although	 there	 may	 be	 some	 important	 nuances	 that	 are	 not	 evident.	 Figure	 7.7
shows	the	Campnet	network	with	the	points	corresponding	to	men	clicked	off.	This
emphasizes	the	isolation	of	one	of	the	women.	This	of	course	was	a	simple	graph,



but	 in	more	 complex	 graphs	 the	 ability	 to	 turn	 attributes	 on	 and	 off	 can	 be	 very
helpful	in	discovering	both	structural	and	compositional	properties	of	the	network.

Figure	7.7			Network	graph	of	strong	relations	among	members	of	a	methods	camp
showing	ties	among	women	only	and	selecting	out	men	from	the	network.

7.5	Ego	networks

Filtering	 is	 also	 used	 to	 visualize	 the	 ego	 networks	 of	 particular	 nodes.	 By	 ‘ego
networks’	we	mean	the	set	of	nodes	directly	connected	to	a	given	node	(whom	we
call	ego),	together	with	all	ties	among	them.	This	is	particularly	useful	when	used	to
compare	the	structures	around	two	different	egos.	For	example,	Figures	7.8	and	7.9
show	 the	acquaintanceship	networks	of	 two	drug	 injectors	 in	 the	city	of	Hartford,
CT	(based	on	data	from	Weeks	et	al.	2002).	As	in	the	previous	examples,	data	on	the
attributes	of	an	ego’s	alters	can	be	used	to	search	for	any	organizing	principles	in
the	ego’s	network.	In	the	two	figures	one	can	see	both	the	structural	properties	of	the
two	 networks	 in	 terms	 of	 being	more	 or	 less	 open	 or	 closed	 and	 aspects	 of	 the
qualitative	properties	of	an	ego’s	alters.	In	this	case	the	two	networks	display	high
levels	 of	 homophily	 in	 that	 egos	 tend	 to	 be	 acquainted	with	 alters	 that	 are	 of	 the
same	ethnicity.



Figure	7.8			Relatively	open	ego	network	of	Puerto	Rican	drug	injector.	Large	node
is	ego.	Triangles	represent	Puerto	Ricans.

Some	personal	or	ego	network	studies	collect	data	on	large	numbers	of	alters,	in
some	cases	up	to	50	alters,	and	the	resulting	ego	network	graphs	can	become	rather
complex	 and	 difficult	 to	 visualize	 (McCarty,	 Killworth	 and	 Renell	 2007).	 Figure
7.10	 shows	 the	ego	network	 for	 actor	1	 in	 the	Zachary	 (1977)	karate	club	dataset.
Included	 are	 attributes	 of	 the	 actors	 on	 relationships	 to	 different	 factions	 as
determined	by	Zachary.	If	we	were	to	remove	ego,	since	ego	is	obviously	connected
to	all	alters,	it	often	helps	reveal	important	properties	of	an	ego’s	network.	Figure
7.11	is	a	network	graph	with	ego	removed.	From	this	graph	we	can	more	clearly	see
that	 ego’s	 network	 consists	 of	 four	 components,	 where	 two	 of	 the	 larger
components	differ	 in	 terms	of	 the	homogeneity	of	alter	characteristics.	There	will
be	 a	 much	 more	 detailed	 discussion	 of	 compositional	 and	 structural	 attributes
typically	important	in	ego	network	studies	in	the	chapter	on	ego	networks.



Figure	 7.9	 	 	 Relatively	 closed	 ego	 network	 of	 African-American	 drug	 injector.
Squares	represent	African-Americans,	while	circles	represent	Native	Americans.

7.6	Embedding	tie	characteristics

Like	points,	lines	have	a	number	of	visual	properties	that	can	be	mapped	to	network
information.	For	example,	the	thickness	of	a	line	can	be	used	to	indicate	the	strength
of	a	tie.	Line	style	(solid,	dashed,	dot-dashed,	etc.)	can	be	used	to	represent	different
types	of	ties,	such	as	solid	for	positive	ties	and	dashed	for	negative	ties.	Line	color
is	 also	 used	 to	 indicate	 type	 of	 tie.	 It	 can	 also	 be	 used	 to	 reinforce	 node	 attribute
information,	as	when	we	use,	say,	blue	lines	to	indicate	ties	from	women	to	women,
and	red	lines	to	indicate	ties	between	women	and	men.	An	arrowhead	on	a	line	can
be	used	to	indicate	the	direction	of	a	tie,	as	in	who	is	asking	whom	for	advice.	The
arrowheads	 themselves	 can	 be	 differentiated	 by	 color,	 size	 and	 shape.	 Thus,	 one
could	use	arrowhead	size	to	indicate	the	amount	of	trade	flowing	from	one	country
to	another,	or	the	extent	to	which	person	A	likes	person	B.

7.6.1	Tie	strength
There	are	several	ways	to	communicate	strength	of	tie.	One	way	is	to	use	the	layout
itself	to	represent	tie	strengths.	For	example,	in	the	MDS	approach	discussed	above,
the	 distance	 between	 two	 points	 corresponds,	 inversely,	 to	 the	 strength	 of	 the	 tie



between	them.	To	illustrate	this,	we	use	a	valued,	one-mode	dataset	derived	from	the
Davis,	Gardner	and	Gardner	 (1961)	women-by-events	data	described	 in	Chapter	 2
(see	 Matrix	 2.3).	 The	 data	 was	 transformed	 using	 the	 Affiliations	 procedure	 in
UCINET	to	create	a	woman-by-woman	matrix	in	which	the	cells	indicate	the	number
of	events	that	each	pair	of	women	attended	in	common.	Figure	7.12	shows	a	metric
MDS	of	this	data.	A	line	is	shown	between	two	points	if	the	corresponding	women
attended	at	least	one	social	event	in	common.

Figure	 7.10	 	 	 Ego	 network	 for	 actor	 1	 in	 the	 Zachary	 karate	 club	 dataset	 with
strength	of	relationships	outside	the	group	as	an	attribute.

Figure	7.11	 	 	Ego	network	for	actor	1	 in	 the	Zachary	karate	club	dataset	with	ego
removed.



Figure	7.12			Ordination	plot.	Distance	is	inversely	proportional	to	strength	of	tie.

We	 can	 make	 this	 diagram	 easier	 to	 read	 by	 suppressing	 lines	 representing
weaker	ties.	For	example,	we	might	show	a	line	between	points	only	if	the	women
attended	 at	 least	 three	 events	 in	 common.	As	 shown	 in	Figure	7.13,	 this	 approach
makes	the	two-group	structure	of	the	data	very	evident.
Another	 approach	 to	 displaying	 strength	 of	 tie	 information	 is	 to	 make	 the

thickness	of	 lines	proportional	 to	 the	 tie	 strength.	An	example	 is	 shown	 in	Figure
7.14,	in	which	the	position	of	the	nodes	is	determined	by	ordination.	This	diagram
uses	both	physical	distance	and	line	thickness	to	communicate	social	proximity.	One
can	see	that	the	thicker	lines	tend	to	be	within	the	groups	and	not	between	them.

Figure	7.13			Ordination	plot	with	weak	ties	suppressed.



Figure	7.14			Ordination	plus	thickness.	Both	physical	distance	and	thickness	of	line
are	used	to	represent	strength	of	ties	among	women.

When	 we	 want	 to	 visualize	 tie	 strength	 in	 asymmetrical	 relations,	 such	 as	 in
economic	 exchange	 relations,	making	 the	 tie	 proportional	 to	 tie	 strength	will	 not
work	since	the	amount	given	from	person	A	to	person	B	may	not	be	the	same	as	the
amount	given	from	person	B	to	A.	Since	these	relations	are	directional	we	can	use
the	arrowheads	to	convey	the	relative	amounts	of	flows	back	and	forth	between	two
nodes.	Figure	7.15	is	a	graph	of	an	exchange	network	of	fish	among	salmon	fishers
in	Alaska	 (Johnson	 and	Miller	 1983).	The	 labels	 have	 been	 removed	 to	make	 the
graph	more	readable.	The	size	of	the	arrowheads	is	proportional	to	the	amount	of
fish	 given	 from	 one	 fisher	 to	 another.	 It	 is	 obvious	 that	 the	 central	 fisher	 in	 the
component	 on	 the	 right	 has	 transferred	 large	 amounts	 of	 fish	 to	 four	 of	 the	 six
fishers	with	whom	he	has	exchange	ties.



Figure	 7.15	 	 	 Fish	 exchanges	 among	 salmon	 fishers	 in	 Alaska	 with	 amounts
transferred	proportional	to	the	size	of	the	arrowheads.

A	different	approach	is	to	abandon	ordination	in	favor	of	graph-theoretic	layouts,
in	combination	with	dichotomizing	the	data	so	that	only	strong	ties	are	considered.
By	systematically	increasing	the	cut-off	value	for	dichotomization,	one	can	create	a
series	of	diagrams	that	portray	increasingly	strong	ties	(see	Figure	7.16).3	 In	each
successive	network	the	criterion	for	what	constitutes	a	tie	increases	by	1.	In	this	case
at	a	value	of	tie	strength	of	2	or	greater	(two	more	events	in	common),	the	structure
of	 the	 networks	 becomes	 clearer.	As	we	move	 through	 the	 successive	 graphs	 the
core	membership	of	the	two	factions	becomes	evident.

7.6.2	Type	of	tie
In	most	 studies,	 we	measure	 several	 different	 social	 relations	 on	 the	 same	 set	 of
nodes.	 Programs	 like	 NetDraw	 make	 it	 easy	 to	 switch	 between	 relations	 while
maintaining	nodes	in	the	same	positions.	For	example,	the	bank	wiring	room	dataset
we	first	saw	in	Chapter	2	and	visualized	in	Figure	7.2	was	collected	by	a	researcher
observing	 interactions	 among	 a	 set	 of	 employees	 in	 one	 room	 over	 a	 period	 of
months,	 recording	 a	 number	 of	 social	 interactions	 such	 as	 playing	 games	 during
breaks	or	having	conflicts	over	such	things	as	whether	the	room’s	windows	should
be	 open	 or	 closed.	 Figure	 7.17	 shows	 game-playing	 ties	 among	 the	men	we	 saw
before,	while	Figure	7.18	 shows	 conflict	 ties.	Since	 the	nodes	 remain	 fixed	 in	 the
same	positions	and	we	have	drawn	the	networks	next	to	each	other,	it	is	easy	to	see
that	game-playing	 interactions	occur	within	each	of	 the	 two	subgroups,	but	 rarely
between,	and	conflict	interactions	occur	mostly	between	the	two	subgroups	but	also
within	the	left-hand	subgroup.	Thus,	it	appears	that	while	two	groups	exist,	the	right-
hand	group	is	in	less	conflict	and	is	possibly	more	cohesive.





Figure	7.16			Graph-theoretic	layout	portraying	increasingly	strong	ties.



Figure	7.17			Game-playing	relation	among	bank	wiring	room	employees.

Figure	7.18			Conflict	relation	among	bank	wiring	room	employees.

7.7	Visualizing	network	change

If	 network	data	 is	 collected	 at	multiple	 points	 in	 time,	we	 can	 just	 treat	 each	 time
point	as	a	different	 relation	and	use	all	of	 the	 techniques	described	above.	We	can
also	create	a	kind	of	meta-display	by	showing	relationships	between	the	time	points
rather	than	actors.	For	example,	Burkhardt	and	Brass	(1990)	collected	advice-giving
relations	among	employees	of	a	government	agency	at	five	points	in	time.	We	can
correlate	 the	 adjacency	 matrices	 corresponding	 to	 each	 time	 period.	 Matrix	 7.1
shows	the	correlation	matrix	obtained	for	the	Burkhardt	and	Brass	data.
As	you	might	expect,	the	correlations	with	time	1	(first	row)	decrease	from	left	to

right,	indicating	that	the	social	structure	is	increasingly	different	with	each	passing
time	period.	In	addition,	the	largest	correlations	for	any	time	period	are	usually	with
the	two	periods	on	either	side	of	it,	indicating	a	kind	of	orderly	change	from	period
to	 period.	 However,	 the	 change	 is	 not	 linear.	 A	 metric	 MDS	 of	 this	 correlation
matrix	 (Figure	 7.19)	 shows	 a	 gap	 between	 time	 2	 and	 time	 3,	 and	 another	 gap
between	time	4	and	time	5,	suggesting	periods	of	incremental	change	punctuated	by
instances	of	more	radical	change.



Matrix	 7.1	 	 	 Intercorrelations	 among	 the	 networks	 at	 each	 time	 period	 for	 the
Burkhardt	and	Brass	data.

To	see	how	the	network	changed	from	time	1	to	time	5,	we	can	simply	draw	the
two	networks.	Figures	7.20	and	7.21	present	the	networks	at	each	time	point	using	a
graph	layout	algorithm	and	showing	only	strong	ties.	As	we	can	see,	at	 time	1	the
network	shows	evidence	of	three	groups	(left,	bottom	right	and	top	right).	At	time	2,
the	 left	and	bottom	right	groups	are	still	separate	from	each	other,	but	 the	 top	 left
group	 seems	 to	 be	 in	 the	 process	 of	 being	 adopted	 by	 the	 other	 two	 groups.	 In
addition	 we	 can	 see	 individual	 changes	 in	 position.	 For	 example,	 node	 R53	 is	 a
central	figure	in	the	bottom	right	group	at	time	1,	but	becomes	an	isolate	by	time	5.

Figure	7.19	 	 	Correlations	among	 time	periods	 for	 the	Burkhardt	 and	Brass	data,
represented	via	metric	MDS.



Figure	7.20			Friendship	ties	at	time	1	for	the	Burkhardt	and	Brass	data.

Another	way	to	visualize	change	over	time	is	to	focus	on	the	change	in	an	actor ’s
position	in	the	network	over	some	period	instead	of	concentrating	on	changes	in	the
overall	 structure	 over	 time.	 This	 can	 be	 readily	 accomplished	 by	 stacking	 the
network	matrices	on	 top	of	one	another	and	 then	subjecting	 this	stacked	matrix	 to
correspondence	analysis.	Figure	7.22	shows	how	the	matrices	for	two	time	periods
can	be	stacked	on	top	of	one	another	(this	can	be	very	easily	done	using	the	‘Time
Stack’	utility	in	UCINET	under	the	Transform	menu).	The	data	consists	of	ratings	of
reported	interactions	(on	a	scale	from	0	to	10)	at	the	beginning	and	end	for	people
attending	a	workshop.
The	stacked	matrix	can	be	analyzed	using	correspondence	analysis	(see	Chapter

6)	in	order	to	visualize	changes	in	the	structural	position	of	each	of	the	actors	in	the
network	across	multiple	time	periods.	Figure	7.23	shows	the	changes	in	position	for
two	 time	 periods	 for	 reports	 of	 interaction	 for	 the	 workshop	 group.	 The	 figure
reveals	a	 tendency	for	members	of	 the	group	 to	move	closer	 to	one	another	over
time.	 The	 group	 appears	 to	 be	 becoming	more	 cohesive	 and	 in	 fact	 density	 does
increase	 between	 time	 1	 (5.90)	 and	 time	 2	 (6.13).	 Both	 Richard	 and	 Lisa,	 in
particular,	make	a	movement	from	the	group’s	periphery	to	its	core,	followed	to	a
smaller	extent	by	Lynn.



Figure	7.21			Friendship	ties	at	time	5	for	the	Burkhardt	and	Brass	data.

Figure	7.22			Matrices	(n	×	n)	for	two	time	periods	for	a	workshop	group	stacked
on	top	of	one	another	to	form	an	n	×	2n	matrix.	The	ratings	of	interaction	for	time	1
are	not	shaded	while	the	ratings	of	interaction	for	time	2	are	shaded.

Multiple	time	points	can	also	be	visualized	in	that	multiple	matrices	representing
time	 periods	 or	 interview	 waves	 can	 be	 stacked	 and	 then	 visualized	 using
correspondence	analysis.	Figure	7.24	 is	 a	graph	 showing	decision	co-occurrences
for	 Supreme	Court	 justices	 by	 year	 over	 a	 10-year	 period.	 The	 graph	 shows	 the
spatial	 location	of	each	of	 the	 justices	 in	each	of	 the	years.	Figure	7.25	 shows	 the



spatial	movement	 for	Rehnquist	 over	 the	 course	 of	 the	 10	 years.	What	 this	 graph
clearly	reveals	is	that	Rehnquist	himself	has	often	entered	what	one	might	think	of
as	swing	vote	spatial	territory	in	the	course	of	his	decision	behavior.	In	Figure	7.26
decision	blocks	 (i.e.,	 conservative,	 swing,	 liberal),	 as	 identified	by	media	 sources,
are	encompassed	by	convex	hulls.	Here	the	extreme	edges	of	each	of	the	blocks	can
be	 easily	 determined.	 For	 example,	 Scalia	 (SC1–10)	 over	 the	 10-year	 period
consistently	 defines	 the	 extremes	 of	 the	 conservatives,	 while	 Stevens	 (S1–10)
consistently	defines	the	extremes	of	the	liberals.	Although	Kennedy	and	O’Connor
were	considered	swing	justices,	there	is	a	definite	bias	toward	the	conservative	side
of	the	graph,	revealing	that	although	they	may	be	involved	in	swing	decisions	more
frequently	 than	 other	 justices,	 they	 still	 tended	 to	 lean	 in	 a	 more	 conservative
direction	across	the	10	years	of	decisions.

Figure	7.23			A	graph	of	the	changes	in	network	position	between	two	time	periods
using	correspondence	analysis.



Figure	7.24	 	 	 Stacked	 correspondence	 analysis	 of	 the	 co-occurrence	matrices	 for
the	10	years	of	voting	behavior	among	the	Supreme	Court	justices.

Figure	7.25	 	 	 Stacked	 correspondence	 analysis	 of	 the	 co-occurrence	matrices	 for
the	10	years	of	voting	behavior	among	the	Supreme	Court	justices	with	Renquist’s
spatial	movements	connected	over	time.



Figure	 7.26	 	 	 Stacked	 correspondence	 analysis	 of	 all	 time	 periods	 with
conservative,	 swing	 and	 liberal	 justices	 identified	 as	 determined	 from	 media
sources	with	members	encompassed	by	convex	hulls.

7.8	Exporting	visualizations

Most	network	visualization	programs	have	the	ability	 to	copy	visualizations	to	the
Clipboard,	which	 can	 then	be	pasted	 into	other	 applications.	 In	NetDraw,	pressing
Ctrl-C	will	do	it.	In	addition,	all	network	visualization	programs	provide	a	means	of
saving	 the	 finished	 visualization	 as	 a	 graphics	 file.	 In	 NetDraw,	 one	 can	 save
diagrams	in	a	variety	of	formats	including	jpeg	(.jpg),	bitmap	(.bmp)	and	metafile
(.emf).	 Jpegs	 are	 a	 common	 choice	 because	 they	 are	 fairly	 good	 quality	 and	 are
highly	 compressed,	 using	 up	 very	 little	 disk	 space.	 They	 are	 the	 format	 most
commonly	 used	 in	 digital	 cameras,	 and	 can	 be	 opened	 in	 virtually	 all	 graphics
programs.	However,	because	of	the	lossy	compression	scheme	they	use,	 jpeg	files
do	not	have	perfect	fidelity,	and	do	not	resize	well.	The	metafile	format	is	a	vector
graphics	 format	 (like	SVG)	which	stores	 instructions	 for	creating	a	picture	 rather



than	 a	 picture	 itself.	As	 a	 result,	 it	 can	 be	 redrawn	 at	 any	 resolution/size.	Not	 all
graphics	programs	can	read	metafiles,	but	all	Microsoft	Office	applications	can.
In	addition	to	saving	a	graphics	file,	NetDraw	allows	the	user	to	save	the	data	to	a

text	 file	 using	 a	 format	 called	 ‘VNA’	 (short	 for	 ‘Visual	Network	Analysis’).	 The
VNA	 format	 allows	 you	 to	 save	 both	 network	 and	 attribute	 information	 together,
and	also	visual	 information	such	as	 the	color	and	size	of	nodes	and	 lines.	This	 is
handy	 because	 it	 means	 the	 next	 time	 you	 start	 up	 NetDraw,	 you	 can	 open	 a
previously	saved	VNA	file	and	have	everything	 look	exactly	as	you	left	 it	 in	your
last	session.	This	can	save	a	lot	of	time.

7.9	Closing	comments

One	 of	 the	 most	 important	 constraints	 on	 the	 valid	 graphical	 representation	 of
social	networks	concerns	human	 limitations	of	perception.	There	has	been	a	great
deal	of	work	on	this	topic,	and	an	in-depth	discussion	was	beyond	the	scope	of	this
chapter.	 For	 a	 good	 review	of	 issues	 concerning	 human	 color	 perception	 and	 the
communication	 of	 network	 graphical	 information	 see	 Krempel	 (2002),	 or	 for	 a
more	 general	 review	 see	Munzner	 (2000).	 For	 further	 reading	 on	 the	 history	 of
network	visualization	a	good	source	is	Freeman	(2000).	In	this	chapter	we	discussed
a	number	of	ways	 in	which	network	structural	and	compositional	 information	can
be	communicated	in	network	graphs	through	the	visual	manipulation	of	the	various
properties	of	nodes	and	edges	and	their	spatial	relations.	In	addition,	we	examined
various	means	for	reducing	the	complexity	of	network	structures	through	methods
for	 reducing	 the	 graphical	 complexity	 of	 networks	 using	 such	 mechanisms	 as
turning	on	and	off	nodes,	ties,	clusters,	subgroups	or	components	in	order	to	reveal
potentially	hidden	 structural	properties.	More	on	 this	 can	be	 found	 in	Chapter	 14,
which	discusses	strategies	for	dealing	with	large	networks.

7.10	Summary

The	ability	 to	visualize	a	 social	network	 is	one	of	 the	attractive	 features	of	 social
network	analysis.	When	done	correctly,	visualization	allows	the	researcher	to	obtain
a	simple	qualitative	understanding	of	the	network	structure.	The	use	of	good	layouts
to	 emphasize	 properties	 of	 the	 network	 is	 key,	 and	 graph	 layout	 algorithms	 are
highly	 effective	 and	widely	 used.	 In	 addition,	 the	 use	 of	 shape,	 size	 and	 color	 to
capture	 nodal	 attribute	 properties	 can	 further	 enhance	 the	 effectiveness	 of	 any
visualization.	 In	 a	 similar	 way,	 color,	 thickness	 and	 line	 style	 can	 be	 used	 to



emphasize	properties	of	edges.	We	do	not	always	want	 to	view	the	whole	network
(particularly	if	it	 is	large	or	complex),	so	we	often	filter	nodes	or	edges	to	reveal
portions	of	the	network	which	are	of	particular	interest.	Changes	over	time	provide
additional	 challenges,	 but	 these	 can	 be	 addressed	 by	 using	 techniques	 such	 as
stacked	correspondence	analysis.
	

1	 Other	 programs	 specializing	 in	 network	 visualization	 are	 Visone
(http://visone.info/html/about.html)	 and	 Gephi	 (http://gephi.org/).	 In	 addition,	 a
number	 of	 other	 network	 analysis	 programs	 include	 powerful	 visualization
capabilities,	such	as	Pajek	and	NodeXL.
2	Some	research	has	suggested	that	no	more	than	six	colors	should	be	used	in	any
network	 diagram	 (Derefeldt	 and	Marmolin	 1981)	 although	 others	 have	 suggested
the	maximum	may	be	more	like	nine	(Smallman	and	Boynton	1990).	Much	of	this
will	depend	on	the	size	of	the	network,	both	in	terms	of	the	number	of	nodes	and	the
number	of	ties.
3	 To	 reproduce	 these	 diagrams	 using	 UCINET,	 open	 the	 Affiliations	 matrix	 in
NetDraw,	then	use	the	Ties	window	to	raise	the	cut-off	level	by	1	unit.	Then	press	the
layout	 button	 (a	 lightning	 bolt	with	 an	 equals	 sign).	Repeat	 several	 times	 until	 no
more	ties	are	visible.

http://visone.info/html/about.html
http://gephi.org/


8

Testing	hypotheses
	

Learning	Outcomes
	

1.	 Comprehend	the	reasons	for	using,	and	principles	of,	permutation	tests
2.	 Formulate	testable	hypotheses	at	the	dyadic,	monadic	and	whole-network	level
3.	 Understand	when	SIENA	and	exponential	random	graph	models	may	be

appropriate

8.1	Introduction

Padgett	 and	 Ansell	 (1993)	 collected	 data	 on	 the	 relations	 between	 Florentine
families	 during	 the	Renaissance.	One	 social	 relation	 they	 recorded	was	marriage
ties	between	families.	Another	one	was	business	ties	among	the	same	set	of	families.
An	 obvious	 hypothesis	 for	 an	 economic	 sociologist	 might	 be	 that	 economic
transactions	are	embedded	in	social	relations,	so	that	those	families	doing	business
with	 each	 other	will	 also	 tend	 to	 have	marriage	 ties	with	 one	 another.	One	might
even	 speculate	 that	 families	 of	 this	 time	 strategically	 intermarried	 in	 order	 to
facilitate	future	business	ties	(not	to	mention	political	coordination).
How	would	we	 test	 this?	 Essentially,	 we	 have	 two	 adjacency	matrices,	 one	 for

marriage	 ties	 and	 one	 for	 business	 ties,	 and	we	would	 like	 to	 correlate	 them.	We
cannot	do	this	in	a	standard	statistical	package	for	two	reasons.	First,	programs	like
SPSS	and	Stata	are	set	up	to	correlate	vectors,	not	matrices.	This	is	not	too	serious	a
problem,	however,	since	we	could	just	reshape	the	matrices	so	that	all	the	values	in
each	matrix	were	 lined	up	 in	 a	 single	 column	with	N	 ×	N	values.1	We	 could	 then
correlate	the	columns	corresponding	to	each	matrix.	Second	–	and	this	is	a	serious
problem	–	the	significance	tests	used	in	standard	statistical	packages	make	a	number
of	 assumptions	 about	 the	 data	 which	 are	 violated	 by	 network	 data.	 For	 example,
standard	 inferential	 tests	assume	 that	 the	observations	are	statistically	 independent,
which,	in	the	case	of	adjacency	matrices,	they	are	not.	To	see	this,	consider	that	all



the	 values	 along	 one	 row	 of	 an	 adjacency	matrix	 pertain	 to	 a	 single	 node.	 If	 that
node	has	 a	 special	 quality,	 such	 as	 being	very	 antisocial,	 it	will	 affect	 all	 of	 their
relations	with	others,	 introducing	a	 lack	of	 independence	among	all	 those	cells	 in
the	row.	Another	typical	assumption	of	classical	tests	is	that	the	variables	are	drawn
from	a	population	with	a	particular	distribution,	such	as	a	normal	distribution.	Often
times	in	network	data,	the	distribution	of	the	population	variables	is	not	normal	or	is
simply	unknown.	Moreover,	the	data	is	probably	not	a	random	sample,	and	may	not
be	 a	 sample	 at	 all,	 but	 rather	 a	 population	 (e.g.,	 you	 are	 studying	 the	 pattern	 of
collaboration	among	all	film	studios	in	the	world).
So	 we	 need	 special	 methods.	 One	 approach	 is	 to	 develop	 statistical	 models

specifically	designed	for	studying	 the	distribution	of	 ties	 in	a	network.	This	 is	 the
approach	 taken	by	 those	working	on	exponential	 random	graph	models	 (ERGMs)
and	actor-oriented	 longitudinal	models,	as	exemplified	by	 the	SIENA	model.	Both
of	these	are	complex	subjects	in	their	own	right	and	a	detailed	discussion	is	beyond
the	scope	of	this	book.	However,	we	will	provide	a	highly	simplified	introduction	to
give	a	flavor	of	what	is	involved.
An	alternative	approach	is	to	use	the	generic	methodology	of	randomization	tests

(also	 called	permutation	 tests)	 to	modify	 standard	methods	 like	 regression.	These
methods	are	easy	to	use	and	interpret,	and	can	be	customized	for	different	research
questions.	UCINET	provides	a	number	of	techniques	of	this	type,	and	we	begin	our
discussion	with	them.

8.2	Permutation	tests

Classical	 significance	 tests	 are	 based	 on	 sampling	 theory	 and	 have	 the	 following
logic.	 You	 measure	 a	 set	 of	 variables	 (say,	 two	 variables)	 on	 a	 sample	 of	 cases
drawn	 via	 a	 probability	 sample	 from	 a	 population.	 You	 are	 interested	 in	 the
relationship	between	the	variables,	as	measured,	say,	by	a	correlation	coefficient.	So
you	correlate	the	variables	using	your	sample	data,	and	get	a	value	like	0.384.	The
classical	 significance	 test	 then	 tells	 you	 the	 probability	 of	 obtaining	 a	 correlation
that	 large	 given	 that	 in	 the	 population	 the	 variables	 are	 actually	 independent
(correlation	 zero).	When	 this	 probability	 is	 really	 low	 (less	 than	 0.05),	we	 call	 it
significant	 and	 are	 willing	 to	 claim	 that	 the	 variables	 are	 actually	 related	 in	 the
population,	and	not	just	in	your	sample.	When	the	probability	is	higher,	we	feel	we
cannot	reject	the	null	hypothesis	that	the	variables	are	independent	in	the	population
and	just	happen	to	be	correlated	in	the	sample.	Note	that	if	you	have	a	biased	sample,
or	you	do	not	have	a	sample	at	all,	it	does	not	make	sense	to	use	the	classical	test.
The	 logic	 of	 randomization	 tests	 is	 different	 and	 does	 not	 involve	 samples,	 at

least	 not	 in	 the	 ordinary	 sense.	 Suppose	 you	 believe	 that	 tall	 kids	 are	 favored	 by



your	particular	math	teacher	and	as	a	result	they	learn	more	math	than	short	kids.	So
you	think	height	and	math	scores	in	this	teacher ’s	class	will	be	correlated.	You	have
the	teacher	give	all	the	kids	a	math	test,	measure	their	height,	and	then	correlate	the
two	variables.	You	get	a	correlation	of	0.384.	Hypothesis	confirmed?	In	the	world	of
classical	 statistics	 we	 would	 say	 yes,	 because	 you	 have	 a	 population,	 and	 the
correlation	is	not	zero,	which	is	what	you	wanted	to	know.	But	let	us	think	about	this
a	little	more.	Just	for	fun,	instead	of	actually	giving	the	math	test,	suppose	you	write
down	a	set	of	math	scores	on	slips	of	paper,	and	then	have	each	kid	select	his	or	her
math	score	by	drawing	blindly	from	a	hat.	Now,	you	know	that	in	this	experiment	a
kid’s	 math	 score	 and	 height	 are	 totally	 independent	 because	 it	 was	 completely
arbitrary	who	got	what	score.	And	yet,	could	it	not	happen,	by	chance	alone,	all	the
high	 scores	 happened	 to	 go	 to	 the	 tall	 people?	 It	 may	 be	 unlikely,	 but	 it	 could
happen.	In	fact,	there	are	lots	of	ways	(permutations)	that	scores	could	be	matched	to
kids	 such	 that	 the	 correlation	 between	 height	 and	 score	 was	 positive	 (and	 just	 as
many	such	that	the	correlation	was	negative).	The	question	is,	what	proportion	of	all
the	ways	the	scores	could	have	come	out	would	result	in	a	correlation	as	large	as	the
one	we	actually	observed	 (the	0.384)?	 In	short,	what	are	 the	chances	of	observing
such	 a	 large	 correlation	 even	 when	 the	 values	 of	 the	 variables	 are	 assigned
independently	of	each	other?	If	the	probability	is	high,	say,	20%,	we	probably	do	not
want	to	conclude	that	the	teacher	is	biased	toward	tall	kids.	In	other	words,	even	in	a
population,	 we	 still	 want	 a	 statistical	 test	 in	 order	 to	 guard	 against	 spurious
correlations.
The	permutation	test	essentially	calculates	all	the	ways	that	the	experiment	could

have	come	out	given	that	scores	were	actually	independent	of	height,	and	counts	the
proportion	 of	 random	 assignments	 yielding	 a	 correlation	 as	 large	 as	 the	 one
actually	observed.	This	is	the	‘p-value’	or	significance	of	the	test.	The	general	logic
is	 that	 one	 wants	 to	 compare	 the	 observed	 correlation	 against	 the	 distribution	 of
correlations	 that	one	could	obtain	 if	 the	 two	variables	were	 in	 fact	 independent	of
each	other.
In	the	following	sections	we	consider	how	randomization	tests	can	be	used	to	test

a	 variety	 of	 network	 hypotheses.	 Before	 we	 start,	 however,	 it	 is	 important	 to
remember	 that	 we	 may	 be	 interested	 in	 testing	 hypotheses	 at	 various	 levels	 of
analysis.	 For	 example,	 one	 kind	 of	 hypothesis	 is	 the	 node-level	 or	 monadic
hypothesis,	such	as	the	hypothesis	that	more	central	people	tend	to	be	happier.	This
kind	of	hypothesis	closely	resembles	the	hypotheses	you	encounter	in	non-network
data	analysis.	The	cases	are	single	nodes	(e.g.,	persons),	and	basically	you	have	one
characteristic	of	each	node	(e.g.,	centrality)	and	another	characteristic	of	each	node
(e.g.,	test	score),	and	you	want	to	correlate	them.	That	is	just	a	matter	of	correlating
two	vectors	 –	 two	 columns	 of	 data	 –	which	 seems	 simple	 enough,	 but	 as	we	will
explain,	there	are	a	few	subtleties	involved.



Another	 kind	 of	 hypothesis	 is	 the	 dyadic	 one	 that	 we	 opened	 the	 chapter	 with.
Here,	you	are	hypothesizing	that	if	a	pair	of	persons	(or,	in	the	example,	families)
has	a	certain	kind	of	relationship,	it	is	more	likely	they	will	also	have	another	kind
of	relationship.	For	instance,	you	might	expect	that	the	shorter	the	distance	between
people’s	offices	in	a	building,	 the	more	they	communicate	over	time.	So	the	cases
are	 pairs	 of	 persons	 (hence	 the	 label	 ‘dyadic’),	 normally	 organized	 as	 N	 ×	 N
matrices,	and	you	want	to	correlate	the	two	matrices.	Clearly,	this	is	not	something
you	would	ordinarily	do	in	a	traditional	statistics	package.
We	may	also	want	 to	 test	 a	hypothesis	 in	which	one	variable	 is	dyadic,	 such	 as

friendship,	and	 the	other	 is	monadic,	 such	as	gender.	The	 research	question	being
asked	might	be	something	like	‘does	the	gender	of	each	person	affect	who	is	friends
with	whom?’.	In	this	question,	the	monadic	variable	is	on	the	independent	side	and
the	 dyadic	 variable	 is	 on	 the	 dependent	 side.	Another	 research	 question	might	 be
‘are	people’s	attitudes	affected	by	who	they	interact	with?’.	Here	it	is	the	independent
variable	that	is	dyadic	and	it	is	the	dependent	variable	that	is	monadic.	As	we	shall
see,	we	typically	test	these	kinds	of	hypotheses	by	rephrasing	them	as	purely	dyadic
hypotheses.
Finally,	another	kind	of	hypothesis	is	a	group-	or	network-level	hypothesis.	For

instance,	 suppose	you	have	asked	100	different	 teams	 to	solve	a	problem	and	you
have	measured	how	long	it	takes	them	to	solve	it.	Time-to-solution	is	the	dependent
variable.	 The	 independent	 variable	 is	 a	 measure	 of	 some	 aspect	 of	 the	 social
structure	of	each	team,	such	as	the	density	of	 trust	 ties	among	team	members.	The
data	file	looks	just	like	the	data	file	for	node-level	hypotheses,	except	the	cases	here
are	entire	networks	rather	than	individual	nodes.
We	now	consider	how	to	test	each	of	the	four	kinds	of	hypotheses,	starting	with

the	one	involving	the	most	numerous	and	least	aggregate	cases	(dyadic)	and	ending
with	 the	 one	 involving	 the	 least	 numerous	 and	 most	 aggregate	 cases	 (whole
networks).

8.3	Dyadic	hypotheses

Network	 analysis	 packages	 such	 as	 UCINET	 provide	 a	 technique	 called	 QAP
correlation	 that	 is	 designed	 to	 correlate	 whole	 matrices.	 The	 QAP	 technique
correlates	the	two	matrices	by	effectively	reshaping	them	into	two	long	columns	as
described	above	and	calculating	an	ordinary	measure	of	statistical	association	such
as	Pearson’s	r.	We	call	this	the	‘observed’	correlation.	To	calculate	the	significance
of	 the	observed	 correlation,	 the	method	 compares	 the	observed	 correlation	 to	 the
correlations	 between	 thousands	 of	 pairs	 of	 matrices	 that	 are	 just	 like	 the	 data
matrices,	but	are	known	to	be	independent	of	each	other.	To	construct	a	p-value,	 it



simply	counts	the	proportion	of	these	correlations	among	independent	matrices	that
were	as	large	as	the	observed	correlation.	As	elsewhere,	we	typically	consider	a	p-
value	of	 less	 than	5%	to	be	significant	 (i.e.,	 supporting	 the	hypothesis	 that	 the	 two
matrices	are	related).
To	generate	pairs	of	matrices	that	are	just	like	our	data	matrices	and	yet	known	to

be	independent	of	each	other,	we	use	a	simple	trick.	We	take	one	of	the	data	matrices
and	 randomly	 rearrange	 its	 rows	 (and	 matching	 columns).	 Because	 this	 is	 done
randomly,	 we	 know	 that	 the	 resulting	matrix	 is	 independent	 of	 the	 data	 matrix	 it
came	from.	And	because	the	new	matrix	is	just	a	rearrangement	of	the	old,	it	has	all
the	same	properties	of	the	original:	the	same	mean,	the	same	standard	deviation,	the
same	 number	 of	 2s,	 the	 same	 number	 of	 cliques,	 etc.	 In	 addition,	 because	we	 are
rearranging	 whole	 rows	 and	 columns	 rather	 than	 individual	 cells,	 more	 subtle
properties	 of	 the	 matrices	 are	 also	 preserved.	 For	 example,	 suppose	 one	 of	 the
matrices	 shows	 the	 physical	 distance	 between	 people’s	 homes.	 A	 property	 of
physical	distance	is	that	if	the	distance	from	i	to	j	is	7,	and	the	distance	from	j	to	k	is
10,	then	the	distance	from	i	to	k	is	constrained	to	lie	between	3	and	17.	That	means
that	in	the	matrix,	the	(i,	j),	(j,	k)	and	(i,	k)	cells	are	not	 independent	of	each	other.
Given	 the	 values	 of	 any	 two	 of	 them,	 the	 value	 of	 the	 third	 cell	 cannot	 be	 just
anything.	When	we	permute	the	rows	and	columns	of	such	a	matrix,	these	kinds	of
autocorrelational	 properties	 are	 preserved,	 so	 when	 we	 compare	 the	 observed
correlation	 against	 our	 distribution	 of	 correlations	 we	 can	 be	 sure	 we	 are
comparing	apples	with	apples.
To	illustrate	QAP	correlation,	we	run	it	on	the	Padgett	and	Ansell	data	described

in	the	introduction.	As	shown	in	Figure	8.1,	the	correlation	between	the	network	of
marriage	ties	and	the	network	of	business	ties	is	0.372,	and	it	is	highly	significant	(p
=	0.0007).	The	results	support	the	hypothesis	that	the	two	kinds	of	ties	are	related.
One	thing	to	note	in	the	output	is	that	50,000	permutations	were	used	in	this	run.	It

is	important	to	run	a	large	number	like	this	in	order	to	stabilize	the	p-value.	Since
the	permutations	are	random,	if	we	only	used	a	handful	of	them,	each	time	we	ran
the	 program	we	would	 get	 a	 slightly	 different	p-value	 (but	 the	 correlation	would
always	be	the	same).	The	larger	the	sample	of	permutations,	the	less	the	variability
in	p-values.

8.3.1	QAP	regression
The	 relationship	 between	 QAP	 regression	 (also	 known	 as	 MR-QAP)	 and	 QAP
correlation	 is	 the	 same	 as	 between	 their	 analogues	 in	 ordinary	 statistics.	 QAP
regression	allows	you	to	model	the	values	of	a	dyadic	dependent	variable	(such	as
business	ties)	using	multiple	independent	variables	(such	as	marriage	ties	and	some
other	dyadic	variable,	such	as	friendship	ties	or	physical	proximity	of	homes).



For	 example,	 suppose	we	are	 interested	 in	 advice-seeking	within	organizations.
We	 can	 imagine	 that	 a	 person	 does	 not	 seek	 advice	 randomly	 from	 others.	 One
factor	 that	 may	 influence	 who	 one	 seeks	 advice	 from	 is	 the	 existence	 of	 prior
friendly	relations	–	one	is	less	likely	to	ask	advice	from	those	one	does	not	know	or
does	not	 like.	Another	 factor	might	 be	 structural	 position	–	whether	 they	 are	 in	 a
position	 to	 know	 the	 answer.	 For	 example,	 we	might	 predict	 that	 employees	 will
often	 seek	 advice	 from	 those	 to	 whom	 they	 report.	 Krackhardt	 (1987)	 collected
advice,	friendship	and	reporting	relationships	among	a	set	of	managers	 in	a	high-
tech	 organization,	 and	 this	 data	 is	 available	 in	 UCINET,	 allowing	 us	 to	 test	 our
hypotheses.

Figure	8.1			Results	of	QAP	correlation.

To	do	this,	we	run	one	of	the	QAP	multiple	regression	routines	in	UCINET.	The
result	is	shown	in	Figure	8.2.	The	R-square	value	of	6.3%	suggests	that	neither	who
one	reports	to	nor	friendship	is	a	major	factor	in	determining	who	a	person	decides
to	seek	advice	from.	In	other	words,	 there	are	other	more	important	variables	that
we	 have	 not	 measured,	 perhaps	 including	 the	 amount	 of	 expertise	 that	 the	 other
person	has	relative	to	the	person	looking	for	advice.	Still,	the	‘reports	to’	relation	is
significant	(p	<	0.001),	so	it	seems	that	it	is	at	least	a	piece	of	the	puzzle.	Friendship



is	 interestingly	 not	 significant:	 this	 is	 not	 quite	 in	 line	with	 Casciaro	 and	 Lobo’s
(2005)	 finding	 that	people	prefer	 to	 seek	advice	 from	people	 they	 like	even	when
there	are	more	qualified	–	but	less	nice	–	people	available.

Figure	8.2			Results	of	MR-QAP	regression.

It	 should	be	noted	 that,	 in	 our	 example,	 the	dependent	 variable	 is	 binary.	Using
ordinary	 regression	 to	 regress	a	binary	variable	would	be	unthinkable	 if	we	were
not	using	permutation	methods	 to	calculate	significance.	Since	we	are,	 though,	 the
p-values	on	each	coefficient	are	valid	and	interpretable.	But	it	is	important	to	keep	in
mind	that	the	regression	coefficients	mean	what	they	mean	in	ordinary	least	squares
regression:	they	have	not	been	magically	transformed	into,	say,	odds,	such	that	you
could	say	that	an	increase	in	one	unit	of	the	X	variable	 is	associated	with	a	certain
increase	 in	 the	odds	of	 that	case	being	a	1	on	the	dependent	variable.	To	have	this
interpretation,	we	would	 need	 to	 have	 run	 a	 logistic	 regression	QAP	 (LR-QAP).2
This	 can	also	be	done	 in	UCINET,	 although	 it	 is	more	 time-consuming	 than	MR-
QAP.
As	 another	 example	 of	 how	 QAP	 regression	 can	 be	 used,	 we	 examine	 the



Newcomb	 (1961)	 fraternity	 data	 in	UCINET.	 This	 dataset	 consists	 of	 15	matrices
recording	 weekly	 sociometric	 preference	 rankings	 among	 17	 men	 attending	 the
University	of	Michigan	 in	 the	fall	of	1956.	The	men	were	recruited	 to	 live	 in	off-
campus	(fraternity)	housing,	rented	for	 them	as	part	of	 the	Michigan	Group	Study
Project	supervised	by	Theodore	Newcomb	from	1953	to	1956.	All	were	incoming
transfer	 students	with	 no	 prior	 acquaintance.	We	 shall	 examine	 the	 first	 two	 time
periods	 to	 study	 reciprocity	 and	 transitivity.	 We	 are	 interested	 to	 know	 if	 new
friendship	ties	formed	in	Week	1	are	a	result	of	reciprocity	and/or	transitivity	of	ties
formed	in	week	0.	One	way	to	do	this	is	to	construct	the	dependent	variable	as	the
cell-by-cell	difference	between	the	matrix	for	Week	1	(called	NEWC1)	and	week	0
(called	NEWC0).	Alternatively,	we	can	simply	predict	NEWC1	and	include	NEWC0
as	a	 control	variable.	 In	order	 to	 illustrate	 the	LR-QAP	procedure,	we	choose	 the
second	approach	and	also	dichotomize	the	matrices	so	that	the	(i,	j)	entry	for	each
matrix	 equals	 1	 if	 person	 i	 ranked	 person	 j	 among	 their	 top	 three	 choices	 and	 0
otherwise.	We	refer	to	the	dichotomized	matrices	as	NEWC0D	and	NEWC1D.
We	 now	 form	 two	 further	 matrices	 from	 NEWC0D.	 The	 first	 is	 simply	 the

transpose	 of	 NEWC0D	 which,	 for	 ease	 of	 interpretation	 later,	 we	 shall	 call
NEWC0D-Reciprocity.	 A	 value	 of	 1	 for	 cell	 (i,	 j)	 of	 the	 transpose	 of	 NEWC0D
indicates	that	 in	Week	0,	 i	 received	a	nomination	from	person	 j.	To	 the	extent	 that
people	 tend	 to	 reciprocate	 incoming	 ties,	 we	 should	 see	 that	 a	 1	 in	 NEWC0D-
Reciprocity	is	matched	by	a	1	in	the	corresponding	cell	of	NEWC1D.
Our	second	matrix	will	be	 the	friends	of	 friends	matrix	 that	has	a	1	 in	 the	(i,	 j)

entry	if	actor	j	is	2	steps	or	less	away	from	actor	i	by	the	shortest	path.	We	name	this
matrix	NEWC0D-Transitivity.	To	 the	 extent	 that	 one	 tends	 to	become	 friends	with
one’s	 friends’	 friends,	 we	 should	 see	 that	 a	 1	 in	 the	 (i,	 j)	 cell	 of	 NEWC0D-
Transitivity	should	be	matched	to	a	1	in	the	(i,	j)	cell	of	NEWC1D.	The	transitivity
martrix	also	has	direct	 ties,	but	 these	are	controlled	for	by	 including	NEWC0D	in
the	regression.
We	 then	 run	 a	QAP-based	 logistic	 regression	using	NEWC1D	as	 the	dependent

variable,	 and	 NEWC0D,	 NEWC0D-Reciprocity,	 and	 NEWC0D-Transitivity	 as	 the
independent	variables.	The	results	are	shown	in	Figure	8.3.	We	can	see	from	the	p-
values	in	the	output	(in	the	column	labeled	‘Sig’)	that	NEWC0D	is	significant,	which
is	what	we	would	expect	since	it	would	be	surprising	if	the	social	structure	at	time	T
was	 wholly	 unrelated	 to	 the	 social	 structure	 a	 week	 earlier.	 The	 reciprocity
parameter	 is	 positive	 and	 significant	 (p	 =	 0.008),	 indicating	 a	 greater-than-chance
tendency	 to	 reciprocate	 ties,	 but	 the	 transitivity	 parameter	 is	 not	 significant	 (p	 =
0.071),	indicating	no	particular	tendency	to	become	friends	with	friends	of	friends.



Figure	8.3			Logistic	regression	results.

8.4	Mixed	dyadic–monadic	hypotheses

In	 this	 section	we	consider	ways	of	 relating	node	attributes	 to	 relational	data.	For
example,	when	we	look	at	the	diagram	in	Figure	8.4,	in	which	gender	is	indicated	by
the	 shape	of	 the	 node,	 it	 is	 hard	 to	 avoid	 the	 conclusion	 that	 the	 pattern	 of	 ties	 is
related	 to	 gender.	 Specifically,	 there	 are	more	 ties	 between	members	 of	 the	 same
gender	than	you	would	expect	by	chance.	It	would	appear	that	actors	have	a	tendency
to	interact	with	people	of	the	same	gender	as	themselves,	a	phenomenon	known	as
‘homophily’.	Homophily	is	an	instance	of	a	larger	class	of	frequently	hypothesized
social	processes	known	as	‘selection’,	in	which	actors	choose	other	actors	based	on
attributes	of	those	actors.



Figure	8.4	 	 	Campnet	 dataset	 showing	 top	 three	 choices	 among	 a	 set	 of	men	 and
women.

Another	common	type	of	hypothesis	that	links	dyadic	data	with	monadic	attributes
is	 the	diffusion	or	 influence	hypothesis.	Diffusion	 is	 the	 idea	 that	people’s	beliefs,
attitudes	 and	 practices	 come	 about	 in	 part	 because	 of	 interaction	with	 others	who
already	have	those	beliefs.	So	the	fact	that	I	own	an	iPhone	may	be	in	part	due	to	the
fact	that	my	friend	has	one.	I	am	more	likely	to	have	conservative	political	beliefs	if
everyone	around	me	has	conservative	beliefs.
Both	 diffusion	 and	 selection	 hypotheses	 relate	 a	 dyadic	 variable	 (the	 network)

with	a	monadic	variable	(the	node	attribute).	The	difference	between	diffusion	and
selection	 hypotheses	 is	 just	 the	 direction	 of	 causality.	 In	 diffusion,	 the	 dyadic
variable	 causes	 the	 monadic	 variable,	 and	 in	 the	 selection	 the	 monadic	 variable
causes	the	dyadic	variable.	We	should	note	that,	if	the	data	is	cross-sectional	rather
than	longitudinal,	we	will	not	normally	be	able	 to	distinguish	empirically	between
diffusion	and	selection,	although	in	 the	case	of	Figure	8.4	we	 tend	 to	be	confident
that	it	is	not	a	case	of	gender	diffusion	but	rather	people	selecting	friends	based	on
gender.
The	 standard	 approach	 to	 testing	 the	 association	between	a	node	 attribute	 and	 a

dyadic	 relation	 is	 to	 convert	 the	 problem	 into	 a	 purely	 dyadic	 hypothesis	 by
constructing	 a	 dyadic	 variable	 from	 the	 node	 attribute.	 Different	 techniques	 are
needed	 depending	 on	 whether	 the	 attribute	 is	 categorical,	 such	 as	 gender	 or
department,	or	continuous,	such	as	age	or	wealth.

8.4.1	Continuous	attributes



In	 traditional	 bureaucracies,	 we	 expect	 that	 employees	 have	 predictable	 career
trajectories	in	which	they	move	to	higher	and	higher	levels	over	time.	As	such,	we
expect	managers	to	be	older	(in	terms	of	years	of	service	to	the	organization)	than
the	 people	 who	 report	 to	 them.	 In	 modern	 high-tech	 organizations,	 however,	 we
expect	more	 fluid	career	 trajectories	based	more	on	competence	 than	on	years	of
service.	Hence,	in	this	kind	of	organization	we	do	not	necessarily	expect	employees
to	be	younger	(in	years	of	service)	than	their	bosses.
One	way	to	test	this	idea	in	the	organization	studied	by	Krackhardt	(1987)	would

be	 to	construct	a	node-by-node	matrix	of	differences	 in	years	of	service,	and	 then
use	 QAP	 correlation	 to	 correlate	 this	 matrix	 with	 the	 ‘reports	 to’	 matrix.	 As
discussed	 in	 Chapter	 5,	 in	 UCINET	 we	 can	 construct	 a	 node-by-node	 matrix	 of
differences	 in	 years	 of	 service	 using	 the	Data|Attribute-to-Matrix	 procedure.	 This
creates	a	matrix	in	which	the	(i,	j)	cell	gives	the	tenure	of	node	j	subtracted	from	the
tenure	of	node	i	–	that	is,	it	is	the	row	node’s	value	minus	the	column	node’s	value.
Matrix	8.1	 shows	 the	 node-level	 age	 variable,	 along	with	 the	 dyadic	 difference	 in
age	matrix	computed	by	UCINET.

Matrix	8.1	 	 	Age	of	 each	node	 (left)	 and	differences	 in	 ages	between	all	pairs	of
nodes	(right).

The	‘reports	to’	matrix	is	arranged	such	that	a	1	in	the	(i,	j)	cell	indicates	that	the
row	 person	 reports	 to	 the	 column	 person.	 Hence,	 if	 the	 organization	 were	 a
traditional	bureaucracy,	we	would	expect	a	negative	correlation	between	this	matrix
and	the	age-difference	matrix,	since	the	row	person	should	have	a	smaller	number
of	years	of	service	than	the	column	person.	But	since	the	organization	is	a	modern
high-tech	company,	we	are	actually	expecting	no	correlation.	The	result	is	shown	in
Figure	8.5	The	correlation	is	negative,	but	it	 is	not	significant	(r	=	0.0645),	 just	as
we	expected.
However,	 there	 are	 a	 couple	 of	 problems	 with	 our	 analysis.	 First	 of	 all,	 it	 is



always	difficult	to	test	a	hypothesis	of	no	relationship,	because	if	you	do	observe	no
relationship	 it	could	be	simply	because	your	statistical	 test	 lacks	power	(e.g.,	your
sample	 size	 is	 too	 small).	 Second,	 our	 test	 implicitly	 assumes	 that	 every	 person
could	 potentially	 report	 to	 anyone	 older	 than	 themselves.	 But	 our	 common-sense
knowledge	of	the	‘reports	to’	relation	tells	us	that	each	person	only	reports	to	one
manager.	This	creates	a	lot	of	cases	where	A	is	younger	than	B,	but	A	fails	to	report
to	them.	A	better	test	would	examine	just	pairs	of	nodes	in	which	one	reports	to	the
other,	and	then	test	whether	age	difference	is	correlated	with	who	reports	to	whom.
We	can	do	this	by	placing	missing	values	for	all	cells	in	which	neither	party	reports
to	the	other.	When	we	do	this	and	rerun	the	analysis,	we	get	a	stronger	correlation
of	–0.320,	but	 the	p-value	 is	0.147,	which	 is	non-significant.	 In	 this	company,	who
you	report	to	is	simply	not	a	function	of	relative	age.

Figure	8.5			QAP	correlation	between	age	difference	and	who	reports	to	whom.

8.4.2	Categorical	attributes
Borgatti	 et	 al.	 (2012)	 collected	 ties	 among	participants	 in	 a	 3-week	workshop.	As
noted	earlier,	a	visual	display	of	the	Campnet	dataset	seems	to	suggest	 that	gender
affects	 who	 interacts	 with	 whom	 (see	 Figure	 8.4).	 However,	 the	 human	 brain	 is
notorious	 for	 seeing	 patterns	 and	 focusing	 on	 confirmatory	 evidence	 while
ignoring	 contradictory	 data.	 Therefore,	 we	 would	 like	 to	 statistically	 test	 this
homophily	hypothesis.
An	 approach	 that	 is	 closely	 parallel	 to	 the	 way	 we	 handled	 age	 earlier	 is	 to

construct	a	node-by-node	matrix	in	which	the	(i,	j)	cell	is	1	if	nodes	i	and	j	belong	to
the	same	gender,	and	0	if	they	belong	to	different	genders.	In	UCINET	this	is	done
using	 the	 same	 Data|Attribute-to-Matrix	 procedure	 we	 used	 for	 continuous
attributes,	but	 selecting	 the	 ‘Exact	matches’	option	 instead	of	 ‘Difference’.	We	can
then	use	QAP	correlation	to	correlate	the	matrix	of	actual	network	ties	with	the	‘is
the	same	gender ’	matrix.	The	result	(not	shown)	is	a	strong	correlation	of	0.33	with
a	p-value	of	0.0006,	indicating	support	for	the	homophily	hypothesis.
We	should	note,	though,	that	we	got	a	little	lucky	in	this	example.	The	independent

variable,	 ‘same	gender ’,	 is	a	 symmetric	matrix	–	 if	 I	am	 the	same	gender	as	you,
you	must	be	 the	 same	gender	 as	me.	Yet	 the	dependent	variable	 is	 not	 symmetric.
This	data	is	of	the	forced	choice	type	in	which	each	person	lists	the	top	three	people



they	interact	with.	This	tends	to	force	asymmetry	because	a	popular	person	will	be
listed	 by	 many	 more	 than	 three	 others,	 yet	 the	 respondent	 is	 only	 allowed	 to
reciprocate	 three	 of	 these.	 Further,	 there	 is	 no	 way	 for	 a	 symmetric	 independent
variable	to	perfectly	predict	a	non-symmetric	dependent	variable	(this	is	handled	by
the	QAP	significance	test,	but	the	R-square	value	may	be	misleadingly	low).	In	this
case,	it	might	make	more	sense	to	symmetrize	the	Campnet	matrix	via	the	maximum
method,	which	means	that	a	tie	is	said	to	exist	between	two	nodes	if	either	lists	the
other	 as	 one	 of	 their	 top	 three	 interactors.	 If	we	 take	 this	 approach	 and	 rerun	 the
correlation,	we	obtain	a	correlation	that	is	a	little	bit	higher	at	0.352,	and	of	course
still	significant.

Figure	8.6			QAP	correlation	with	symmetrized	Campnet	data.

A	 node-level	 hypothesis	 is	 one	 in	 which	 the	 variables	 are	 characteristics	 of
individual	 nodes,	 such	 as	persons.	For	 example,	we	might	 investigate	whether	 the
number	of	top	management	friends	a	person	has	predicts	the	size	of	her	bonus	at	the
end	of	the	year.	In	some	ways,	this	is	an	easy	one:	just	run	an	ordinary	regression.
Indeed,	 this	 is	 the	way	most	hypotheses	of	 this	 type	are	 tested	in	 the	 literature.	But
suppose	our	 research	site	 is	a	 small	 company	of,	 say,	20	 individuals	and	we	have
surveyed	all	of	them.	If	we	are	being	careful,	we	might	note	that	the	sample	size	is
small	and,	while	small	sizes	can	be	conservative	(in	the	sense	that	if	the	results	are
significant	on	a	small	sample	size	it	must	be	a	pretty	strong	effect),	if	they	get	too
small	 the	 assumptions	 of	 the	 classical	 significance	 test	 will	 no	 longer	 hold.	 We
might	 also	 realize	 that	 we	 do	 not	 have	 an	 actual	 sample.	 We	 have	 the	 entire
population	of	organization	members,	and	the	organization	itself	is	a	sample	of	one
chosen	non-randomly	from	the	population	of	firms.	This	also	is	not	a	situation	that
the	classical	significance	test	for	regression	coefficients	is	meant	to	handle.
The	 safer	 thing	 to	 do	 is	 run	 a	 randomization	 test.	 For	 example,	 we	 could	 run

ordinary	least	squares	as	usual	to	obtain	the	regression	coefficients,	but	then	use	the
permutation	 technique	 to	 construct	 the	 p-values.	 Figure	 8.6	 shows	 the	 results	 of
testing	a	simple	hypothesis	that	men	will	have	more	friends	who	are	not	friends	of
other	friends.	In	other	words,	the	hypothesis	is	that	there	will	be	fewer	connections
among	men’s	friends	then	among	women’s	friends.	To	test	this,	we	constructed	the
dependent	variable	by	running	UCINET’s	Egonet	density	procedure,	which	gave	us



the	 proportion	 of	 each	 node’s	 friends	 that	 were	 friends	 with	 each	 other.	 The
independent	variable	was	simply	gender	(coded	1	=	women,	2	=	men)	and	we	also
controlled	 for	 the	 individual’s	 role	 (1	 =	 participant,	 2	 =	 instructor).	We	 then	 ran
UCINET’s	 node-level	 regression	 to	 produce	 Figure	 8.7.	 As	 you	 can	 see,	 the
hypothesis	 was	 not	 supported.	 Whatever	 determines	 the	 degree	 of	 connection
among	one’s	friends,	it	is	not	one’s	gender,	nor	one’s	role	in	the	organization.

Figure	 8.7	 	 	 Ordinary	 least	 squares	 regression	 with	 p-values	 calculated	 via	 a
randomization	test.

8.5	Whole-network	hypotheses

A	 whole-network	 hypothesis	 is	 one	 in	 which	 the	 cases	 are	 collectivities	 such	 as
teams,	firms	or	countries,	and	the	variables	are	characteristics	of	the	network	of	ties
within	the	units.	For	instance,	Athanassiou	and	Nigh	(2000)	studied	a	sample	of	37
firms,	and	looked	at	how	a	firm’s	degree	of	internationalization	affected	the	density
of	advice	ties	among	members	of	its	top	management	team.
Assuming	 the	 firms	are	obtained	via	a	 random	sample,	 to	 test	a	hypothesis	 like

this	we	can	 just	 run	a	normal	 correlation	 in	 a	 standard	 statistical	package	 such	as
SPSS.	The	classical	significance	test	would	be	perfectly	valid.	Of	course,	if	we	did
use	a	 randomization	 test,	 the	 results	would	also	be	perfectly	valid,	but	would	 take
more	time	to	compute	and	require	the	use	of	a	network	analysis	software	package
such	as	UCINET,	or	a	specialized	statistical	package	such	as	StatXact.	On	the	other
hand,	 if	 the	data	was	not	collected	via	a	random	sample,	 it	would	be	wise	to	use	a
randomization	test.
Randomization	 tests	provide	an	elegant	and	powerful	way	 to	deal	with	 some	of

the	special	issues	posed	by	social	network	data.	A	key	advantage	is	that,	if	one	has



programming	capability,	one	can	construct	a	suitable	significance	 test	 for	any	 test
statistic,	 including	 new	 ones	 developed	 specifically	 for	 the	 research	 at	 hand.	One
thing	to	remember,	however,	is	that	while	a	randomization	test	will	allow	you	to	test
for	 significance	even	when	you	have	a	non-random	sample	or	population,	 it	does
not	 magically	 create	 generalizability.	 A	 significant	 result	 relating	 X	 to	 Y	 in	 Mrs
Smith’s	 third-grade	 classroom	 tells	 you	 that,	 in	 that	 classroom,	 X	 and	 Y	 are
probably	 not	 independent,	 but	 it	 does	 not	 make	 up	 for	 the	 fact	 that	 you	 did	 not
randomly	sample	children	from	all	over	the	world,	nor	did	you	sample	from	the	set
of	 all	 classrooms.	 Generalizability	 comes	 from	 your	 research	 design,	 not	 from
significance	statistics.

8.6	Exponential	random	graph	models

QAP	regressions	are	about	comparing	two	(or	more)	networks.	We	may	only	have
one	 network	 that	 is	 actual	 data	 but,	 as	 we	 have	 seen,	 it	 is	 sometimes	 possible	 to
construct	a	second	hypothetical	structure	matrix	based	on	some	underlying	concept
of	a	social	process,	 such	as	homophily	or	 transitive	closure.	The	QAP	regression
then	 assesses	 the	 fit	 between	 the	 actual	 data	 and	 an	 ideal	matrix	 consistent	with	 a
hypothesized	social	process.	However,	another	way	to	conceptualize	the	problem	is
in	 terms	 of	 identifying	 micro-configurations	 (such	 as	 transitive	 triples,	 4-cycles,
etc.)	that	represent	the	theoretical	social	process,	and	then	counting	them	in	the	data
to	 see	 if	 there	 are	 more	 of	 them	 than	 one	 would	 expect	 if	 the	 process	 were	 not
happening.	The	baseline	model	can	also	take	into	account	constraints	such	as	limits
on	 the	 number	 of	 ties	 that	 each	 node	 could	 have.	 This	 is	 the	 approach	 taken	 by
exponential	random	graph	models	(ERGMs,	also	known	as	‘p*	models’).
As	 these	 models	 are	 not	 in	 UCINET,	 our	 discussion	 is	 more	 about	 getting	 a

general	 idea	 of	 what	 they	 are	 and	 what	 they	 can	 be	 used	 for.	 More	 complete
descriptions	 can	 be	 found	 in	Robins	 et	 al.	 (2007)	Robins	 (2011)	 and	Lusher	 et	 al.
(2013).	The	models	are	related	to	the	general	linear	models	of	standard	statistics	but
have	 important	 modifications	 to	 deal	 with	 the	 fact	 that	 we	 cannot	 assume
independence	of	observations	–	in	our	case	the	edges.	A	key	concept	is	the	notion	of
conditional	 dependence.	 If	 two	 edges	 share	 a	 common	 vertex	 then	 they	 are
dependent,	 conditional	 on	 the	 rest	 of	 the	 graph.	 Models	 based	 on	 conditional
dependence	are	known	as	‘Markov	random	graphs	models’	and	are	a	special	class
of	ERGMs.	The	models	describe	how	a	network	is	built	up	from	smaller	constituent
parts	 called	 ‘configurations’.	 These	 configurations	 are	 objects	 such	 as	 stars,	 and
triangles	and	are	selected	by	the	researcher	(from	a	set	of	possible	configurations)
on	the	basis	of	a	particular	hypothesis.
The	result	for	a	given	network	and	a	given	set	of	configurations	will	be	a	set	of



parameter	 values,	 one	 for	 each	 of	 the	 chosen	 configurations,	 together	 with	 a
standard	 error.	 Large	 positive	 parameters	 show	 that	 the	 corresponding
configuration	 occurred	 more	 frequently	 than	 we	 would	 expect	 given	 the	 other
configurations	we	 have	 in	 the	model.	 For	 example,	 a	 large	 transitivity	 parameter
tells	us	there	are	more	closed	triads	than	we	would	expect	given	the	density	of	the
network	and	 the	propensity	 for	open	 triangles.	Large	negative	values	would	show
that	 these	 configurations	 occurred	 less	 frequently	 than	 expected	 given	 the	 other
configurations.	The	standard	errors	allow	us	to	test	the	significance	of	the	result	by
calculating	a	t	statistic,	which	is	the	parameter	value	divided	by	the	standard	error.	If
the	t	statistic	is	greater	than	1.96	in	absolute	value	then	we	assume	that	the	parameter
is	significant	at	a	level	of	0.05	(this	value	is	1.65	at	a	significance	level	of	0.10,	and
2.58	 at	 a	 significance	 level	 of	 0.01).	The	parameters	 can	be	 estimated	by	 taking	 a
maximum	 likelihood	 approach	 using	 simulation	 (among	 other	 approaches).	 In
essence,	the	parameters	are	estimated	and	then	their	distributions	are	constructed	via
simulation	 (rather	 like	 QAP,	 but	 using	 very	 different	 techniques).	 The	 means	 of
these	distributions	are	compared	 to	 the	observed	data,	and	the	parameters	are	 then
adjusted	 to	 try	 to	 get	 the	means	 closer	 to	 the	 observed	 data.	When	 they	 are	 close
enough	 the	 process	 is	 deemed	 to	 have	 converged.	 The	 simulations	 are	 achieved
using	Markov	chain	Monte	Carlo	maximum	likelihood	estimation.
The	 issue	 for	 the	 researcher	 is	 what	 set	 of	 configurations	 should	 be	 selected.

Certain	 configurations	 are	 associated	 with	 assumptions	 about	 the	 data.	 It	 can	 be
shown	(though	we	do	not	provide	any	details	here)	that	the	configurations	that	are
important	 for	 undirected	 graphs	 in	 this	 instance	 are	 edges,	 k-stars	 and	 triangles.
Examples	 of	 these	 are	 shown	 in	 Figure	 8.8.	 If	 we	 have	 directed	 data	 then	 more
configurations	are	possible.	These	can	include	out-stars,	in-stars	and	triangles	–	the
latter	can	be	cycles	or	transitive	triads.	In	addition,	we	can	include	attribute	effects
such	as	homophily	or	popularity	for	both	directed	and	undirected	graphs.

Figure	8.8			Configurations	for	Markov	random	graph	models.

Historically,	Markov	random	graph	models	have	had	difficulties	with	estimation.
Simulation	 studies	 have	 shown	 that	 the	 distributions	 of	 graphs	 associated	 with
particular	parameter	combinations	can	be	near	degenerate,	meaning	that	only	a	tiny
handful	of	graphs	have	any	meaningful	probability	under	the	model.	Moreover,	the
distributions	 are	 bimodal	with	 only	 very	 sparse	 or	 very	 dense	 graphs	 having	 any
frequency.	Snijders	et	al.	(2006)	introduced	the	use	of	higher	order	configurations



(i.e.,	 ones	 with	more	 than	 three	 nodes)	 to	 stabilize	 the	 estimation.	 Some	 of	 these
higher	 order	 configurations	 relax	 the	 assumption	 of	 conditional	 dependence	 in
Markov	 random	 graph	 models	 to	 partial	 conditional	 dependence	 using	 ‘social
circuit’	configurations	which	include	edges	that	do	not	necessarily	share	a	node,	but
are	 dependent	 in	 the	 sense	 that	 the	 probability	 of	 tie	 between	A	 and	B	 affects	 the
probability	of	a	tie	between	C	and	D.	These	give	rise	to	new	configurations	such	as
4-cycles	which	we	use	in	combination	with	the	Markov	model	configurations	shown
in	Figure	8.8.
It	is	not	just	cycles	of	length	4	that	can	be	added,	but	two	new	important	classes	of

configurations	called	k-2-paths	and	k-triangles.	A	k-2-path	is	a	configuration	which
has	 k	 independent	 paths	 of	 length	 2	 connecting	 two	 non-adjacent	 vertices.	 A	 k-
triangle	 is	 similar	 except	 the	 two	 vertices	 are	 adjacent.	 These	 configurations	 are
shown	 in	Figure	8.9.	 These	 can	 also	 be	 extended	 to	 directed	 graphs	where	 the	 k-
triangles	extend	to	a	set	of	configurations	called	‘closure	configurations’	and	the	k-
2-paths	extend	to	connectivity	configurations.	We	do	not	list	all	these	configurations
here.
ERGMs	are	also	able	to	include	actor	attributes	in	a	variety	of	ways.	The	simplest

are	effects	used	to	test	social	selection	hypotheses,	such	as	parameters	for	status	and
homophily.	 To	 include	 these	 we	 simply	 represent	 them	 in	 our	 configurations.
Suppose	we	had	the	attribute	gender,	and	colored	the	nodes	according	to	gender	–
say,	 white	 for	 male	 and	 black	 for	 female.	 We	 would	 then	 include	 in	 our
configurations	an	edge	between	two	black	nodes	to	represent	homophily	among	the
women	 and	 an	 edge	 between	 two	white	 nodes	 to	 represent	 homophily	 among	 the
men.	Effects	can	be	specified	for	both	categorical	and	continuous	attributes.

Figure	8.9			Configurations	for	undirected	social	circuit	model	k-triangle	and	k-2-
path.

In	all	statistical	modeling	there	is	the	important	issue	of	goodness	of	fit,	and	for
iterative	algorithms	such	as	used	in	ERGMs,	there	is	also	the	matter	of	convergence.
We	 can	measure	 the	 fit	 for	 any	 given	 statistic,	 including	 the	 fitted	 parameters,	 by
taking	 the	difference	between	 the	value	 in	 the	observed	graph	 (say,	 the	number	of
reciprocated	ties)	and	the	mean	of	a	sample	of	graphs	simulated	from	the	parameter



estimates,	and	dividing	by	the	simulation	standard	deviation.	We	call	this	metric	a	t-
ratio.	For	statistics	corresponding	to	fitted	parameters,	this	t-ratio	measures	not	only
goodness	of	fit	but	convergence.	As	a	rule	of	thumb,	an	absolute	value	of	less	than
0.1	for	this	t-ratio	is	considered	an	indication	of	convergence.	The	trick	is	to	find	a
small	 set	 of	 configurations	which	 capture	 the	 properties	we	 are	 interested	 in	 and
which	 yield	 reasonable	 parameter	 values	 that	 converge.	 This	 can	 be	 a	 frustrating
and	time-consuming	process	and	is	more	of	an	art	than	a	science,	but	there	are	some
standard	approaches	taught	in	workshops	to	help	guide	the	researcher.
Since	ERGMs	are	not	part	of	the	UCINET	package,	anyone	wishing	to	use	these

models	needs	 to	use	 specialized	 software.	Well-known	packages	 include	PNet	 and
Statnet,	both	of	which	are	freely	available	on	the	Web.	The	examples	we	give	here
were	done	using	PNet,	but	we	do	not	present	any	software-specific	details.	We	first
examine	the	Zachary	(1977)	karate	club	data	available	in	UCINET	and	mentioned	in
Chapter	7.	We	have	fitted	a	social	circuit	model	using	edges,	k-stars,	k-triangles	and
k-2-paths.	The	results	are	shown	in	Table	8.1.
Examining	the	results,	we	can	see	that	the	model	converged,	as	all	of	the	t-ratios

(last	column	of	Table	8.1)	are	less	than	0.1	in	absolute	value.	The	edge	parameter	is
analogous	 to	 the	 intercept	 in	 a	 regression	 and	 is	 not	 normally	 interpreted.	The	k-
stars	parameter	is	not	significant,	indicating	that	degree	effects	are	not	important	in
this	network.	On	the	other	hand,	we	see	that	the	k-triangles	and	the	k-2-paths	are	both
significant	and	have	a	positive	parameter	estimate.	The	k-triangles	show	that	the	data
has	more	transitivity	than	we	would	expect	by	chance,	indicating	a	tendency	toward
clustering.	 The	 positive	 2-path	 parameter	 suggests	 that	 there	 is	 also	 a	 tendency
towards	2-paths	 (i.e.,	2-paths	 that	are	not	 transitive).	This	 suggests	 that	 there	are	a
number	 of	 actors	 that	 are	 surrounded	 by	 a	 large	 number	 of	 structural	 holes	 –
perhaps	playing	bridging	roles	between	network	clusters.

Table	8.1			ParameterERGM	p	estimates	for	the	Zachary	data.	The	asterisk	indicates
a	value	that	is	significant	at	the	0.05	level.



Figure	 8.10	 	 	 Configurations	 for	 Newcomb	 data	 (clockwise	 from	 top	 left):
reciprocity,	AinS,	AT-T	and	A2P	T	paths.

For	 our	 second	 example	we	 use	 the	Newcomb	 fraternity	 data	 that	we	 analyzed
using	 QAP	 regression.	 The	 QAP	 regression	 was	 about	 network	 evolution	 and
showed	that	changes	in	the	network	from	Week	0	to	Week	1	could	be	attributed	in
part	 to	 reciprocity	but	not	 to	 transitivity.	 In	contrast,	our	ERGM	analysis	 is	cross-
sectional	 and	 is	 intended	 to	 characterize	 the	 network	 at	 a	 single	 point	 in	 time,
namely	Week	1.	We	examine	the	top	three	choices	for	each	actor	in	Week	1.	Since
we	have	artificially	fixed	the	number	of	choices	per	actor,	we	do	not	select	‘arc’	as
one	of	the	configurations	in	the	model	(but	we	need	to	make	sure	that	the	outdegree
is	fixed	at	3	in	our	simulations).	We	do	select	reciprocity,	in-stars	and	the	directed
transitive	 versions	 of	 the	 k-triangle	 and	 the	 k-2-path.	 In	 PNet	 the	 latter	 two	 are
known	 as	 AT-T	 and	 A2P-T,	 respectively.	 The	 complete	 set	 of	 configurations	 is
shown	in	Figure	8.10.	The	results	are	presented	in	Table	8.2.
The	results	in	Table	8.2	show	that	reciprocity	is	significant	and	strongly	positive,

indicating	that,	overall,	ties	tend	to	be	reciprocated.	We	also	see	a	strong	result	for
the	 in-stars,	 indicating	 that	 there	 are	 actors	who	 are	 very	 popular	 and	 are	 getting
more	 nominations	 than	we	would	 have	 expected	 by	 chance.	 The	 non-transitive	 2-
paths	 parameter	 is	 not	 significant,	 but	 we	 do	 have	 a	 significant	 result	 for	 AT-T
showing	that	 the	network	has	more	 transitivity	 than	we	would	expect	by	chance.	 If
we	 repeat	 the	 same	 analysis	 for	 the	 data	 in	Week	 0,	 we	 find	 that	 reciprocity	 and
transitivity	are	significant	but	the	in-stars	are	not.	Hence,	we	can	see	that	reciprocity
and	transitivity	effects	are	 important	at	both	time	periods,	but	 the	popularity	effect
only	comes	in	at	the	second	time	period.

Table	8.2			ERGM	for	Newcomb	fraternity	data	Week	1.



Our	 final	 example	 brings	 in	 actor	 attributes.	 In	 this	 example	 we	 examine	 the
Freeman	 EIES	 data	 (Freeman	 and	 Freeman	 1979)	 also	 available	 in	 UCINET.	We
look	at	 the	friends	network	at	 time	period	1	of	 the	study,	 that	 is,	 friends	and	close
friends	 amongst	 32	 academics.	 Also	 recorded	 are	 the	 four	 discipline	 areas	 of
sociology,	anthropology,	mathematics/statistics	and	other.	We	fitted	an	ERGM	with
the	same	configurations	as	the	Newcomb	data	example	but	we	added	arc,	out-stars
and	discipline	homophily.	The	results	are	given	in	Table	8.3.
As	we	would	expect	in	friendship	networks,	there	is	a	lot	of	reciprocity.	Neither

the	 in-stars	 effect	 nor	 the	 out-stars	 effect	 is	 significant,	 hence	 we	 do	 not	 have
individuals	that	are	exceptionally	popular	nor	claim	to	have	a	surprising	number	of
friends.	 The	 positive	 and	 significant	 AT-T	 parameter	 shows	 that	 transitivity	 is
prevalent,	 and	 the	negative	 and	 significant	A2P-T	 shows	 that	 there	 is	 a	 lack	of	 2-
paths	 that	do	not	have	 transitive	closure.	Finally,	we	 see	 that	 friends	 tend	 to	come
from	 the	 same	 discipline.	 In	 summary,	 this	 data	 shows	 all	 the	 classic	 structure	 of
friendship,	namely	 that	 it	 is	 reciprocated,	 that	 the	friends	of	your	friends	are	your
friends,	and	that	friends	share	common	interests.

Table	8.3			ERGM	for	Freeman	EIES	data.

8.7	Actor-oriented	models

In	 this	section	we	give	a	highly	simplified	non-technical	 introduction	 to	 the	actor-
oriented	models	used	in	the	software	package	SIENA	(Snijders	2001).	SIENA	is	used
to	analyze	network	panel	data,	 that	 is,	network	data	on	a	group	of	actors	collected
repeatedly	over	a	period	of	time,	the	Newcomb	fraternity	data	already	discussed	in
this	 chapter	 being	 a	 classic	 example.	 The	 underlying	model	 is	 a	 continuous-time



Markov	process	and	makes	the	assumption	that	at	a	given	moment	only	one	change
can	occur	 in	 the	 network.	That	 is,	 at	 a	 given	moment	 only	 one	 tie	 can	 change	by
either	 being	 created	 or	 removed.	 To	 accommodate	 this	 assumption,	 the	 changes
from	one	observation	to	the	next	are	decomposed	into	a	series	of	micro-steps,	with
only	one	change	being	permissible	in	any	micro-step.	How	often	this	can	happen	is
specified	 in	 the	model	 by	 a	 rate	 function.	 This	 model	 therefore	 assumes	 that	 the
actors	in	the	network	control	their	outgoing	ties.	As	with	all	Markov	processes,	the
model	has	no	memory,	which	means	 that	 if	 there	are	a	number	of	observations	at
different	time	points,	the	change	from	one	point	in	time	to	the	next	only	depends	on
the	current	state	and	not	on	the	entire	history.	This	has	implications	for	the	spacing
of	 the	 time	 points	 and	 the	 interpretation	 of	 the	 results.	 It	 cannot,	 for	 example,
consider	 reciprocating	 a	 tie	 that	 existed	 several	 time	 points	 prior	 and	 was
subsequently	dropped.
Also	 in	 the	 model	 is	 an	 evaluation	 function	 which	 tries	 to	 capture	 the	 overall

advantage	of	an	actor	i	dropping	an	existing	tie	or	making	a	new	tie.	This	function
is	 in	 effect	 specified	 by	 the	 researcher	 but	 based	 on	 a	 number	 of	 well-known
network	criteria.	In	this	respect	this	is	very	similar	to	the	ERGMs	where	we	combine
network	structure	effects	(e.g.,	reciprocity,	transitivity	and	popularity)	with	attribute
effects	(e.g.,	homophily	or	the	propensity	of	sending	ties).	One	small	difference	is
that	in	SIENA	we	must	take	care	that	our	choices	are	consistent	with	the	actor	having
control	 over	 their	 outgoing	 ties,	 as	 this	 is	 an	 actor-oriented	 model.	 The	 SIENA
software	package	has	all	of	these	built	in	and	the	user	is	able	to	select	them	from	a
comprehensive	list	of	possible	effects	relating	to	network	structure	and	continuous
and	 discrete	 actor	 attributes.	 The	 evaluation	 function	 is	 set	 up	 in	 terms	 of
probabilities	 and	 so	 should	 not	 be	 seen	 as	 an	 entirely	 deterministic	 process:	 it
captures	the	probability	that	an	actor	will	make	or	break	a	tie	(or	do	nothing).	If	the
value	 of	 the	 function	 increases	 by	 an	 actor	 making	 a	 certain	 change	 then	 the
probability	that	the	actor	makes	this	change	also	increases.	The	function	(rather	like
the	ERGM)	has	a	number	of	parameters	that	need	to	be	fitted	to	the	data,	and	this	is
done	by	simulation	and	encompasses	an	approximation	to	the	maximum	likelihood
values.
One	advantage	of	these	models	over	ERGMs	is	that	they	incorporate	the	choices

actors	 make	 over	 time	 and	 so	 have	 a	 starting	 structure.	 This	 makes	 them	 more
robust	and	easier	to	fit,	providing	the	starting	structure	was	relatively	patterned.	If,
for	example,	we	collected	data	in	which	we	asked	people	to	randomly	select	friends
by	 simply	drawing	 lots	 before	 they	met	 and	 then	 followed	 this	 up	by	 asking	with
whom	 they	 were	 friends	 after	 a	 number	 of	 social	 events,	 our	 data	 would	 not	 be
suitable	for	this	type	of	analysis,	as	our	starting	data	was	random.
We	 present	 a	 highly	 simplified	 example	which	was	 explored	 in	more	 detail	 by

Snijders,	Steglich	and	van	de	Bunt	(2010),	and	the	interested	reader	should	consult



that	article	for	additional	details.	The	data,	reported	by	Knecht	(2008),	consists	of	26
school	children	(17	girls	and	9	boys)	who	listed	whom	they	considered	to	be	friends
at	four	time	periods.
It	is	well	known	that	friendship	among	children	in	this	age	group	has	a	tendency

towards	reciprocity,	transitivity	and	same	sex	nominations.	It	therefore	makes	sense
to	 include	 all	 of	 these	 structural	 effects	 in	 the	 evaluation	 function.	 In	 any	 SIENA
model	outdegree	should	always	be	included	(as	should	reciprocity,	which	we	have
already	included	for	other	reasons)	and	it	is	advisable	to	include	other	degree-based
effects.	 Two	 useful	 effects	 in	 this	 regard	 are	 indegree	 popularity	 and	 outdegree
popularity;	these	are	basically	the	sum	of	the	indegrees	of	the	alters	chosen	and	the
sum	of	the	outdegrees	of	the	alters	chosen.	Hence,	these	effects	capture	the	extent	to
which	an	actor	chooses	people	who	are	chosen	by	many	others	or	who	choose	many
others.	Experience	has	shown	that	taking	the	square	roots	of	these	sums	works	best.
In	 the	model	below	we	have	only	 included	outdegree	popularity.	 In	 this	particular
dataset	some	of	the	school-children	already	knew	each	other	from	primary	school
and	this	is	built	into	the	model.	Finally,	we	include	the	sender	and	receiver	effects	of
sex.	The	results	are	given	in	Table	8.4.
The	 first	 part	 of	 the	 table	 looks	 very	 similar	 to	 the	 output	 produced	 for	 the

ERGMs	used	in	the	first	section.	The	main	difference	is	that	this	analysis	is	about	the
evolution	of	ties,	and	hence	reciprocity,	for	example,	measures	the	extent	to	which
unreciprocated	 ties	 become	 reciprocated	 over	 the	 time	 period	 studied.	 As	 in
previous	tables	a	*	indicates	a	significant	result	with	p	<	0.05.
The	estimates	for	the	rate	function	are	an	important	part	of	the	SIENA	model	and

are	the	expected	frequencies	of	the	opportunities	actors	have	within	the	network	to
make	or	break	ties	between	successive	data	waves.	It	should	be	noted	that	p-values
are	not	calculated	for	these	since	a	value	of	zero	would	mean	no	changes	are	made
and	so	testing	whether	they	are	zero	would	be	meaningless.	The	values	show	a	fairly
consistent	rate	change,	with	a	slight	increase	during	the	second	period	and	a	decline
towards	the	end	of	the	study.

Table	8.4			SIENA	estimates	of	friendship	evolution.



We	can	interpret	the	significance	and	parameter	estimates	in	the	same	way	as	for
ERGMs.	 Hence	 we	 see	 the	 strong	 effects	 of	 reciprocity,	 transitivity,	 3	 gender
homophily,	 and	 of	 prior	 friendship	 in	 primary	 school.	 The	 negative	 value	 for	 3-
cycles	 means	 that	 these	 tend	 not	 to	 get	 formed,	 and	 this	 indicates	 a	 possible
hierarchical	 structure	 between	 groups.	 The	 significant	 and	 negative	 outdegree
popularity	shows	that	children	who	nominate	a	 lot	of	friends	do	not	receive	many
nominations	themselves.	Also	of	note	is	the	Sex(M)	ego	result	which	indicates	that
males	 are	 more	 active	 in	 the	 network	 than	 females,	 but	 the	 corresponding	 alter
effect	is	not	significant.

8.8	Summary

To	 statistically	 test	 a	 network	hypothesis,	we	need	 to	 use	methods	which	 can	deal
with	 the	 interdependencies	 that	 are	 such	 an	 important	 feature	 of	 social	 networks.
One	 approach	 is	 to	 use	 permutation	 tests,	 which	 are	 able	 to	 generate	 statistical
distributions	 (against	 which	 we	 can	 compare	 observed	 results)	 from	 the	 network
data	 itself.	 Using	 this	 approach,	 we	 can	 test	 for	 associations	 between	 pairs	 of
networks	on	the	same	set	of	actors	using	correlation,	and	we	can	model	a	dependent
network	 using	 multiple	 independent	 networks	 (again	 on	 the	 same	 actors)	 using
regression.	 Since	 the	 relation	 ‘having	 the	 same	 attribute’	 results	 in	 an	 idealized
structural	 network,	 we	 are	 able	 to	 include	 attribute	 effects	 such	 as	 homophily	 or
diffusion.	 In	 a	 similar	 way,	 we	 can	 use	 differences	 of	 attributes	 (plus	 other
combinations)	 to	 include	 continuous	 attributes.	 An	 alternative	 approach	 is	 to	 use
exponential	 random	 graph	models,	 which	 can	 test	 whether	 certain	 patterns	 in	 the



network	 occur	 more	 often	 than	 we	 would	 expect	 by	 chance.	 These	 patterns	 are
selected	by	the	researcher	and	reflect	different	hypotheses	about	the	network.	If	we
have	panel	 data,	we	 can	use	Markov	methods	 to	 capture	 changes	 through	 time	by
modeling	 how	 actors	 make	 and	 break	 ties.	 These	 models	 are	 known	 as	 actor-
oriented	models	and	are	the	basis	of	the	SIENA	software	program.
	

1	Of	course,	we	might	ignore	the	diagonal	values,	yielding	vectors	of	length	N2	–	N,
and	 for	undirected	data	we	might	 ignore	 the	 redundant	 top	half	of	each	adjacency
matrix,	yielding	N(N	–	1)/2	values	per	variable.
2	 As	 an	 aside,	 we	 can	 interpret	 the	 coefficients	 from	MR-QAP	 on	 binary	 data	 as
follows.	 In	 our	 output,	 the	 0.472	 value	 for	 the	 ‘reports	 to’	 coefficient	means	 that
when	the	X	variable	is	one	unit	higher,	the	dependent	variable	will,	on	average,	be
0.472	units	higher.	This	does	not	mean	each	case	is	0.472	units	higher,	but	that	in	any
batch	of	1000	dyads	where	i	reports	to	j,	we	expect	to	see	about	472	more	cases	of
advice-seeking	 than	 when	 i	 does	 not	 report	 to	 j.	 This	 is	 not	 too	 difficult	 to
understand.	The	trouble	comes	when	we	consider	dyads	in	which	i	does	not	report
to	j	 (X	=	0)	but	does	seek	advice	from	 j	 (Y	=	1),	and	compare	 these	with	dyads	 in
which	i	does	report	to	j	(X	 is	a	unit	higher).	Y	 is	already	at	its	maximum	value,	so
for	this	batch	of	dyads,	the	expectation	that	Y	will	be	an	additional	0.472	units	higher
does	not	make	sense.
3	Measured	in	two	different	ways:	the	transitive	triplets	measure	considers	the	A2P-
T	paths	of	Figure	8.10,	whereas	the	transitive	ties	measure	looks	for	the	existence	of
a	2-path.
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Characterizing	whole	networks
	

Learning	Outcomes
	

1.	 Calculate	and	interpret	cohesion	measures	in	a	whole	network
2.	 Undertake	a	triad	census
3.	 Compute	and	evaluate	measures	of	transitivity,	reciprocity	and	clustering

9.1	Introduction

In	 the	 1950s	 Alex	 Bavelas	 and	 his	 student	 Harold	 Leavitt	 conducted	 a	 series	 of
experiments	 at	 the	Massachusetts	 Institute	 of	 Technology.	 They	were	 interested	 in
which	 communication	 structures	 were	 best	 for	 group	 problem-solving.	 For
example,	they	investigated	structures	like	those	in	Figure	9.1.	What	they	found	was,
for	a	variety	of	outcome	measures	such	as	speed	and	accuracy	of	solutions,	the	star-
shaped	network	on	the	right	was	generally	the	best,	the	circle-shaped	network	on	the
left	was	the	worst,	and	the	other	two	were	in	between.	They	concluded	that,	at	least
for	the	simple	tasks	they	were	investigating,	more	centralized	networks	were	better
problem-solvers.
Centralization	 is	 a	 property	 of	 a	 network	 as	 a	 whole.	 When	 measured,	 it	 is	 a

single	number	that	characterizes	the	whole	network.	In	this	chapter	we	consider	how
to	 measure	 centralization,	 along	 with	 a	 host	 of	 other	 whole-network	 properties.
Many	of	these	properties	can	be	seen	as	measures	of	the	cohesiveness	of	a	network.
Others	 are	 indicators	of	qualitative	differences	 such	as	whether	 the	network	has	 a
core–periphery	 shape	 versus	 a	 clumpy	 shape.	Of	 course,	what	 one	 regards	 as	 the
whole	network	is	a	matter	of	choice.	Hence,	if	we	have	collected	network	data	for	an
entire	organization,	in	the	analysis	we	are	free	to	extract	the	network	of	ties	within
each	department,	and	calculate	a	measure	 like	centralization	 for	each	one.	We	can
then	do	a	comparative	analysis	of	the	levels	of	centralization	of	each	department.	If
we	have	 enough	departments,	 this	 can	 take	 the	 form	of	 a	 regression	 in	which	 the



cases	are	departments	and	the	variables	are	attributes	of	the	departments,	including
such	things	as	performance,	size,	and,	of	course,	centralization.

Figure	9.1			Network	structures	studied	by	Bavelas	and	Leavitt.

9.2	Cohesion

The	idea	of	cohesion	is	connectedness	or	‘knittedness’.	There	is	a	Spanish	word	–
enredado	–	that	expresses	it	nicely.	It	means	tangled	up,	like	a	big	clump	of	electrical
wires	 or	 fish	 caught	 in	 a	 trawler ’s	 net.	 It	 is	 particularly	 appropriate	 because	 the
word	 is	based	on	 the	word	 for	network,	which	 is	red.	However,	 it	 is	 important	 to
note	 that,	depending	on	 the	nature	of	 ties	 in	 the	network,	 the	 term	‘cohesion’	may
not	 necessarily	 correspond	 to	 sociological	 cohesion.	For	 example,	 if	 the	network
consists	of	‘who	hates	whom’	ties,	greater	network	cohesion	would	actually	imply
less	sociological	cohesion.
Perhaps	the	simplest	measure	of	cohesion	is	density.	Density	is	simply	the	number

of	 ties	 in	 the	 network,	 expressed	 as	 a	 proportion	 of	 the	 number	 possible.	 In	 an
ordinary	undirected	non-reflexive	graph,	the	number	possible	is	n(n	–	1)/2,	where	n
is	the	number	of	nodes.	Density	can	be	interpreted	as	the	probability	that	a	tie	exists
between	any	pair	of	randomly	chosen	nodes;	however,	the	absolute	number	can	be
hard	 to	assess.	Whether	a	density	of,	 say,	0.345	should	be	considered	high	or	 low
depends.	In	a	small	group,	such	as	an	academic	department,	a	density	of	0.345	for
the	 ‘who	knows	whom’	network	would	be	 incredibly	 low	–	you	would	expect	1.0.
But	 for	 the	 ‘who	 is	 having	 sex	with	whom’	 in	 the	department,	 0.345	 is	 incredibly
high	 –	 you	would	 expect	 something	 close	 to	 0.0.	 In	 general,	we	 see	 considerably
higher	density	values	for	positive	ties	than	negative	ties.



Figure	9.2			Comparison	of	density	by	season	in	Chesapeake	Bay	ecosystem	data.

Density	 is	 almost	 always	 best	 used	 in	 a	 comparative	 way.	 For	 example,	 in	 the
Chesapeake	 Bay	 ecological	 network	 data,	 the	 density	 of	 the	 ‘who	 eats	 whom’
network	varies	by	season.	As	shown	in	Figure	9.2,	density	is	highly	correlated	with
temperature.	It	is	lowest	in	winter,	meaning	that	dietary	variety	goes	down	in	winter,
perhaps	because	there	are	fewer	species	active	and	available	to	be	eaten.
In	 binary	 data,	 density	 is	 easily	 computed	 as	 the	 average	 of	 all	 entries	 in	 the

adjacency	matrix	(typically	omitting	the	main	diagonal,	which	represents	self-ties).
In	valued	data,	we	again	simply	compute	the	average	of	all	values,	which	is	to	say
we	compute	average	tie	strength.
In	principle,	the	advantage	of	density	over	the	simple	number	of	ties	(or	total	tie

strength)	 is	 that	 it	adjusts	 for	 the	number	of	nodes	 in	 the	network,	making	density
figures	comparable	across	groups	of	different	sizes.	However,	care	must	be	taken	in
comparing	 densities	 of	 small	 groups	 with	 densities	 of	 much	 larger	 groups.	 In	 a
network	of	10	people,	it	is	quite	possible	for	a	node	to	have	ties	with	all	nine	other
actors.	 In	a	network	of	50	people,	 this	may	still	be	 true.	But	 in	a	network	of	1000
nodes,	it	seems	unlikely	that	the	number	of	ties	actors	have	to	others	will	keep	pace
with	the	number	of	others	available.	As	a	result,	densities	are	almost	always	lower
in	large	networks	than	in	small	networks.
Because	of	 this	 issue,	 some	researchers	prefer	 to	use	 the	average	degree	of	 the

network.	If	we	compute	the	degree	(number	of	ties)	for	each	node	(i.e.,	the	row	sums
of	 the	 adjacency	 matrix),	 and	 then	 average	 these	 degrees,	 we	 obtain	 the	 average
degree	of	the	network.	The	average	degree	is	easier	to	interpret	than	density	because
it	is	literally	the	average	number	of	ties	that	each	node	has.	The	relationship	between
average	degree	d–and	density	for	undirected	non-reflexive	graphs	is	given	by

where	T	is	the	number	of	edges	in	the	network	and	n	is	the	number	of	nodes.
So	 far,	 we	 have	 only	 considered	 the	 density	 of	 an	 entire	 network.	 However,

density	can	also	be	computed	within	subgroups,	and	even	between	subgroups.	For



example,	if	we	have	a	network	in	which	nodes	can	be	divided	into	three	types	–	say,
three	departments	–	we	can	count	the	number	of	ties	between	members	of	each	pair
of	departments,	and	divide	by	 the	number	possible	given	 the	number	of	people	 in
each	department.	A	density	table	records	all	of	the	densities	within	and	between	all
groups.	As	an	example,	Figure	9.3	shows	the	Campnet	dataset	discussed	in	Chapter
2.	In	the	diagram,	node	shape	is	used	to	distinguish	male	and	female	actors.
In	this	network,	each	actor	has	exactly	three	outgoing	ties.	As	a	result,	the	density

of	the	overall	network	is	of	no	interest	as	this	has	been	predetermined	by	the	fixed
outdegree.	What	 is	 interesting	and	obvious	from	the	diagram	is	 that	 the	women	in
general	select	women	and	the	men	select	men.	We	can	see	the	extent	to	which	this	is
true	by	looking	at	the	density	between	and	within	groups	given	in	the	table	shown	in
Table	9.1.	Note	 that	no	entry	could	be	as	 large	as	1.0	because	 there	are	more	 than
three	actors	in	each	group,	and	each	actor	is	only	allowed	three	ties.
The	 Campnet	 network	 makes	 clear	 that	 the	 density	 of	 a	 network	 need	 not	 be

uniform	throughout	the	network.	A	network	with	a	middling	density	value	may	have
some	regions	of	near	perfect	density	and	other	regions	of	near	vacuum.	In	fact,	the
network	 could	 be	 fragmented	 into	multiple	 components,	 as	 defined	 in	 Chapter	 2.
Another	 network	 could	 have	 the	 same	 density	 but	 a	 very	 diffuse	 structure	 where
density	is	evenly	distributed.	Density	provides	a	single	number	that	characterizes	an
aspect	 of	 a	 network,	 not	 unlike	 the	 mean	 of	 a	 distribution,	 but	 tells	 you	 nothing
about	how	those	ties	are	distributed	throughout	the	network.

Table	9.1			Density	between	and	within	gender	groups	in	the	Campnet	dataset



Figure	9.3			Campnet	data	with	gender	attribute.

This	suggests	thinking	about	cohesion	(or	non-cohesion)	in	broadest	terms	as	the
number	and	size	of	components	in	the	network.	The	simplest	of	these	is	the	size	of
the	main	component:	the	bigger	the	main	component	(in	terms	of	nodes),	the	greater
the	global	cohesion	of	 the	network.	This	has	been	used	 in	 looking	at	networks	of
HIV	 transmission	 (Friedman	 et	 al.	 1999),	 and	 for	 assessing	 how	 well	 a	 network
survives	under	attack	(Borgatti,	2006).	Of	course,	this	measure	assumes	there	is	one
large	 main	 component,	 and	 this	 is	 not	 always	 the	 case.	We	 therefore	 need	 more
sophisticated	 measures	 which	 take	 into	 account	 the	 different	 components	 in	 a
network.
One	possibility	 is	 to	 look	at	 the	number	of	components	 in	 the	graph.	 If	c	 is	 the

number	of	components	and	n	is	the	number	of	nodes	in	the	graph	then	we	divide	c	–
1	by	n	–	1.	This	normalized	measure	–	called	 the	‘component	ratio’	–	achieves	 its
maximum	value	of	1.0	when	every	node	is	an	isolate,	and	its	minimum	value	of	0
when	there	is	just	one	component.	Obviously,	this	is	an	inverse	measure	of	cohesion
as	 larger	 values	 indicate	 less	 cohesion.	 It	 can	 be	 subtracted	 from	 1	 to	 measure
cohesion.
One	 problem	 with	 the	 component	 ratio	 is	 that	 it	 is	 not	 very	 sensitive:	 a	 large

number	of	networks	that	vary,	at	least	intuitively,	in	cohesiveness	may	have	the	same
score	on	 this	measure.	A	more	 sensitive	measure	along	 these	 same	 lines	 is	 called
‘connectedness’	 (Krackhardt,	 1994)	 or	 ‘fragmentation’	 (Borgatti	 2006).
Connectedness	 is	 defined	 as	 the	 proportion	 of	 pairs	 of	 nodes	 that	 can	 reach	 each
other	by	a	path	of	any	length	–	in	other	words,	the	proportion	of	pairs	of	nodes	that
are	located	in	the	same	component.	The	formula	for	connectedness	in	directed	non-



reflexive	graphs	is	given	by

where	 rij	 is	 1	 if	 nodes	 i	 and	 j	 are	 in	 the	 same	 component	 and	 0	 otherwise.
Fragmentation	is	defined	as	1	minus	connectedness,	and	is	interpreted	as	the	number
of	pairs	of	nodes	that	cannot	reach	each	other	by	any	means.
We	can	see	how	connectedness	captures	cohesion	by	calculating	the	index	for	the

directed	Campnet	data	 shown	 in	Figure	9.3,	where	 the	network	 is	 defined	by	 each
person’s	top	three	choices.	This	has	a	connectedness	index	of	0.40.	In	contrast,	if	we
define	the	network	by	each	actor ’s	top	four	choices,	the	connectedness	index	jumps
up	to	0.889.
The	typical	usage	of	connectedness	or	fragmentation	is	in	evaluating	changes	to	a

network	either	in	reality	or	as	part	of	a	what-if	simulation.	For	example,	if	we	are
trying	to	prevent	a	terrorist	organization	from	coordinating	attacks,	we	could	figure
out	 which	 key	 actors	 to	 arrest	 in	 order	 to	 maximally	 fragment	 the	 network.	 A
computer	 algorithm	 could	 search	 through	 the	 space	 of	 combinations	 of	 actors	 to
determine	 a	 good	 set	 whose	 removal	 would	 maximally	 increase	 fragmentation
(Borgatti,	2006b).
A	variation	on	connectedness,	called	‘compactness’,	weights	the	paths	connecting

nodes	inversely	by	their	length:

Compactness	 just	 replaces	rij	 in	equation	 (9.2)	with	1/dij,	where	dij	 is	 the	 geodesic
distance	from	i	to	j	and	1/dij	is	set	to	0	when	no	path	exists	from	i	to	j.	Compactness
is	 generally	 better	 than	 its	 simpler	 cousin,	 the	 average	 geodesic	 distance	 in	 the
network.	The	advantage	of	average	distance	is	that	it	can	be	interpreted	as	an	index
of	 the	 expected	 time	 to	 arrival	 of	 something	 flowing	 from	one	 randomly	 chosen
node	to	another,	provided	the	something	always	traveled	via	shortest	paths.	Clearly,
if	 things	 flowing	 through	 the	network	can	 reach	nodes	quickly,	 the	network	has	a
certain	kind	of	cohesion.	The	difficulty	with	 the	average	geodesic	distance	and	 its
variants	is	that	it	cannot	be	applied	to	disconnected	graphs	(i.e.,	ones	with	multiple
components),	since	some	distances	are	not	defined.	For	this	reason,	we	recommend
the	compactness	measure.1
An	 approach	 completely	 different	 from	 cohesion	 is	 robustness.	 Robustness

measures	how	difficult	it	is	to	disconnect	the	network	by	removing	nodes	or	lines.	If
you	 need	 to	 remove	 quite	 a	 few	 nodes	 or	 lines	 to	 increase	 the	 number	 of
components	 in	 the	 graph,	 then	 the	 network	 is	 highly	 robust	 and	 in	 this	 sense



cohesive.	Equivalently,	if	you	have	to	remove	many	lines	or	nodes,	then	there	must
be	many	fully	independent	paths	between	the	nodes,	again	suggesting	cohesion.	This
suggests	 that	 the	graph-theoretic	concepts	of	cutpoint	 and	vertex	cutset,	 as	well	 as
bridge	and	edge	cutset,	might	be	useful.	Indeed,	both	the	vertex	connectivity	and	the
edge	connectivity	of	a	graph	can	be	seen	as	measures	of	cohesion.	The	greater	the
value,	the	more	independent	paths	there	are	between	all	pairs	of	nodes,	and	the	more
cohesive	the	network.

9.3	Reciprocity

If	ties	are	directed,	we	are	often	interested	in	the	extent	to	which	a	tie	from	A	to	B	is
matched	 by	 one	 from	B	 to	A.	Hence	 if	 we	 have	 relations	 such	 as	 ‘helps’,	 ‘gives
advice	 to’	 or	 ‘lends	money	 to’	 and	 the	 amount	 that	 these	 are	 reciprocated	 varies
greatly	 for	 similar	 networks	 then	 we	 may	 wish	 to	 investigate	 if	 there	 is	 some
underlying	 reason	 (e.g.,	 hierarchy,	 wealth	 inequality	 or	 cultural	 taboo).	 A	 simple
measure	of	reciprocity	is	simply	to	count	the	number	of	reciprocated	ties	and	divide
these	by	the	total	number	of	ties.	If	we	do	this	for	the	Campnet	data	in	Figure	9.3	we
find	 that	 just	over	54%	of	 the	 ties	have	been	reciprocated.	Note	 that	UCINET	also
reports	the	number	of	symmetric	pairs	as	well	as	the	reciprocated	ties.	A	symmetric
pair	 would	 include	 reciprocated	 ties	 together	 with	 the	 case	 where	 neither	 actor
choses	the	other,	that	is,	a	reciprocated	zero	in	the	adjacency	matrix.

9.4	Transitivity	and	the	clustering	coefficient

For	many	social	relations	we	might	expect	that	if	A	is	related	to	B	and	B	is	related	to
C	then	there	would	be	a	relationship	from	A	to	C.	When	this	is	the	case	we	say	the
triad	 is	 transitive.	One	way	 to	 think	 of	 this	 is	 that	 the	 friends	 of	 your	 friends	 are
your	friends.	When	networks	have	a	 lot	of	 transitivity,	 they	 tend	 to	have	a	clumpy
structure.	That	 is,	 they	contain	knots	of	nodes	 that	are	all	 interrelated.	To	measure
this	 tendency	 toward	 transitivity	 we	 count	 up,	 across	 all	 possible	 triads,	 the
proportion	 of	 triads	 in	 which	 A-->B	 and	 B-->C	 that	 also	 have	 A-->C.	 This	 is
expressed	in	matrix	terms	as

The	 summations	can	be	 restricted	 to	 i	≠	 j	 ≠	k	 for	 non-reflexive	graphs.	Applying
this	to	the	Campnet	data	yields	a	score	of	0.48,	which	is	quite	high.



Watts	and	Strogatz	(1998)	proposed	a	measure	for	undirected	networks	that	they
called	the	‘clustering	coefficient’	to	capture	the	extent	to	which	a	network	had	areas
of	 high	 and	 low	density.	Their	measure	 starts	 by	measuring	 the	 density	 of	 ties	 in
each	node’s	ego	network	(i.e.,	the	density	of	ties	among	nodes	connected	to	a	given
node).	 This	 is	 called	 the	 individual	 clustering	 coefficient.	 They	 then	 average	 this
quantity	 across	 all	 nodes	 to	 get	 the	 overall	 clustering	 coefficient.	 It	 turns	 out,
however,	 that	 for	 measuring	 clumpiness,	 it	 is	 better	 to	 take	 a	 weighted	 average,
where	 the	weights	 are	 the	 number	 of	 pairs	 of	 nodes	 in	 each	 node’s	 ego	 network.
This	is	ni(ni	–	1)/2,	where	ni	is	the	number	of	nodes	that	node	i	is	connected	to.	The
weighted	average	is	called	the	weighted	overall	clustering	coefficient,	and	this	turns
out	 to	be	 identical	 to	 the	 transitivity	coefficient	defined	 in	equation	 (9.4).	Whether
called	transitivity	or	the	clustering	coefficient,	this	metric	has	been	used	extensively
to	measure	the	amount	of	clustering	or	clumpiness	in	a	network.	However,	while	it
is	true	that	clustered	networks	tend	to	have	a	high	clustering	coefficient,	many	other
networks	can	also	have	high	clustering	coefficients,	so	it	is	not	an	ideal	measure.
Watts	 and	Strogatz	 used	 the	 clustering	 coefficient	 as	 part	 of	 an	 effort	 to	 define

‘small-world	networks’.	Essentially,	the	idea	is	that	human	social	systems	are	very
clumpy	 (thanks	 to	 factors	 such	 as	 homophily,	 geographical	 concentration,	 and	 a
tendency	to	develop	relations	with	one’s	relations’	relations),	but	also,	as	discovered
by	Milgram	(1967),	very	compact,	 in	 the	sense	of	having	surprisingly	short	paths
linking	 everyone	 to	 everyone	 else.	 The	 surprise	 is	 both	 a	 naïve	 cultural	 kind	 of
surprise	 (‘isn’t	 it	extraordinary	 that	we	millions	of	people	are	 linked,	on	average,
by	no	more	than	six	degrees	of	separation’)	but	also	a	more	mathematical	kind	of
surprise	because	the	more	transitivity	there	is	in	a	network	the	longer	path	distances
tend	to	be.	So	human	systems	seemed	to	present	a	paradox:	they	are	both	clumpy	and
short-pathed.	 Watts	 and	 Strogatz	 soon	 discovered	 that	 the	 paradox	 was	 easily
resolved:	 it	 only	 takes	 a	 few	connections	between	clumps	 to	 shorten	 average	path
length	considerably,	so	the	class	of	networks	that	are	both	clumpy	and	have	shorts
paths	is	quite	a	bit	bigger	than	initially	thought.	Still,	there	remains	an	interest	in	the
literature	in	determining	whether	any	given	network	is	a	‘small-world	network’,	and
this	is	done	by	testing	that	the	clustering	coefficient	of	the	observed	network	is	large
relative	to	random	graphs	(in	which	the	clustering	coefficient	will	be	very	close	to
graph	density)	and	the	average	distance	approaches	the	average	distance	in	random
graphs	(which	is	quite	small).	More	information	on	detecting	small-world	networks
can	be	found	in	Chapter	14.

9.5	Triad	census

Measuring	 transitivity	 involves	 counting	 the	 occurrences	 of	 at	 least	 two	 triadic



configurations,	which	 are	 labeled	 ‘transitive’	 and	 ‘intransitive’	 in	Figure	 9.4.	One
measure	of	 transitivity	 is	 the	number	of	 transitive	 triads	divided	by	 the	number	of
transitive	plus	intransitive	triads.
However,	 there	 are	 many	 other	 triadic	 configurations	 we	 could	 count	 up	 and

which	could	be	used	 to	 characterize	 a	network.	For	directed	non-reflexive	graphs
there	are	16	possible	configurations,	as	shown	in	Figure	9.5.	The	triads	are	labeled
using	 the	 MAN	 convention	 (Holland	 and	 Leinhardt	 1975),	 where	 M	 stands	 for
‘mutuals’	(i.e.,	dyads	with	reciprocated	ties),	A	stands	for	‘asymmetrics’	(i.e.,	dyads
with	unreciprocated	ties),	and	N	stands	for	‘nulls’	(i.e.,	dyads	with	no	tie).	The	name
of	a	triad	is	given	by	the	number	of	Ms,	As	and	Ns.	For	example,	the	first	 triad	is
003,	which	 is	 a	 triad	 that	 has	 no	mutual	 dyads,	 no	 asymmetric	 dyads,	 and	 in	 fact
consists	of	three	unrelated	nodes	–	three	null	dyads.	The	intransitive	triad	is	labeled
021C	because	it	has	no	mutual	dyads,	two	asymmetric	dyads,	and	one	null	dyad	(the
C,	 for	 ‘cycle’,	 distinguishes	 it	 from	 two	 other	 configurations	 that	 have	 the	 same
MAN	count).
Given	 a	 network,	 we	 can	 count	 up	 the	 number	 of	 times	 each	 of	 these

configurations	occurs,	creating	a	profile	of	measures	that	characterizes	the	network.
As	 always,	 the	 numbers	 are	 not	 terribly	 informative	 in	 themselves:	 they	 are	 best
used	comparatively.	As	an	example,	we	study	the	triad	census	in	a	food	web	at	four
points	 in	 time	 (corresponding	 to	 the	 four	 seasons).	 The	 data	 we	 use	 is	 from	 the
Chesapeake	Bay	marine	ecosystem,	collected	by	Baird	and	Ulanowicz	(1989).	The
nodes	 are	 species,	 or	 in	 some	 cases	 compartments,	 which	 are	 aggregations	 of
similar	species.	For	each	season,	the	network	consists	of	who	eats	whom.

Figure	9.4			Transitive	and	intransitive	triads	in	undirected	graphs.



Figure	9.5			All	possible	directed	non-reflexive	triads	using	MAN	nomenclature.

Table	 9.2	 shows	 the	 raw	 counts	 of	 the	 number	 of	 triads	 of	 each	 type	 in	 each
season.	 It	 is	 readily	 noticeable	 that	 the	 proportions	 of	 each	 kind	 of	 triad	 are
basically	similar	across	the	seasons,	but	there	are	differences.	For	example,	winter
features	quite	a	few	more	003	triads,	where	no	nodes	interact,	and	correspondingly
fewer	of	most	other	kinds	of	triads.	It	is	worth	pausing	to	consider	what	the	different
triads	mean	in	this	context.	A	transitive	triad	(030T),	represents	omnivory	–	eating	at
multiple	levels	in	the	food	chain.	That	is,	a	species	A	eats	species	B,	which	eats	C,
but	A	 also	 eats	C,	 so	 it	 is	 eating	 at	 two	 separate	 levels	 of	 the	 food	 chain.	A	 triad
containing	a	mutual	dyad,	such	as	102,	reflects	a	pair	of	species	that	eat	each	other.
This	 is	 not	 as	 rare	 as	 it	 sounds,	 but	 is	 also	 due	 to	 aggregating	 different	 species
together	into	a	single	node.
In	 order	 to	 see	 the	 pattern	 of	 differences	 more	 clearly,	 we	 can	 use

correspondence	 analysis	 (see	 Chapter	 6).	 Figure	 9.6	 shows	 the	 results	 of	 a
correspondence	analysis	of	the	triads	in	Table	9.2,	omitting	the	three	rows	that	have
only	zeros.	It	can	be	seen	that	seasons	trace	an	arc	through	the	space,	starting	with
spring	at	the	bottom	right	and	moving	counterclockwise	to	winter.	This	shows	that
adjacent	seasons	are	particularly	similar	to	each	other,	as	we	would	expect.	Another
pattern	we	see	 is	 that	on	 the	 right-hand	side	of	 the	plot,	corresponding	 to	warmer



months,	we	have	triads	that	begin	with	0,	meaning	they	have	no	mutual	dyads.	On	the
left,	corresponding	to	colder	months,	are	triads	that	have	1s	and	even	2s	as	the	first
number.	 These	 are	 triads	 in	 which	 there	 are	 pairs	 that	 eat	 each	 other.	 One
explanation	is	that	when	the	weather	is	warmer,	there	are	more	species	available	and
there	is	no	need	to	resort	to	reciprocal	trophic	interactions.	In	winter,	there	is	a	kind
of	 contraction	 of	 the	 ecosystem,	 with	 less	 variety	 available	 and	 more	 reciprocal
interactions.2

Table	9.2			Triad	census	of	Chesapeake	Bay	ecosystem	data	by	season.

9.6	Centralization	and	core–periphery	indices

We	began	this	chapter	by	alluding	to	the	concept	of	centralization.	Here,	we	flesh	it
out	 a	 little	more.	 Centralization	 refers	 to	 the	 extent	 a	 network	 is	 dominated	 by	 a
single	node.	A	maximally	centralized	graph	looks	like	a	star:	the	node	at	the	center
of	the	network	has	ties	to	all	other	nodes,	and	no	other	ties	exist	(see	Figure	9.7).	A
measure	 of	 centralization,	 then,	 is	 a	 measure	 of	 the	 extent	 to	 which	 a	 network
resembles	a	star.



Figure	9.6			Correspondence	analysis	of	triads	in	Chesapeake	Bay	ecosystem	data.

There	are	many	ways	one	could	think	of	to	construct	such	a	measure,	but	the	one
that	has	become	standard	 is	 the	approach	by	Freeman	 (1979).	 In	his	 approach,	we
begin	by	computing	a	measure	of	node	centrality	(see	Chapter	10)	for	each	node	in
the	network.	For	example,	we	might	compute	degree	centrality,	which	is	simply	the
number	 of	 ties	 a	 node	 has.	 To	 calculate	 centralization,	 we	 sum	 the	 difference
between	 each	 node’s	 centrality	 and	 the	 centrality	 of	 the	 most	 central	 node.	 For
example,	for	the	network	in	Figure	9.8,	the	most	central	node	has	4	ties,	and	the	sum
of	differences	is	(4	−	2)	+	(4	−	2)	+	(4	−	2)	+	(4	−	2)	+	(4	−	4)	=	8.	We	then	divide
this	 by	 the	 maximum	 possible,	 which	 is	 the	 score	 that	 the	 star	 graph	 would	 get.
Looking	at	Figure	9.7,	it	is	clear	that	the	sum	of	differences	for	the	star	graph	is	(4	−
1)	+	(4	−	1)	+	(4	−	1)	+	(4	−	1)	+	(4	−	4)	=	12.	So	for	the	graph	in	Figure	9.8,	 the
centralization	score,	based	on	degree	centrality,	is	8/12	=	0.667.



Figure	9.7			A	star	network	with	five	nodes.

Figure	9.8			Bow-tie	network.

A	 network	 structure	 similar	 in	 spirit	 to	 centralization	 is	 the	 core–periphery
structure.	 A	 network	 with	 a	 core–periphery	 structure	 can	 be	 seen	 as	 having	 two
kinds	of	nodes:	 core	nodes,	which	 are	 connected	 to	 each	other	 and	 to	others,	 and
periphery	 nodes,	 which	 are	 connected	 only	 to	 core	 nodes.	 A	 core–periphery
network	is	a	clumpy	network	that	only	has	one	clump,	which	is	the	core.	However,	it
is	not	necessary	to	think	of	a	core–periphery	structure	in	terms	of	discrete	classes	of
nodes.	We	can	also	think	of	coreness	as	a	continuous	property	of	nodes.	In	this	case,
a	 core–periphery	 structure	 is	 one	 in	 which	 the	 probability	 (or	 strength)	 of	 tie
between	two	nodes	is	a	function	of	the	product	of	each	of	the	corenesses.	This	neatly
generalizes	the	discrete	view	we	presented	first:	two	nodes	that	have	high	coreness
will	 be	 connected	 to	 each	 other,	 and	 two	 nodes	 that	 are	 peripheral	 (have	 low
coreness)	will	 probably	 not	 be	 connected	 to	 each	other.	To	 the	 extent	 that	we	 can
assign	coreness	scores	to	nodes	such	that	the	presence	or	absence	of	a	tie	between
nodes	 can	 be	 predicted	 by	 the	 product	 of	 their	 coreness	 scores,	we	 have	 a	 core–
periphery	 structure.	 In	 this	 sense,	 the	 core-periphery	 model	 is	 analogous	 to	 the



model	 of	 independence	 in	 contingency	 table	 analysis.	 This	 tells	 us	 that	 one	 way
core-periphery	 structures	 can	 arise	 is	 when	 nodes	 associate	 at	 random,	 differing
only	in	the	frequency	with	which	they	make	connections.	Models	of	core–periphery
structures	are	described	in	more	detail	in	Chapter	12.	For	our	present	purposes,	it	is
enough	 to	note	 that	 it	 is	 possible	 to	measure	 the	 core/peripheriness	of	 a	network,
and	 this	 is	 essentially	 done	 by	 comparing	 our	 observed	 network	 to	 an	 idealized
model.

9.7	Summary

It	 can	be	useful	 to	 summarize	properties	of	whole	networks	–	 such	as	cohesion	–
that	 reflect	 important	 aspects	 of	 the	 network.	 A	 wide	 variety	 of	 measures	 are
available,	including	those	that	simply	aggregate	lower-level	measures	such	as	node
or	dyad	characteristics.	Two	basic	classes	of	whole-network	measures	are	cohesion
measures	 and	 shape	measures.	Cohesion	measures	 include	 such	 things	 as	 average
distance	between	pairs	of	nodes	and	number	of	nodes	that	have	to	be	removed	from
the	network	in	order	to	disconnect	a	randomly	chosen	pair.	Shape	measures	include
such	 properties	 as	 centralization,	 core-peripheriness	 and	 clumpiness	 (e.g.,	 as
measured	by	transitivity).
	

1	Of	course,	one	can	‘fix’	average	distance	by	replacing	the	missing	values	with	a
constant,	such	as	1	+	max,	where	max	is	the	largest	distance	actually	observed	in	the
network.
2	 However,	 there	 is	 also	 an	 artifactual	 element	 here	 as	 some	 of	 the	 nodes	 are
collections	 of	 species	 that	 have	 been	 lumped	 together	 into	 what	 are	 called
‘compartments’.



10

Centrality
	

Learning	Outcomes
	

1.	 Apply	centrality	measures	appropriately
2.	 Interpret	the	results	of	a	centrality	analysis	on	undirected,	directed	and	valued

data
3.	 Understand	the	limitations	and	constraints	of	the	standard	centrality	measures

10.1	Introduction

David	Krackhardt	(1992)	tells	 the	story	of	a	unionization	drive	in	a	Silicon	Valley
firm.	The	union	made	an	enthusiastically	pro-union	worker	named	Hal	 their	point
man	 for	 the	 campaign.	Eventually,	 there	was	 a	 vote	 and	 the	 union	 lost	 by	 a	 good
margin.	A	look	at	the	network	of	friendships	among	the	workers	showed	something
interesting	 about	 Hal,	 which	 was	 that	 he	 was	 quite	 peripheral	 in	 the	 friendship
network.	In	contrast,	Chris,	whom	the	union	never	approached,	was	highly	central	in
the	friendship	network	–	in	fact,	the	informal	leader.	Chris	was	pro-union,	but	also
very	friendly	with	the	owner,	and	concerned	that	the	union	might	hurt	profits.	When
the	 election	 came,	Chris	 abstained.	Had	he	been	 lobbied	by	 the	union	and	assured
that	they	did	not	want	to	harm	profits,	just	make	sure	the	workers	shared	in	them,	he
would	have	voted	for	them	–	and	persuaded	many	others.	Krackhardt	uses	this	story
to	illustrate	the	power	of	centrality	in	determining	events,	and	also	the	importance
of	knowing	who	is	central	when	you	are	trying	to	get	something	done.

10.2	Basic	concept

Centrality	 is	a	property	of	a	node’s1	 position	 in	 a	network.	 It	 is	 not	one	 thing	but
rather	 a	 family	 of	 concepts.	 Loosely	 speaking,	 one	 way	 to	 think	 about	 node



centrality	 is	 in	 terms	 of	 the	 contribution	 the	 node	 makes	 to	 the	 structure	 of	 the
network.	In	this	sense,	we	might	regard	centrality	as	the	structural	importance	of	a
node.	However,	there	are	many	different	ways	in	which	a	node	can	be	important	to	a
structure.	 For	 example,	 a	 node	 might	 be	 important	 because	 removing	 the	 node
would	tend	to	disconnect	the	network.	Or	a	node	might	be	important	because	a	large
number	of	ties	in	the	network	involve	that	node.
Another	way	to	think	about	centrality	is	in	terms	of	the	advantage	that	accrues	to	a

node	 by	 virtue	 of	 its	 position	 in	 the	 network.	 This	 is	 often	with	 respect	 to	 things
flowing	through	the	network,	such	as	information.2	A	node	might	be	highly	central
in	 the	 sense	of	being	well	positioned	 to	catch	what	 is	passing	 from	node	 to	node,
and	to	catch	it	early.	Or	a	node	might	be	central	in	terms	of	being	able	to	control	the
flow	of	information,	whether	in	the	sense	of	filtering	key	bits	or	passing	it	along	but
coloring	it	in	ways	that	benefit	the	node.
All	of	these	different	conceptions	give	rise	to	different	measures	of	centrality.	It

should	be	noted	that	measures	of	centrality	are	normally	computed	with	respect	to	a
single	relation	–	if	a	dataset	contains	multiple	relations	for	the	same	set	of	nodes,	a
separate	set	of	centrality	scores	is	computed	for	each	relation,	which	could	then	be
compared	 or	 aggregated.	 For	 example,	 we	 might	 construct	 an	 overall	 centrality
score	 for	 each	 node	 by	 running	 a	 factor	 analysis	 and	 taking	 the	 first	 factor	 as	 a
summary	measure.
Sociologically,	centrality	is	interpreted	in	a	wide	variety	of	ways,	many	of	which

are	 quite	 fanciful.	 People	 refer	 to	 central	 nodes	 as	 prominent,	 or	 influential,	 or
leaders,	 or	 gatekeepers,	 or	 as	 having	 great	 autonomy,	 control,	 visibility,
involvement,	prestige,	power	and	so	on.	It	is	important	to	realize	that	these	are	not
definitions	 or	 inherent	 properties	 of	 centrality	 but	 rather	 hypotheses	 about	 the
potential	consequences	of	centrality,	either	for	the	node	or	the	group	in	which	they
are	embedded.
In	general,	for	non-negative	relations	such	as	friendship	or	trust,	centrality	tends

to	be	viewed	as	a	positive	 thing	 for	nodes,	providing	actors	with	opportunities	 to
influence	 others	 and	 receive	 flows	 (including	 information,	 support	 and	 material
aid).	As	such,	centrality	is	seen	as	falling	under	the	general	rubric	of	social	capital
concepts,	 in	 which	 a	 node’s	 position	 is	 a	 source	 of	 opportunities	 and	 advantage.
Thus,	 in	 empirical	 studies,	 centrality	 is	 often	 used	 as	 an	 independent	 variable	 to
predict	positive	outcomes	for	nodes,	such	as	the	acquisition	of	wealth	or	status,	or
life	satisfaction,	health,	and	so	on.	Of	course,	whether	the	outcomes	are	positive	or
not	depends	on	the	nature	of	what	is	flowing	through	the	network.	A	person	central
in	a	face-to-face	interaction	network	may	have	many	positive	consequences,	but	they
are	also	more	likely	to	be	exposed	to	contagious	diseases.
Network	 research	 is	 also	 interested	 in	 how	 nodes	 come	 to	 be	 central.	 For

example,	we	might	hypothesize	that	in	a	given	social	context	one	gender	would	be



more	central	than	the	other,	or	that	certain	personality	types	such	as	extroverts	and
high	 self-monitors	 would	 tend	 to	 become	 central	 in	 groups.	 Another	 generic
hypothesis	is	that	various	kinds	of	human	capital	can	bring	about	centrality,	as	when
people	with	great	expertise	are	sought	out	for	advice.
There	are	dozens	of	centrality	concepts	that	have	been	put	forth	in	the	literature,

each	with	associated	measures	and/or	algorithms.	In	 this	chapter,	we	discuss	 just	a
few	 key	 constructs	 that	 we	 have	 found	 particularly	 useful	 in	 practice	 or	 are
commonly	used	 (this	 includes	 closeness,	 a	measure	we	do	not	 recommend	using,
for	reasons	discussed	later).

10.3	Undirected,	non-valued	networks

For	 simplicity	 of	 exposition,	 we	 initially	 describe	 all	 measures	 in	 the	 context	 of
undirected	 (i.e.,	 symmetric)	 and	non-valued	networks.	Then,	 in	 a	 separate	 section,
we	 reexamine	 the	measures	 in	 the	 context	of	non-symmetric	 and	valued	data.	The
chapter	concludes	with	pointers	to	additional	centrality	concepts	and	more	advanced
applications.

10.3.1	Degree	centrality
Perhaps	the	simplest	measure	of	centrality	is	degree,	which	is	simply	the	number	of
ties	 of	 a	 given	 type	 that	 a	 node	 has.	 A	 node’s	 degree	 can	 be	 calculated	 without
having	information	about	the	full	network	in	which	they	are	embedded.	As	such,	it
could	 be	 argued	 that	 it	 is	 not	 really	 a	measure	 of	 a	 centrality,	 which	we	 defined
above	as	a	property	of	a	node’s	position	in	the	network.	However,	we	include	it	here
out	of	respect	for	tradition.
In	terms	of	the	adjacency	matrix	X	of	an	undirected	network,	degree	centrality	is

simply	 the	 row	 (or	 column)	 sums	 of	 the	 adjacency	 matrix.	 If	 di	 is	 the	 degree
centrality	of	actor	i	and	xij	is	the	(i,	j)	entry	of	the	adjacency	matrix,	then

Depending	on	the	nature	of	the	network	ties,	we	can	interpret	degree	centrality	in	a
variety	of	ways.	For	example,	if	the	tie	is	friendship,	degree	centrality	is	the	number
of	 friends	 a	 node	 has,	 and	 might	 be	 hypothesized	 to	 relate	 (though	 perhaps	 not
linearly)	 to	 the	 amount	 of	 emotional	 support	 available	 to	 the	 person,	 the
opportunities	to	attend	social	events,	etc.	If	the	tie	is	trust,	it	might	be	hypothesized
to	relate	to	the	number	of	people	that	the	node	is	in	a	position	to	influence	directly.



Similarly,	high-degree	nodes	are	highly	visible,	 and	 tend	 to	be	 seen	as	 important.
For	example,	in	organizations,	nodes	with	high	degree	in	an	organizational	network
tend	to	be	the	same	ones	that	insiders	will	list	as	the	important	people	in	the	group.
If	we	assume	that	things	–	such	as	information	and	infections	–	flow	through	ties,

then	 degree	 centrality	 can	 be	 seen	 as	 an	 index	 of	 the	 exposure	 of	 a	 node	 in	 the
network	–	 that	 is,	 the	 ‘risk’	of	 receiving	whatever	 is	 flowing	 through	 the	network
(whether	it	is	information	in	a	gossip	network	or	an	infection	in	a	sexual	network).
It	can	be	shown	mathematically	that	if	something	is	taking	a	random	walk	through
the	network,	 the	probability	 that	 it	 reaches	 a	particular	node	 is	proportional	 to	 its
degree.	It	is	important	to	note,	however,	that	many	interesting	flows	probably	do	not
traverse	 networks	 as	 random	walks.	 For	 example,	 gossip	 may	 flow	 randomly	 in
many	 respects,	 but	 is	 usually	 biased	 against	 traveling	over	 the	 same	 link	multiple
times.	In	other	words,	a	person	may	receive	a	given	bit	of	gossip	many	times,	but
they	tend	not	to	tell	tell	the	same	person	the	same	story	over	and	over	again.
Having	 computed	 degree	 (and	 any	 other	 measure	 of	 centrality),	 one	 would

typically	add	 it	 to	a	node-level	database	 that	contains	other	variables	measured	on
the	 same	 nodes,	 such	 as	 gender,	 organizational	 rank,	 and	 race.	We	 can	 then	 use
conventional	statistics	to	relate	centrality	to	these	other	variables.	For	example,	we
might	 use	 a	 t-test	 to	 compare	 the	 degree	 centrality	 of	 men	 and	 women	 in	 an
organization.
We	 can	 run	 such	 a	 test	 in	 UCINET	 using	 the	 Tools|Statistics|Vector|T-Test

procedure.	First	we	run	degree	centrality	on	a	symmetrized	version	of	the	familiar
Campnet	data,	resulting	in	Figure	10.1.	The	individual	degree	centralities	are	given
in	 column	 1;	 these	 are	 often	 called	 the	 raw	 scores.	 The	 second	 column	 gives	 a
normalized	 score	 which	 is	 the	 raw	 score	 divided	 by	 the	 maximum	 possible	 in	 a
network	of	 the	same	size	and	expressed	as	a	percentage.	Since	 the	network	has	18
actors	the	highest	possible	centrality	would	be	17	(as	there	are	17	others	to	connect
to)	and	so	the	second	column	is	derived	by	dividing	the	numbers	in	the	first	column
by	17	and	multiplying	by	100.	The	third	column	is	the	share;	this	is	the	centrality	of
each	actor	divided	by	the	sum	of	all	the	actor	centralities	in	the	network.
We	can	now	run	the	permutation-based	UCINET	T-Test	procedure	to	see	if	there

are	any	differences	in	the	centralities	of	the	women	and	the	men.	The	inputs	to	this
procedure	include	both	the	centrality	of	each	node	and	the	gender	of	each	node.	It
then	computes	the	mean	centrality	for	each	gender	and	calculates	the	significance	of
the	 difference,	 using	 a	 permutation	 test	 (see	 Chapter	 8	 for	 a	 discussion	 of
permutation	tests).	The	result	is	shown	in	Figure	10.2.	In	this	output	we	can	see	that
the	means	are	very	similar	(3.88	and	3.90),	and	the	two-tailed	test	has	a	p-value	very
close	to	1	(0.9999),	and	hence	we	conclude	that	there	is	no	difference	in	centralities
between	the	two	groups.



Figure	10.1			UCINET	degree	centrality	on	symmetrized	Campnet	data.

Figure	10.2			Output	for	t-test	on	degree	centralities.

An	advantage	of	degree	centrality	is	that	it	is	basically	interpretable	in	all	kinds	of
networks,	 including	disconnected	networks.	A	disadvantage	of	degree	centrality	 is
that	 it	 is	 a	 relatively	 coarse	 measure	 of	 centrality.	 For	 example,	 if	 a	 node	 is
connected	 to	 five	 others	 that	 have	 no	 other	 ties,	 the	 centrality	 of	 this	 node	 is	 no



different	from	the	centrality	of	a	node	that	is	connected	to	five	others	that	are	well
connected	themselves	and	in	the	center	of	a	network.

10.3.2	Eigenvector	centrality
Eigenvector	 centrality	 can	 be	 described	 from	 a	 number	 of	 different	 perspectives
(Bonacich	1972).	We	present	it	here	as	a	variation	of	degree	centrality	in	which	we
count	the	number	of	nodes	adjacent	to	a	given	node	(just	like	degree	centrality),	but
weight	each	adjacent	node	by	its	centrality:

where	 e	 is	 the	 eigenvector	 centrality	 score	 and	 λ	 (lambda)	 is	 a	 proportionality
constant	 called	 the	 eigenvalue.	 The	 equation	 basically	 says	 that	 each	 node’s
centrality	is	proportional	to	the	sum	of	centralities	of	the	nodes	it	is	adjacent	to	–	in
effect,	 when	 it	 comes	 to	 eigenvector	 centrality,	 a	 node	 is	 only	 as	 central	 as	 its
network.	It	should	be	noted	that	an	adjacency	matrix	could	have	many	vectors	(and
associated	 eigenvalues)	 that	 satisfy	 the	 equation,	 and	 each	 of	 these	 vectors	 is	 an
eigenvector	 of	 the	 adjacency	 matrix.	 By	 convention	 (and	 for	 good	 mathematical
reasons),	 we	 regard	 eigenvector	 centrality	 as	 the	 eigenvector	 with	 the	 biggest
eigenvalue.	One	further	issue	with	eigenvectors	is	that	a	multiple	of	an	eigenvector
is	also	an	eigenvector	(this	can	easily	be	seen	by	multiplying	both	sides	of	equation
(10.2)	by	a	constant).	A	simple	way	to	make	them	unique	is	to	make	all	 the	entries
positive	and	force	the	sum	of	squares	to	be	equal	to	1,	but	other	approaches	can	be
taken.	This	is	not	an	issue	when	comparing	centrality	scores	with	each	other	within	a
network,	but	it	can	be	an	issue	when	comparing	scores	across	different	networks.
We	 can	 interpret	 eigenvector	 centrality	 as	 a	measure	 of	 popularity	 in	 the	 sense

that	 a	 node	 with	 high	 eigenvector	 centrality	 is	 connected	 to	 nodes	 that	 are
themselves	well	connected.	This	means	that	a	node	with	small	degree	could	have	a
higher	 score	 than	 a	 node	 with	 high	 degree	 if	 the	 first	 node’s	 friends	 are	 very
popular	while	the	second	node’s	friends	are	not.
In	 a	 flow	 context,	 we	 could	 also	 view	 eigenvector	 centrality	 as	 a	 more

sophisticated	measure	of	 risk.3	For	example,	consider	 the	hypothetical	network	of
sexual	ties	in	Figure	10.3.	Nodes	A	and	B	both	have	degree	1.	But	they	do	not	have
the	same	level	of	risk	because	the	node	that	B	is	having	sex	with,	is	having	sex	with
many	others.	Eigenvector	centrality	captures	this	difference	and	assigns	B	a	higher
score.	However,	we	need	to	be	careful	here	in	making	this	risk-based	interpretation,
because	eigenvector	centrality	does	not	take	into	account	the	fact	that	your	friends’
connections	might	be	to	the	same	people	you	are	already	connected	to,	yielding	an



inflated	estimate	of	risk.

Figure	10.3			A	sexual	contact	network.

An	important	issue	with	eigenvector	centrality	is	that	in	disconnected	networks	it
will	 assign	 zeros	 to	 all	 members	 of	 the	 smaller	 components.	 Furthermore,	 if	 a
network	has	a	bow-tie	structure	such	as	shown	in	Figure	10.4,	the	scores	for	all	the
nodes	in	the	smaller	subgroup	will	have	uniformly	lower	scores	than	the	nodes	in
the	 larger	 subgroup.	 This	 is	 not	 precisely	 a	 flaw	 since	 in	 fact	 the	 nodes	 in	 the
smaller	group	are	connected	 to	nodes	 that	 really	are	 less	well	 connected,	but	 it	 is
something	 one	 might	 want	 to	 take	 account	 of,	 particularly	 in	 the	 case	 where	 the
groups	 correspond	 to,	 say,	 organizational	 subunits	 and	 the	 size	 of	 the	 subunits	 is
determined	by	a	variable	extraneous	to	the	processes	being	researched.
One	 final	 point	 relates	 to	 the	 fact	 that	 we	 are	 interested	 in	 the	 eigenvector

associated	with	the	largest	eigenvalue.	If	this	is	similar	in	size	to	the	second	largest
eigenvalue	then	our	centrality	scores	can	be	seen	as	somewhat	arbitrary.	Ideally,	the
largest	 eigenvalue	 should	 be	 two	 or	 three	 times	 as	 large	 as	 the	 second	 largest.
Otherwise,	 it	 could	 be	 argued	 that	 you	 really	 need	more	 than	 one	 eigenvector	 to
represent	the	position	of	the	node	in	the	network,	which	may	be	inconvenient	when
testing	 hypotheses.	 For	 example,	 if	 you	 expect	 centrality	 to	 moderate	 the
relationship	 between	 an	 employee’s	 tenure	 in	 the	 organization	 and	 their
performance,	 the	 interaction	 terms	 involving	 two	 variables	 that	 jointly	 represent
centrality	can	get	complicated	and	the	results	difficult	to	interpret.



Figure	10.4			A	bow-tie	network	structure.

10.3.3	Beta	centrality
An	 interesting	 measure	 that	 in	 a	 sense	 generalizes	 both	 degree	 and	 eigenvector
centrality	 is	 beta	 centrality	 (Bonacich,	 1987).	Beta	 centrality	 is	 defined	 as	 the	 row
sums	of	the	matrix	represented	by	the	equation

although	 this	 is	 not	 very	 illuminating.4	 What	 is	 more	 illuminating	 is	 that,	 under
certain	conditions,	 the	matrix	 in	equation	(10.3)	 is	equal	 to	 the	convergent	 infinite
sum	as	shown	in	the	equation

which	is	much	easier	to	interpret.	The	terms	in	equation	(10.4)	consist	of	powers	of
the	adjacency	matrix,	and	it	 is	well	known	that	the	(i,j)	cell	of	the	kth	power	of	an
adjacency	matrix	gives	the	number	of	walks	of	length	k	from	i	to	j.	The	β	parameter
(which	is	chosen	by	the	user)	serves	as	a	length-based	weight.	Hence	the	sum	of	the
series	gives	 the	 total	number	of	walks	between	each	pair	of	nodes	of	 all	 possible
lengths,	weighted	by	βk–1.
When	β	 is	 zero,	 the	beta	 centrality	 reduces	 to	 simple	degree	 centrality,	 because

zero	to	any	positive	power	is	zero,	thus	all	but	the	first	matrix	in	the	infinite	series
will	be	weighted	zero	and	so	knocked	out.	As	we	increase	β,	though,	longer	walks
will	begin	to	count	as	well.	For	example,	if	β	is	0.2,	then	walks	of	length	2	will	be
weighted	0.2,	walks	of	length	3	will	be	weighted	0.22	=	0.04,	and	so	on.	Really	long



walks	 –	 say,	 of	 length	 10	 –	 will	 still	 be	 largely	 ignored,	 since	 0.29	 is	 only
0.000000512.	 If	we	 think	 of	 a	walk	 from	 a	 node	 to	 another	 node	 as	 a	 channel	 of
potential	 indirect	 influence,	what	 β	 does	 is	 determine	 how	much	we	 are	 going	 to
count	 long	 walks	 in	 measuring	 the	 amount	 of	 influence	 a	 node	 might	 have	 on
others.	Therefore,	we	can	think	of	beta	centrality	as	a	measure	of	the	total	amount	of
potential	 influence	 a	node	 can	have	on	 all	 others	 via	 direct	 and	 indirect	 channels,
where	indirect	channels	are	weighted	(inversely)	by	their	length,	and	β	controls	how
much	the	longer	walks	are	counted.
Now	let	us	consider	what	happens	if	we	continue	to	increase	β.	When	the	absolute

value	 of	 β	 equals	 1/λ	 (the	 reciprocal	 of	 the	 largest	 eigenvalue	 of	 the	 adjacency
matrix),	 the	 infinite	 sum	 no	 longer	 converges	 and	 equation	 (10.4)	 cannot	 be
calculated.	However,	if	we	let	the	absolute	value	of	β	get	as	close	as	we	like	to	1/λ
without	 actually	 reaching	 that	 value,	 the	 corresponding	 measure	 will	 become	 as
indistinguishable	as	we	like	from	eigenvector	centrality.	Thus,	from	the	lens	of	beta
centrality	we	can	view	degree	centrality	and	eigenvector	centrality	as	two	poles	in	a
continuum	of	measures	that	vary	in	the	extent	to	which	longer	walks	are	counted.
Thus,	the	advantage	of	beta	centrality	is	that	we	can	choose	in-between	values	of	β

that	 reflect	our	conception	of	how	much	 longer	channels	of	 influence	matter.	The
problem	is	that	we	must	somehow	figure	out	what	value	that	should	be.	Ideally,	we
would	have	some	kind	of	theory	that	would	say	that,	in	the	particular	context	of	our
study,	 β	 should	 be	 a	 certain	 value.	 Unfortunately,	 we	 are	 unlikely	 to	 have	 such	 a
theory.
Alternatively,	 we	 can	 choose	 β	 empirically	 to	maximize	 predictive	 ability.	 For

example,	 suppose	 we	 are	 investigating	 how	 social	 position	 in	 an	 organization
relates	 to	 knowledge	 of	 recent	 gossip.	We	 use	 surveys	 to	measure	 the	 network	 at
time	T,	 and	 the	amount	of	knowledge	each	person	has	at	T	+	1.	We	 then	 calculate
beta	 centrality	 for	 a	 wide	 range	 of	 βs	 from	 0	 to	 just	 under	 the	 reciprocal	 of	 the
largest	eigenvalue,	and	correlate	each	with	knowledge.	The	β	that	yields	the	largest
correlation	 is	 the	 one	we	 choose.	We	 then	 interpret	 the	 value	 of	 the	 optimal	 β	 by
looking	 at	 where	 it	 is	 in	 the	 range.	 If	 it	 is	 closer	 to	 zero,	 we	 know	 that,	 in	 our
research	 setting,	 it	 is	 only	 short	 paths	 that	 are	 important.	 If	 it	 is	 closer	 to	1/λ,	we
know	that	we	looking	at	a	phenomenon	where	even	long	paths	really	matter.
One	thing	we	have	not	explicitly	mentioned	is	that	β	can	be	negative.	When	it	is,

we	can	see	that	what	equation	(10.4)	does	is	subtract	the	weighted	counts	of	walks	of
even	length	(corresponding	to	k	being	2,	4,	6,	…)	from	the	count	of	walks	of	odd
length.	As	a	result,	a	node	like	X	in	Figure	10.5	gets	a	higher	score	than	the	Ys	when
β	is	positive	but	a	lower	score	than	the	Ys	when	β	is	negative.	This	is	because	there
are	so	many	nodes	(the	Zs)	that	are	even	lengths	from	X.



Figure	10.5			An	exchange	network.

The	thought	here	is	that	beta	centrality	with	a	negative	β	captures	power	dynamics
in	 settings	where	power	 is	 a	 function	of	 (a)	 the	number	of	 alters	 a	node	Y	has	 to
exchange	 with,	 and	 (b)	 the	 paucity	 of	 alternatives	 to	 Y	 that	 Y’s	 alters	 have.	 For
example,	in	a	trading	context,	if	you	have	many	potential	partners	to	trade	with,	but
they	only	have	you,	you	are	in	the	driver ’s	seat.	Since	the	number	of	nodes	you	can
reach	in	two	links	corresponds	to	the	number	of	alternatives	your	partners	have	to
you,	 subtracting	 these	 from	 your	 power	 score	 makes	 sense.	 In	 practice,	 using	 a
negative	β	 can	make	 surprisingly	 little	 difference.	 In	 part	 this	 is	 a	 function	of	 the
structure	of	 the	network,	and	in	part	 it	occurs	because	beta	centrality	counts	walks
rather	than	the	number	of	distinct	nodes	at	various	distances.	One	other	issue	when
selecting	 negative	 β	 is	 that	 the	 centrality	 scores	 themselves	 can	 be	 negative,
implying	that	an	actor	would	be	better	off	not	having	any	connections.	It	is	possible
to	think	of	situations	in	which	this	could	occur	but	these	are	rare,	and	in	those	cases
it	is	probably	better	to	increase	the	value	of	β	to	eliminate	negative	scores.

10.3.4	Closeness	centrality
Freeman	defined	closeness	centrality	as	the	sum	of	geodesic	distances	from	a	node
to	all	others.	(Recall	 that	 the	geodesic	distance	from	a	node	to	another	node	is	 the
length	 of	 the	 shortest	 path	 connecting	 them.)	 Closeness	 is	 an	 inverse	measure	 of
centrality	 in	 the	sense	that	 large	numbers	 indicate	 that	a	node	is	highly	peripheral,
while	 small	 numbers	 indicate	 that	 a	 node	 is	more	 central.	 In	 actual	 usage,	 people
often	use	a	normalized	version	in	which	each	node’s	centrality	is	divided	into	n	–	1,
which	is	the	minimum	possible	score	(and	occurs	when	a	node	has	a	direct	tie	to	all



n	 –	 1	 other	 nodes	 in	 the	 network).	 This	 has	 the	 effect	 of	 not	 only	 reversing	 the
values	so	that	large	numbers	correspond	to	greater	centrality,	but	also	normalizing
the	values	to	have	a	maximum	of	100%.
In	 a	 flow	 context,	 we	 typically	 interpret	 closeness	 centrality	 in	 terms	 of	 the

minimum	time	until	arrival	of	something	flowing	through	the	network.	A	node	that
has	 a	 high	 normalized	 closeness	 score	 is	 a	 short	 distance	 from	 most	 others,	 so
information	 originating	 at	 a	 random	 node	 can	 potentially	 reach	 the	 central	 node
very	 quickly.	 Also,	 since	 the	 diffusion	 process	 tends	 to	 introduce	 distortion,	 we
expect	the	information	received	by	central	nodes	to	have	higher	fidelity	on	average.
Thus,	a	high	normalized	closeness	would	seem	a	significant	advantage	for	a	node
(in	the	case	of	something	useful	being	transmitted).
Closeness	centrality	is	problematic	in	disconnected	networks.	The	distance	from	a

node	 to	 a	 node	 in	 another	 component	 is	 undefined	 since	 there	 is	 no	path	between
them.	 Some	 people	 view	 this	 distance	 as	 infinite,	 and	 then	 represent	 this	 infinite
distance	 with	 a	 large	 constant,	 such	 as	 one	 more	 than	 the	 maximum	 distance
observed	anywhere	in	the	network.	Other	approaches	include	taking	the	reciprocal
of	 each	 dyadic	 distance	 and	 assigning	 zero	 as	 the	 proximity	 of	 two	 disconnected
nodes,	or	subtracting	each	dyadic	distance	from	a	constant.	Unfortunately,	none	of
these	 is	well-justified	and	 tends	 to	 result	 in	closeness	scores	with	 little	variance,	a
problem	 that	 closeness	 suffers	 from	 anyway,	 leading	 it	 to	 have	 poor	 correlations
with	any	variable.	For	this	reason	it	is	of	limited	use	as	a	centrality	measure.

10.3.5	k-step	reach	centrality
We	now	 turn	 to	k-step	 reach	 centrality,	which	 is	defined	 as	 the	number	of	distinct
nodes	within	k	links	of	a	given	node.	In	other	words,	it	tells	you	how	many	nodes	a
given	node	can	reach	in	k	or	fewer	steps.	A	typical	number	for	k	would	be	2.	From
the	point	of	view	of	assessing	the	risk	of	catching	something,	we	might	view	this	as
an	 (admittedly	 simplistic)	 improvement	over	eigenvector	centrality.	A	node	 that	 is
within	 two	 links	 of	many	 others	 can	 be	 seen	 as	 (a)	 having	 a	 high	 probability	 of
catching	what	 they	have,	and	(b)	catching	 it	early.	By	 the	same	 token,	such	a	node
can	 also	 transmit	 something	 to	 many	 others	 very	 quickly.	 Note	 that	 by	 counting
distinct	 others,	 the	measure	 avoids	 the	 problem	with	 eigenvector	 centrality	 that	 a
node	may	appear	to	be	well	connected	simply	because	its	alters	are	well	connected
to	each	other.
One	 issue	with	 interpreting	 k-step	 reach	 in	 terms	 of	 the	 ability	 to	 receive/send

from/to	other	nodes	is	that	it	assumes	that	paths	of	length	k	are	just	as	certain	and	as
high	quality	as	paths	shorter	than	k.	For	example,	if	k	is	5,	a	node	gets	a	high	score
if	it	can	reach	many	nodes	within	k	steps.	But	if	the	process	of	transmission	is	at	all
uncertain,	 it	may	be	 a	 too	optimistic	 to	weight	 nodes	 five	 steps	 away	 the	 same	as



nodes	just	one	step	away.	At	the	same	time,	if	we	make	k	very	small,	as	in	2,	we	are
probably	being	 too	pessimistic	about	 the	chances	of	eventually	 influencing	a	node
many	links	away.
A	better	approach	might	be	to	weight	the	nodes	being	counted	inversely	by	how

far	 away	 they	 are.	Hence	 if	 a	 node	 is	 directly	 tied	 to	3	nodes,	 then	 it	 is	 two	 links
from	5	nodes	and	three	links	from	12	nodes,	which	would	yield	a	score	of	3/1	+	5/2
+	12/3	 rather	 than	3	+	5	+	12	as	 in	 the	unweighted	version.	This	measure	 (or	one
proportional	to	it)	is	referred	to	as	average	reciprocal	distance	(ARD)	in	UCINET.
Alternatively,	we	 could	weight	 by	 a	 fractional	 constant	 taken	 to	 the	 power	 of	 the
distance	 minus	 1.	 For	 example,	 suppose	 we	 think	 that	 the	 probability	 of	 a	 node
passing	something	on	to	another	 in	a	given	time	period	is	a	constant	0.5.	Then,	 in
our	 example,	 the	 node’s	 score	 would	 be	 3×0.50	 +	 5×0.51	 +	 12×0.53.	 Since	 the
constant	0.5	 is	smaller	 than	1,	 the	 increasing	distances	yield	a	smaller	and	smaller
weight.	This	approach	is	very	similar	to	the	use	of	β	in	beta	centrality.	In	UCINET,
this	measure	is	called	beta	reach	centrality.

10.3.6	Betweenness	centrality
Betweenness	centrality	(Freeman	1979)	is	a	measure	of	how	often	a	given	node	falls
along	the	shortest	path	between	two	other	nodes.	More	specifically,	 it	 is	calculated
for	 a	given	 focal	node	by	computing,	 for	 each	pair	of	nodes	other	 than	 the	 focal
node,	what	proportion	of	all	 the	shortest	paths	from	one	to	the	other	pass	through
the	 focal	node.	These	proportions	 are	 summed	across	 all	 pairs	 and	 the	 result	 is	 a
single	 value	 for	 each	 node	 in	 the	 network.	 The	 formula	 for	 the	 betweenness
centrality	of	node	j	is	given	by

where	gijk	is	the	number	of	geodesic	paths	connecting	i	and	k	through	j,	and	gik	is	the
total	 number	 of	 geodesic	 paths	 connecting	 i	 and	 k.	 A	 node’s	 betweenness	 is	 zero
when	 it	 is	 never	 along	 the	 shortest	 path	 between	 any	 two	 others.	 This	 can	 occur
when	 the	 node	 is	 an	 isolate,	 or	when	 every	 alter	 of	 a	 node	 is	 connected	 to	 every
other	alter.	Betweenness	reaches	its	maximum	value	when	the	node	lies	along	every
shortest	path	between	every	pair	of	other	nodes.
Betweenness	 is	 typically	 interpreted	 in	 terms	 of	 the	 potential	 for	 controlling

flows	through	the	network	–	that	is,	playing	a	gatekeeping	or	toll-taking	role.	In	a
sense,	 nodes	with	high	betweenness	 are	 in	 a	 position	 to	 threaten	 the	network	with
disruption	of	operations.	More	generally,	high-betweenness	nodes	are	in	a	position
to	 filter	 information	 and	 to	 color	 or	 distort	 it	 as	 they	pass	 it	 along.	However,	 the



ability	 to	 exploit	 a	 high-betweenness	 position	 varies	 inversely	 with	 the	 ease	 with
which	 nodes	 can	 create	 ties.	 For	 example,	 suppose	 that	 a	 given	 node	 has	 high
betweenness,	 meaning	 that	 many	 nodes	 need	 that	 node	 to	 reach	 other	 nodes	 via
efficient	 paths.	 In	 principle,	 this	 node	 has	 power	 because	 it	 can	 threaten	 to	 stop
transmitting,	making	 nodes	 use	 less	 efficient	 paths	 to	 reach	 one	 another.	 But	 this
threat	 only	 works	 if	 the	 other	 nodes	 cannot	 easily	 create	 new	 ties	 to	 simply	 go
around	the	recalcitrant	node.
An	excellent	example	is	provided	by	the	medieval	Russian	trade	networks	studied

by	 Forrest	 Pitts	 (1979).	 He	 notes	 that,	 in	 the	 twelfth	 century,	 Moscow	 was	 just
another	principality	indistinguishable	in	all	respects	from	hundreds	of	others.	Soon,
however,	 it	began	 to	grow,	outstripping	 the	other	principalities	 in	 the	 region.	The
question	is	why.	Was	it	perhaps	due	to	good	leadership?	Better	than	average	natural
resources?	 Or	 something	more	 structural?	 Pitts	 notes	 that	 every	 principality	 was
located	on	a	river,	which	was	used	for	trade.	The	rivers	connect	the	principalities	to
form	 a	 network	 of	 highly	 durable	 and	 difficult-to-create	 ties	 in	 a	 network	 of
principalities.	 In	 this	 network,	 Moscow	 and	 another	 town	 turned	 out	 to	 have	 the
highest	 betweenness	 centrality.	 It	 was	 therefore	 in	 an	 excellent	 position	 to	 make
demands	 (e.g.,	 exact	 tolls)	on	 the	 traders.	Since	 the	 traders	could	not	easily	create
new	ties	(e.g.,	redirect	rivers),	Moscow	could	effectively	enforce	its	demands.
It	is	useful	to	note	that,	in	practice,	the	variance	of	betweenness	tends	to	be	quite

high,	providing	effective	discrimination	between	nodes	and	potentially	correlating
well	with	other	variables.

10.4	Directed,	non-valued	networks

At	least	one	of	the	centrality	concepts	discussed	above	–	namely,	betweenness	–	can
be	applied	to	directed	data	without	any	important	change.	For	the	rest	we	can	usually
define	an	‘out’	version	and	‘in’	version,	reflecting	outgoing	versus	incoming	ties	or
paths.

10.4.1	Degree
In	the	previous	section,	degree	was	defined	as	the	row	sums	of	an	adjacency	matrix.
Since	 we	 were	 working	 with	 undirected	 networks,	 the	 adjacency	 matrix	 was
symmetric,	and	we	could	just	as	easily	have	defined	degree	in	terms	of	the	column
sums.	 For	 directed	 data,	 however,	 the	 adjacency	 matrix	 is	 not	 necessarily
symmetric,	 and	 the	 row	 and	 column	 sums	may	 be	 different.	 For	 convenience,	we
refer	 to	 the	 row	sums	as	outdegree,	 and	 the	 column	 sums	as	 indegree.	Outdegree



counts	 the	number	of	outgoing	 ties	 (arcs)	whereas	 indegree	counts	 the	number	of
incoming	 ties.	 Depending	 on	 the	 social	 relation	 in	 question,	 we	 might	 interpret
outdegree	as	 the	‘gregariousness’	or	‘expansiveness’	of	 the	node	and	the	indegree
as	the	‘prestige’	or	‘popularity’	of	the	node.	For	example,	this	interpretation	would
make	sense	for	friendship	ties.	In	the	case	of	trust	ties,	we	interpret	outdegree	as	a
measure	of	how	trusting	a	node	is,	while	indegree	is	a	measure	of	how	trustworthy
they	 are.	 In	 the	 case	 of	 dislike	 ties,	 outdegree	 is	 a	 kind	 of	 ‘curmudgeonliness’
measure,	while	indegree	is	a	‘dislikeability’	measure.
One	situation	that	is	worth	describing	in	detail	occurs	when	we	collect	data	of	the

form	 ‘who	 do	 you	 get	 X	 from’,	 as	 in	 ‘who	 do	 you	 seek	 advice	 from’.	 If	 a
respondent	A	lists	person	B,	this	is	an	outgoing	tie	from	A,	but	the	flow	of	advice	is
incoming	to	A.	So	high	outdegree	in	the	‘gets	advice’	relation	means	that	a	node	is
receiving	 advice	 from	 many	 others,	 while	 high	 indegree	 indicates	 the	 node	 is
sending	advice	to	many	others.	In	cases	like	this,	it	often	makes	sense	to	transpose
the	data	so	that	‘gets	advice’	becomes	‘gives	advice’,	and	that	way	ties	point	in	the
direction	of	the	motion	of	whatever	is	flowing.
In	survey	data,	it	is	not	unusual	to	regard	node	outdegree	with	some	suspicion	as

it	 may	 reflect	 differences	 in	 interpretation	 by	 different	 respondents,	 or	 different
levels	of	social	desirability	bias.	For	example,	in	asking	about	friendship	ties	within
an	organization,	a	node’s	high	outdegree	may	indicate	a	very	liberal	interpretation
of	the	word	‘friend’,	or	a	feeling	that	they	‘should’	list	everyone	in	their	work	unit
as	a	friend.

10.4.2	Eigenvector	and	beta	centrality
Similar	to	degree	centrality,	eigenvector	centrality	can	be	‘split’	into	two	concepts,
right	 eigenvectors	 (corresponding	 to	 outdegree),	 and	 left	 eigenvectors
(corresponding	 to	 indegree).	 If	 ties	 indicate	who	 gives	 advice	 to	whom,	 the	 right
eigenvector	can	be	seen	as	a	measure	of	potential	to	influence	others	via	both	direct
and	 indirect	 ties	 (i.e.,	 they	give	advice	 to	many	people	who	 in	 turn	give	advice	 to
many	people,	etc.),	whereas	 the	left	eigenvector	 indicates	 the	amount	of	direct	and
indirect	potential	influence	on	the	node.
However,	 there	 are	 issues	 with	 eigenvectors	 in	 directed	 data.	 Consider	 the	 left

eigenvector	 for	 the	network	 in	Figure	10.6.	We	 see	 that	 nodes	1,	 2	 and	3	have	no
incoming	ties	so	they	get	a	value	of	zero.	The	centrality	of	node	4	is	in	turn	the	sum
of	its	 incoming	ties,	which	is	also	zero.	Following	on,	we	would	expect	node	5	to
also	have	a	score	of	zero	but	it	has	a	value	of	1.	The	reason	is	that	in	this	network
the	 constant	 λ	 has	 a	 value	 of	 zero	 and	 so	 the	 sum	model	 we	 used	 breaks	 down,
although	the	eigenvector	is	still	defined.	Of	course,	we	intuitively	are	happy	with	a
result	 that	 gives	 node	 5	 higher	 centrality	 than	 the	 others,	 but	we	would	 also	 have



liked	node	4	to	have	greater	centrality	than	nodes	1,	2	and	3.	The	right	eigenvector
is	 even	more	 problematic.	 In	 this	 instance	 nodes	 4	 and	 5	 get	 a	 value	 of	 zero	 but
nodes	1,	2	and	3	can	take	any	value,	including	zero.

Figure	10.6			A	directed	network.

As	 a	 result,	 for	 directed	 data	 a	 much	 better	 approach	 is	 to	 use	 beta	 centrality.
Applying	beta	centrality	to	the	network	in	Figure	10.6	for	different	values	of	β	gives
the	results	shown	in	Table	10.1.	The	scores	have	been	normalized	so	that	the	sum	of
squares	of	all	values	equals	one.	The	top	half	of	the	table	gives	the	‘in’	scores.	When
β	=	0,	which	gives	zero	weight	to	walks	longer	than	one	link,	we	get	(normalized)
indegree,	 which	 is	 zero	 for	 all	 nodes	 except	 4	 and	 5.	 As	 beta	 increases,	 the
normalized	 value	 of	 node	 4	 moves	 toward	 zero,	 and	 the	 beta	 centrality	 vector
converges	on	the	left	eigenvector.	For	the	‘out’	scores,	a	β	=	0	gives	us	normalized
outdegree,	which	means	nodes	1,	2,	3	and	4,	all	have	the	same	score,	while	node	5
has	 zero.	As	 β	 increases,	 node	 1	 becomes	 increasingly	more	 important	while	 the
scores	 for	 all	 other	 nodes	 tends	 to	 zero.	Clearly	 for	 networks	where	 eigenvector
centrality	gives	sensible	results,	beta	centrality	gives	the	same	results	(by	setting	β
as	close	to	1/λ	as	possible).	And	for	networks	like	Figure	10.6,	where	eigenvectors
yield	undesirable	results,	beta	centrality	manages	to	give	useful	results,	particularly
for	lower	values	of	β.

10.4.3	Closeness	and	k-reach	centrality
Closeness	centrality	 is	not	well	suited	 to	directed	data.	While	we	can	easily	define
in-closeness	as	the	column	sums	of	the	geodesic	distance	matrix	and	out-closeness
as	 the	 row	 sums,	 the	 problem	we	 run	 into	 is	 that	 directed	 graphs	 are	 particularly



likely	 to	 be	 fragmented,	 so	 there	 are	 pairs	 of	 actors	 X	 and	 Y	 in	 which	 either	 X
cannot	 reach	 Y	 or	 Y	 cannot	 reach	 X.	 Graphs	 in	 which	 every	 pair	 of	 actors	 are
mutually	reachable	are	called	‘strongly	connected’	and	closeness	can	be	defined	for
these	networks,	but	these	are	unusual	in	real	data.	We	can,	of	course,	apply	the	same
techniques	for	our	weakly	or	disconnected	graphs	as	we	did	in	the	undirected	case,
but	with	an	increased	number	of	undefined	distances,	 the	closeness	scores	become
even	less	meaningful,	and	variance	across	actors	gets	very	low.

Table	10.1			Beta	centrality	scores	for	Figure	10.6.

The	 issue	 that	 makes	 closeness	 problematic	 is	 precisely	 the	 one	 that	 makes	 k-
reach	 centrality	 appropriate.	 In	 the	 directed	 case,	 we	 define	 an	 ‘out’	 k-reach
centrality	as	the	proportion	of	actors	that	a	given	actor	can	reach	in	k	steps	or	less,
and	 define	 an	 ‘in’	 k-reach	 centrality	 as	 the	 proportion	 of	 actors	 that	 can	 reach	 a
given	actor	in	k	steps	or	less.

10.5	Valued	networks

Degree	centrality	is	easily	extended	to	valued	networks	by	taking	the	tie	values	into
account	–	we	define	the	valued	degree	centrality	simply	as	the	average	value	of	each
row	(or	column)	of	the	adjacency	matrix	(for	outdegree),	or	even	more	simply	we
can	use	the	sum.	Both	eigenvector	and	beta	centrality	work	without	modification	on
valued	 data	 (provided	 the	 values	 are	 not	 negative).	 For	 eigenvector	 centrality,	 a
node’s	centrality	is	proportional	to	the	sum	of	centralities	of	its	alters,	but	weighted
by	the	strength	of	tie	to	that	alter.	This	means	that	a	high-valued	connection	to	a	low-



centrality	actor	would	produce	a	similar	result	as	having	a	low-valued	connection	to
a	highly	central	actor.
Both	betweenness	 and	 closeness	 rely	on	 identifying	optimal	paths,	which	 in	 the

case	of	binary	data	can	be	unproblematically	identified	as	shortest	paths.	But	if	the
ties	are	valued,	 there	are	a	variety	of	possibilities	 in	assessing	 the	optimality	of	a
path.	We	now	need	 to	 consider	whether	 a	 long	path	of	 strong	 ties	 is	 better	 than	 a
short	path	of	weak	ties.	For	example,	if	our	tie	strengths	are	probabilities	of	passing
along	a	bit	of	information,	we	might	consider	the	value	of	a	path	to	be	the	product
of	the	weights	of	each	link	in	the	path.	Or	if	our	tie	strengths	represent	the	capacities
of	pipes,	we	might	consider	the	value	of	a	path	to	be	the	strength	of	the	weakest	link
in	the	path.	Finally,	if	the	tie	values	represent	costs,	we	might	consider	the	value	of	a
path	 to	be	 the	 sum	of	 the	costs.	Having	decided	how	 to	assess	optimality,	we	 then
need	to	decide	(at	least	for	closeness)	whether	to	sum	the	number	of	links	in	these
optimal	 paths,	 or	 the	 values	 of	 the	 paths.	 All	 of	 this	 means	 that	 there	 is	 no	 one
generalization	 for	 valued	 data,	 but	 there	 are	 a	 number	 of	 alternatives.	 Choosing
among	these	alternatives	requires	careful	consideration	of	what	the	tie	values	mean,
and	 what	 kinds	 of	 network	 processes	 we	 are	 studying.	 In	 addition,	 identifying
optimal	 paths	 is	 computationally	 intensive.	 As	 a	 result,	 most	 studies	 take	 the
approach	 of	 binarizing	 their	 valued	 data	 and	 running	 the	 traditional	measures	 of
centrality.	 By	 taking	 different	 cut-off	 values	 for	 dichotomizing	 the	 data	 and
comparing	 results,	we	often	obtain	better,	more	 robust	and	 interpretable	centrality
results	than	the	more	sophisticated	valued	extensions.

10.6	Negative	tie	networks

As	we	have	noted,	many	centrality	measures	can	be	interpreted	in	terms	of	network
flows	 (Borgatti	 2005).	 For	 example,	 given	 a	 network	 of	 roads,	 a	 measure	 of
centrality	 such	 as	 betweenness	 centrality	 gives	 you	 an	 indication	 of	 how	 much
traffic	 can	be	 expected	 to	 flow	over	 each	node,	 given	 a	 preference	 for	 taking	 the
shortest	paths.	A	measure	such	as	closeness	gives	an	indication	of	how	long	things
take,	on	average,	to	reach	a	given	node.
This	interpretation	works	well	for	many	of	the	kinds	of	social	relations	we	study,

but	 falls	 apart	 when	we	 consider	 negative	 ties	 such	 as	 dislike.	 First,	 the	 kinds	 of
things	that	might	flow	over	a	negative	tie	are	somewhat	restricted.	If	John	dislikes
Sally,	he	might	tell	her	something	nasty,	but	there	are	many	things	John	would	not
tell	Sally.	Second,	whatever	John	chooses	to	transmit	to	Sally,	it	is	hard	to	imagine
Sally	then	relaying	it	to	someone	else	she	dislikes.	In	other	words,	if	John	lets	Sally
know	 she	 is	 incompetent,	 do	 we	 really	 expect	 Sally	 to	 then	 tell	 Bill,	 whom	 she
dislikes,	that	she	is	incompetent?	The	point	is	that	even	though	dyads	in	negative	tie



networks	may	transmit	things	from	one	node	to	the	other,	it	is	not	clear	that	paths	of
length	greater	 than	one	serve	 this	 function.	As	a	 result,	 it	 is	hard	 to	know	what	 to
make	 of	 measures	 like	 closeness	 centrality	 and	 betweenness	 when	 applied	 to
negative	 tie	 networks.	 In	 contrast,	 degree	 centrality	works	well	with	negative	 ties,
requiring	only	a	simple	reversal	of	the	usual	hypotheses.	For	example,	we	interpret
indegree	 as	 a	 measure	 of	 unpopularity	 instead	 of	 popularity,	 and	 we	 expect	 an
increase	in	indegree	to	be	associated	with	a	reduction	of	power	and	influence	rather
than	 an	 increase.	 Although	 eigenvector	 centrality	 can	 be	 thought	 of	 as	 a	 kind	 of
iterated	 degree	 centrality,	 it	 is	 unclear	 how	 useful	 eigenvector	 centrality	 is	 in	 a
negative	 tie	context.	For	 instance,	 in	 the	case	of	a	 left	eigenvector,	an	actor	would
have	 a	 high	 score	 if	 they	 were	 disliked	 by	 many	 people	 who	 themselves	 were
disliked.	This	works	 if	 being	 disliked	 by	 the	 disliked	 is	 even	more	 damning	 than
being	disliked	by	popular	actors,	but	in	reality	it	is	probably	more	problematic	to	be
disliked	 by	 the	 ones	 everybody	 likes.	 Indeed,	 being	 disliked	 by	 the	 despised	may
actually	be	considered	a	positive	sign.

10.7	Summary

Centrality	 is	 one	 of	 the	most	 widely	 used	 concepts	 in	 social	 network	 analysis.	 A
centrality	 measure	 scores	 each	 node	 in	 the	 network	 in	 terms	 of	 its	 structural
importance.	Simple	measures	such	as	degree,	which	looks	at	how	many	connections
a	 node	 has,	 are	 local,	 but	most	measures	 use	 the	whole	 network	 to	 determine	 the
centrality	score.	Being	connected	to	actors	who	are	themselves	well	connected	gives
rise	 to	 a	 family	 of	 measures	 including	 eigenvector	 and	 beta	 centrality.	 The	 beta
centrality	score	in	some	sense	captures	the	extent	to	which	distant	nodes	contribute
to	the	centrality	score:	as	we	approach	the	maximum	allowable	score	for	β,	we	get
eigenvector	 centrality,	 and	 a	 value	 of	 zero	 gives	 degree	 centrality.	 Betweenness
centrality	serves	a	very	different	purpose:	it	reflects	the	amount	of	brokerage	each
node	has	between	all	other	nodes	in	the	network.	Often,	betweenness	scores	provide
strong	 discrimination,	 with	 very	 few	 nodes	 having	 high	 scores	 and	 many	 nodes
having	 low	or	zero	scores.	The	ability	of	a	node	 to	exploit	betweenness	 is	highly
dependent	on	the	ease	with	which	the	nodes	it	is	between	can	create	ties.
	

1	Actually,	Everett	and	Borgatti	 (1999)	have	extended	centrality	 to	apply	to	groups
of	nodes	in	addition	to	individual	nodes.	But	 this	 topic	is	beyond	the	scope	of	 this
book.
2	See	Borgatti	(2005)	for	a	discussion	of	the	flow-based	view	of	centrality.



3	Since	we	are	dealing	only	with	undirected	networks	at	 this	point,	we	should	note
that	the	risk	of	receiving	something	is	the	same	as	the	capacity	to	transmit.
4	 We	 omit	 Bonacich’s	 alpha	 parameter	 which	 serves	 to	 normalize	 the	 resulting
centrality	score.



11

Subgroups
	

Learning	Outcomes
	

1.	 Understand	the	similarities	and	differences	of	the	main	approaches	in	detecting
cohesive	subgroups

2.	 Select	appropriate	methods	given	the	size	and	nature	of	the	network
3.	 Perform	a	cohesive	subgroup	analysis	on	a	variety	of	types	of	network

11.1	Introduction

Embedded	within	a	network	there	are	often	groups	of	actors	who	interact	with	each
other	 to	 such	 an	 extent	 that	 they	 could	 be	 considered	 to	 be	 a	 separate	 entity.	 In	 a
friendship	network	this	could	be	a	group	of	close	friends	who	all	socialize	together,
in	a	work	environment	a	collection	of	colleagues	who	all	support	the	same	football
team,	 or	 in	 a	 network	 of	 interacting	 organizations	 a	 collection	 of	 organizations
which	behave	as	a	single	unit	 (so-called	‘virtual	organizations’).	We	call	any	such
group	a	‘cohesive	subgroup’,	although	a	number	of	other	terms	are	also	used,	such
as	 ‘cluster ’	 and	 ‘community’.	 In	 the	 examples	 above	 we	 have	 identified	 the
underlying	cohesive	theme	which	unites	the	group,	but	this	would	not	necessarily	be
apparent	 from	the	network	under	study.	 In	examining	network	data	we	would	 first
try	to	detect	the	cohesive	subgroups	and	then,	by	looking	at	common	attributes,	see
if	 there	 was	 some	 underlying	 principle	 that	 could	 explain	why	 they	 identify	 with
each	other.	For	example,	we	may	be	interested	to	see	if	the	cohesive	groups	consist
of	people	who	smoke,	drink	or	take	drugs.	This	information	would	be	useful	in	the
design	of	any	public	health	initiative	that	had	the	aim	of	reducing	these	activities.
Actors	within	cohesive	subgroups	 tend	 to	 share	norms	and	often	have	common

goals	and	ideals.	They	can	also	exert	considerable	peer	pressure	on	their	members
to	conform	to	these	norms.	This	means	that	group	members	frequently	have	similar
outcomes	with	respect	to	adoption	of	innovation,	behaviors	and	attitudes.	In-group



members	 can	 easily	 develop	 negative	 attitudes	 toward	 out-group	 members,	 and
networks	divided	into	multiple	subgroups	can	suffer	from	warring	factions.	Clearly,
structural	 information	 alone	does	not	 tell	 us	 about	 these	 issues,	 but	 it	 does	 tell	 us
where	we	should	be	focusing	our	attention.
Alternatively,	 the	 cohesive	 groups	within	 the	 network	may	 explain,	 or	 partially

explain,	certain	outcomes.	For	example,	in	the	Kapferer	tailor	shop	study	(Kapferer
1972),	which	looks	at	ties	within	a	work	setting	at	two	different	time	periods,	there
are	significant	changes	in	the	network	structure	between	the	two	time	periods.	In	the
first	time	period	there	was	a	more	disjointed	cohesive	subgroup	structure	than	in	the
second.	As	 it	 happens,	 there	was	 an	unsuccessful	 call	 for	 a	 strike	 in	 the	 first	 time
period	 but	 a	 successful	 strike	 in	 the	 second,	 and	 this	 is	 probably	 related	 to	 the
structural	changes.
Certain	 roles	 are	played	out	within	and	between	cohesive	 subgroups.	 Internally,

there	may	well	be	group	leaders	providing	a	role	model	for	others	in	the	group	to
follow	or	dictating	the	group	norms	and	attitudes.	Alternatively,	some	actors	may	be
spanners	 between	 groups,	 providing	 important	 conduits	 for	 information	 flow	 or
acting	as	brokers	between	the	groups.
Finally,	 if	 there	 are	 shared	 norms	 and	 similar	 actions	 for	 group	members,	 we

may	 be	 able	 to	 replace	 cohesive	 group	 members	 by	 a	 single	 ‘super-node’.	 This
would	 reduce	 the	 complexity	 and	 size	 of	 the	 network	 and	 consequently	 aid
visualization	and	analysis.
At	first	sight,	it	may	appear	easy	to	identify	cohesive	subgroups	in	a	network	by

simply	visualizing	it.	Unfortunately,	it	is	very	easy	to	miss	group	members	or	even
whole	groups	when	trying	to	find	cohesive	subgroups	by	looking	at	a	network.	The
position	of	actors	on	the	page	and	the	preponderance	of	edges	make	this	task	almost
impossible	to	do	by	hand,	so	we	often	need	to	resort	to	algorithms	and	computers	to
perform	the	task	for	us.	This	is	particularly	true	if	the	data	was	collected	either	from
digital	 archives	 or	 by	 questionnaire,	 but	 even	 with	 observational	 data	 it	 is
recommended	that	a	computer	analysis	be	undertaken.
It	should	be	remembered	that	some	cohesive	subgroups	are	open	and	want	to	be

identified,	but	for	others	there	is	a	strong	disbenefit	in	identification	(e.g.,	a	cartel	or
a	drug	ring).	It	is	therefore	necessary	to	have	some	formal	definitions	that	capture
exactly	 what	 a	 cohesive	 subgroup	 is.	 Within	 the	 social	 sciences,	 the	 notion	 of	 a
social	 group	 is	 often	 used	 casually.	 It	 is	 assumed	 that	 the	 reader	 has	 an	 intuitive
grasp	 of	 the	 concept	 involved	 and	 that	 it	 is	 not	 necessary	 to	 present	 an	 exact
definition.	Clearly,	such	an	approach	cannot	be	used	to	analyze	real	data,	and	we	are
thus	forced	to	define	precisely	what	 is	meant	by	a	cohesive	subgroup.	There	are	a
large	number	of	possible	realizations	of	the	social	group	concept,	but	we	shall	only
concern	ourselves	with	the	more	commonly	used	practical	techniques.
We	 start	 by	 discussing	 several	 methods	 of	 identifying	 cohesive	 subgroups	 in



undirected	 and	 non-valued	 networks,	 and	 then,	 in	 separate	 sections,	 we	 consider
how	to	apply	subgroup	concepts	to	directed	data	and	to	valued	data.	Finally,	we	end
the	 chapter	 with	 a	 tutorial	 on	 finding	 cohesive	 subgroups	 in	 a	 directed,	 valued
dataset.

Figure	11.1			A	network	with	four	cliques.

11.2	Cliques

A	clique	is	a	subset	of	actors	in	which	every	actor	is	adjacent	to	every	other	actor	in
the	subset	and	it	is	impossible	to	add	any	more	actors	to	the	clique	without	violating
this	condition.	Formally,	a	clique	is	defined	as	a	maximal	complete	subgraph	(Luce
and	Perry	1949).	‘Complete’	means	that	every	node	in	the	clique	is	adjacent	to	every
other.	‘Maximal’	means	that	we	cannot	increase	its	size	and	still	have	it	be	complete.
This	 definition	 is	 the	 same	 for	 both	 directed	 and	 undirected	 networks,	 hence	 we
need	not	consider	these	as	different	cases.	In	applications	we	usually	insist	that	any
clique	have	at	least	three	actors,	since	normally	we	do	not	think	of	a	singleton	or	a
couple	as	a	group.
We	 can	 illustrate	 the	 idea	 of	 a	 clique	 by	 examining	 the	 undirected	 network	 in

Figure	 11.1.	 We	 see	 that	 nodes	 1,	 2,	 3	 and	 4	 are	 all	 connected	 to	 each	 other.	 In
addition,	 we	 cannot	 increase	 this	 group	 and	 still	 retain	 this	 property.	 Node	 5	 is
connected	to	3	and	4	but	not	to	1	and	2.	It	follows	that	{1,	2,	3,	4}	is	a	clique.	Other
cliques	are	{3,	4,	5},	{7,	9,	10}	and	{7,	8,	10}.	Note	 that	{1,	2,	3}	 is	not	a	clique
because	it	 is	not	maximal	(we	can	add	4	to	it).	Clearly,	cliques	can	overlap	so	that
individual	actors	can	be	in	more	than	one	clique.	In	our	example,	we	see	that	nodes
3,	4,	7	and	10	are	all	in	two	cliques.	Finally,	there	can	be	actors	who	are	not	in	any
cliques.	In	our	example,	we	can	see	that	node	6	is	not	in	any	cliques.
As	a	practical	example,	we	return	to	the	14	Western	Electric	employees	working

in	a	bank	wiring	room	introduced	in	Chapter	2.	The	employees	worked	in	a	single
room	and	included	two	inspectors	(I1	and	I3),	 three	solderers	(S1,	S2	and	S4)	and



nine	 wiremen	 (W1	 to	 W9).	 One	 of	 the	 observed	 relations	 was	 participation	 in
horseplay,	 and	 the	 adjacency	 matrix	 referred	 to	 as	 the	 games	 matrix	 is	 given	 in
Matrix	11.1.

Matrix	11.1			Games	matrix	from	the	bank	wiring	room	data.

The	cliques	routine	in	UCINET	was	used	to	identify	the	following	five	cliques:
	

1.	 I1	W1	W2	W3	W4
2.	 W1	W2	W3	W4	S1
3.	 W1	W3	W4	W5	S1
4.	 W6	W7	W8	W9
5.	 W7	W8	W9	S4

We	note	that,	although	these	cliques	overlap,	there	are	two	distinct	groups,	namely
{I1,	W1,	W2,	W3,	W4,	W5,	 S1}	 and	 {W6,	W7,	W8,	W9,	 S4},	 together	with	 two
outsiders,	I3	and	S2.	These	two	groupings	are	in	exact	agreement	with	the	findings
of	 Roethlisberger	 and	 Dickson	 (1939),	 who	 identified	 the	 groups	 as	 those	 at	 the
front	of	the	room	and	those	at	the	back.	In	this	instance	a	simple	clique	analysis	has
been	 successful	 in	 identifying	 important	 structural	 properties	 of	 the	 network.
Unfortunately,	most	analyses	are	not	as	straightforward	as	this	one.	Often	there	are	a
large	number	of	overlapping	cliques,	and	it	is	difficult	to	deduce	anything	directly
from	the	clique	list.

11.2.1	Analyzing	clique	overlaps



When	there	are	a	 large	number	of	cohesive	subgroups,	 the	overlap	 itself	can	hide
features	of	 the	clique	structure.	A	network	with	 just	21	nodes	can	have	up	 to	2187
different	 cliques!	While	 it	 is	 true	 that	 this	 is	 unlikely	 to	 occur	 in	 any	 real	 data,	 it
does	give	an	indication	of	the	possible	scale	of	the	problem.
One	possible	way	forward	when	we	have	too	many	cliques	is	to	try	to	reduce	the

number	of	cliques	by	 increasing	 the	minimum	size	 to	more	 than	 three.	While	 this
approach	 has	 some	 merit,	 it	 has	 the	 disadvantage	 of	 ignoring	 some	 possibly
important	 smaller	 cliques.	 An	 alternative	 strategy	 would	 be	 to	 try	 to	 remove	 or
reduce	 the	 overlap	 by	 performing	 some	 additional	 analyses	 on	 the	 cliques
themselves.	We	shall	now	explore	this	approach	in	some	detail.
We	can	use	 the	cliques	 to	obtain	a	measure	of	association	between	each	pair	of

actors.	 If	 actor	X	 is	 in	 a	 large	number	of	 cliques	with	 actor	Y,	 it	 is	 reasonable	 to
assume	that	X	and	Y	are	reasonably	close.	In	fact,	we	can	build	a	proximity	matrix
which	tells	us	how	many	times	each	pair	of	actors	 in	our	network	are	in	 the	same
clique	together.	We	call	this	matrix	the	‘clique	co-membership	matrix’	A,	where	A(i,
j)	 is	 the	 number	 of	 times	 i	 is	 in	 a	 clique	with	 j.	The	 ith	 diagonal	 entry	 gives	 the
number	of	cliques	containing	actor	 i.	Matrix	11.2	gives	 the	 clique	 co-membership
for	the	games	matrix	in	the	bank	wiring	room	study	we	just	examined.
If	we	look	at	row	5,	column	6	of	Matrix	11.2,	we	can	see	that	W3	was	in	a	clique

with	W4	on	three	occasions,	and	the	diagonal	entry	for	row	4	indicates	that	W2	was
in	two	cliques.	These	results	can	be	checked	by	referring	back	to	the	list	of	cliques
displayed	earlier.
We	 note	 that	 the	 clique	 co-membership	 matrix	 is	 a	 proximity	 matrix	 in	 which

larger	values	indicate	a	stronger	link	–	that	is,	it	is	a	similarity	matrix.	This	matrix
can	then	be	submitted	to	a	hierarchical	clustering	procedure	such	as	the	average-link
method.	 The	 result	 will	 be	 sets	 of	 non-overlapping	 nested	 clusters	 of	 actors.
Applying	 this	 technique	 to	 the	 clique	 co-membership	 matrix	 for	 the	 games	 data
results	 in	 the	cluster	diagram	given	 in	Figure	11.2.	 In	 this	diagram	we	can	clearly
see	the	two	outsiders,	S2	and	I3,	and	at	the	0.381	level	the	two	major	groupings	{I1,
W1,	W2,	W3,	W4,	W5,	S1}	and	{W6,	W7,	W8,	W9,	S4}	 identified	previously.	 In
addition,	we	can	see	that	W1,	W3	and	W4	are	the	most	active	in	the	first	group	and
W7,	W8	and	W9	are	the	most	active	in	the	second.	The	cliques	routine	in	UCINET
produces	these	analyses	automatically	as	part	of	the	routine.



Matrix	11.2			Clique	co-membership	matrix	for	the	games	data.

Figure	11.2			Hierarchical	clustering	of	the	clique	overlap	matrix.

In	this	simple	example	the	method	has	clearly	worked	well.	But	care	is	needed	in
interpreting	 the	 results	 when	 using	 a	 technique	 like	 this.	 The	 clustering	 is	 based
upon	the	amount	of	activity	of	pairs	of	actors	and	not	on	the	strength	or	overlap	of
the	 groups.	 A	 consequence	 of	 this	 is	 that	 in	 a	 network	 with,	 say,	 one	 large
homogeneous	 group	 and	 another	 group	 consisting	 of	 a	 large	 number	 of
overlapping	 cliques,	 the	 analysis	will	 be	 biased	 towards	 the	 complex	 overlapping
structure.	Another	possible	objection	to	the	method	is	that	it	completely	eliminates
one	 of	 the	 desirable	 features	 of	 cohesive	 subgroups,	 namely	 overlap.	 Our	 own
experiences	tell	us	that	it	is	quite	common	for	actors	to	be	in	more	than	one	group.
One	possible	solution	would	be	to	cluster	the	cliques	as	opposed	to	the	actors;	this	is
a	useful	approach,	and	details	of	how	to	do	it	are	given	at	the	end	of	the	chapter.	We
shall	now	turn	our	attention	to	a	completely	different	approach.



11.2.2	Bimodal	method
The	bimodal	method	(Everett	and	Borgatti	1998)	examines	both	the	cliques	and	the
actors	simultaneously	by	constructing	a	two-mode	data	matrix	of	actors	by	cliques
called	a	‘clique	participation	matrix’.	This	matrix	has	the	actors	as	the	rows	and	the
cliques	 as	 the	 columns.	 The	 entries	 measure	 the	 extent	 to	 which	 an	 actor	 is	 in	 a
clique.	 Actors	 with	 no	 direct	 connections	 to	 a	 clique	 member	 score	 0,	 clique
members	score	1,	and	values	in	between	give	the	number	of	ties	which	connect	the
actor	to	the	clique	divided	by	the	number	of	ties	required	for	the	actor	to	be	a	clique
member.	Hence,	if	a	clique	has	four	members	then	adding	a	new	node	requires	five
more	 reciprocated	 edges.	 It	 follows	 that	 if	 an	 actor	 is	 already	 connected	 to	 three
clique	members	by	reciprocated	ties	then	they	have	three	of	the	five	required	ties.	In
this	case	the	entry	in	the	clique	participation	matrix	would	be	3/5	=	0.6.	This	matrix
can	 then	be	visualized	as	a	 two-mode	data	matrix	 in	NetDraw	or	analyzed	using	a
two-mode	 technique	 such	 as	 correspondence	 analysis	 (see	 Chapter	 13	 for	 more
details	on	two-mode	networks).
We	 first	 demonstrate	 this	 technique	 on	 the	 games	 data	 from	 the	 wiring	 room

before	showing	both	methods	in	a	more	complex	example.	The	clique	participation
matrix	 derived	 from	 the	 five	 cliques	 found	 in	 the	 wiring	 data	 above	 is	 given	 in
Matrix	11.3;	 this	 is	 automatically	 produced	 in	 the	UCINET	 clique	 routine.	 Figure
11.3	 shows	 the	 data	 visualized	 as	 a	 two-mode	 dataset	 in	NetDraw.	 The	 actors	 are
represented	 by	 gray	 circles	 and	 the	 cliques	 by	 squares.	The	 thickness	 of	 the	 lines
represents	 the	values	 in	 the	 clique	participation	matrix,	with	higher	values	having
thicker	lines.	We	note	the	two	isolates	I3	and	S2,	and	we	can	see	that	cliques	1,	2	and
3	are	placed	close	together,	as	are	cliques	4	and	5.	We	clearly	see	the	two	groups	of
actors	–	one	at	 the	 top,	 the	other	at	 the	bottom	of	 the	diagram	–	with	W5	and	W7
occupying	bridging	positions	between	the	groups.	The	 thickness	of	 the	 lines	show
that	W5	 identifies	 with	 the	 bottom	 group,	 whereas	W7	 is	 associated	 with	 the	 top
group.	 The	 groups	 would	 be	 more	 clearly	 identified	 if	 we	 only	 visualized	 the
stronger	 links,	but	we	would	 then	hide	 the	 important	 roles	played	by	W5	and	W7.
We	now	demonstrate	both	methods	on	a	more	complex	example.



Matrix	11.3			Clique	participation	matrix	for	the	games	data.

Figure	11.3			Visualization	of	the	clique	participation	matrix.

We	 first	 introduced	 the	karate	 club	data	 in	Chapter	7	 and	 used	 it	 in	 our	ERGM
example	in	Chapter	8,	but	we	need	to	give	a	bit	more	detail	to	help	with	our	analysis.
Zachary	 (1977)	collected	data	on	 the	members	of	a	university	karate	club.	One	of
the	data	matrices	he	 collected	 is	 a	 record	of	 interactions	between	members	of	 the
club	outside	of	club	activities.	During	the	study	there	was	a	dispute,	and	this	resulted
in	the	club	splitting	in	two.	The	data	only	considers	those	members	of	the	club	who
joined	one	of	the	two	new	clubs	created	by	the	split.	There	were	34	actors	involved
in	 the	 study.	 A	 clique	 analysis	 reveals	 25	 overlapping	 cliques.	 The	 results	 of	 the
clique	co-membership	clusterings	are	presented	in	Figure	11.4.
We	 can	 see	 two	 distinct	 groupings	 which	 are	 identified	 at	 level	 0.001:	 one



containing	 the	 set	 {1,	 2,	 3,	 4,	 5,	 6,	 7,	 8,	 11,	 13,	 14,	 17,	 18,	 20,	 22}	 and	 the	 other
containing	the	set	{9,	23,	24,	25,	26,	27,	28,	29,	30,	31,	32,	33,	34},	with	10	and	12
being	 outside	 the	 clique	 structure.	 In	 addition,	 we	 have	 some	 information	 on	 the
activities	 of	 individuals.	 Actors	 33	 and	 34	 are	 in	 eight	 different	 cliques	 together,
indicating	 that	 this	pair	are	 important	within	 the	group	and	are	possibly	 taking	on
some	kind	of	leadership	role	(we	could	use	centrality	to	measure	this).	Actors	1	and
2	 are	 similarly	 highly	 active,	 and	 we	 could	 draw	 the	 same	 conclusions.	 Now
consider	the	bimodal	method.	The	NetDraw	visualization	is	given	in	Figure	11.5.

Figure	11.4			Hierarchical	clustering	of	the	karate	club	clique	overlap	matrix.

The	cliques	are	represented	by	the	gray	squares	and	the	actors	by	the	circles.	In
addition,	we	have	colored	the	circles	black	for	the	actors	who	ended	up	in	one	club
and	white	for	the	actors	who	went	to	the	other	club.	It	should	be	noted	that	one	club
was	led	by	actor	1,	the	other	by	actor	34.	The	diagram	clearly	identifies	two	sets	of
cliques:	one	on	the	right	of	 the	picture	and	one	on	the	left.	At	the	extreme	left	and
right	 are	 clearly	 identified	 two	 separate	 groups	 associated	 with	 each	 cluster	 of
cliques.	Towards	the	center,	there	are	actors	associated	with	the	left	group	(10,	28,
29,	31,	33,	and	34)	and	some	associated	with	the	right	group	(1,	2,	4	and	8).	These
two	groups	clearly	have	links	with	both	major	groupings	but	have	stronger	links	to
the	groups	they	are	closest	to.	In	the	diagram	actors	3,	9,	14,	20	and	32	are	placed	in
the	center	between	the	two	major	groupings.	By	examining	the	stronger	 links	(not



shown	here)	 as	we	did	 for	 the	wiring	data,	 it	 is	 possible	 to	 associate	 these	 actors
uniquely	 with	 each	 group.	 Actors	 9	 and	 32	 are	 closer	 to	 the	 group	 on	 the	 left,
whereas	3,	14	and	20	are	linked	more	strongly	to	the	right	group.	This	is	consistent
with	the	co-membership	method,	but	in	this	case	we	were	able	to	assign	the	actors
10	and	12.	If	we	had	used	this	method	to	predict	which	clubs	the	actors	would	have
joined	after	the	split,	we	would	have	only	wrongly	assigned	actor	9.	Zachary	gives
an	 ethnographic	 reason	 for	 actor	 9	 joining	 the	 club	 with	 which	 he	 was	 less
associated.	The	new	club	the	clique	analysis	associated	him	with	were	going	to	do	a
different	 type	of	karate.	He	was	only	 three	weeks	away	from	gaining	a	black	belt,
and	if	he	joined	that	club	he	would	be	required	to	give	up	his	brown	belt	and	start
again.

Figure	11.5			Bimodal	analysis	of	the	karate	club	clique	participation	matrix.

In	doing	an	analysis,	we	should	not	view	co-membership	and	bimodal	techniques
as	alternatives	but	as	providing	different	views	of	the	same	data.	They	are	both,	after
all,	a	secondary	analysis	of	the	clique	structure	and	are	adding	to	the	information	we
have	already	gleaned.	The	co-membership	method	did	not	successfully	place	actors
10	 and	 12,	 but	 it	 gave	 us	 leadership	 information	 not	 provided	 by	 the	 bimodal
method.	Thus,	it	would	always	make	sense	to	use	both	of	these	methods	to	obtain	the
maximum	benefit	from	any	clique	analysis.
A	clique	has	a	 formal	definition	and	we	use	computer	algorithms	 to	 search	 for

cliques	 in	 the	data	 (often	 followed	by	a	 secondary	analysis	of	 the	clique	overlap).
An	alternative	approach	is	to	define	cohesive	subgroups	in	terms	of	the	output	of	a
particular	 algorithm	 rather	 than	 starting	 from	 a	 definition.	 We	 now	 look	 at	 two
methods	which	take	this	approach.



11.3	Factions

In	this	section	we	shall	look	at	a	method	that	partitions	the	whole	population	into	a
predetermined	number	of	 cohesive	groups.	Since	we	have	a	partition,	 every	actor
must	be	placed	into	a	unique	group.	When	we	determined	cliques,	we	allowed	actors
to	 be	 placed	 in	more	 than	 one	 group	 and	 also	 accepted	 that	 some	 actors	 did	 not
belong	 to	 any	 group.	 We	 now	 insist	 that	 every	 single	 actor	 in	 the	 network	 be
assigned	to	one	and	only	one	group.	Furthermore,	when	applying	this	method,	we
shall	have	to	determine	the	number	of	groups	a	priori.	This	is	because	the	algorithm
we	shall	be	using	tries	to	fit	the	actors	into	the	groups	and	then	measures	how	well
this	has	been	achieved.
We	shall	illustrate	the	ideas	by	a	simple	example.	We	first	need	some	measure	of

how	well	a	partition	has	divided	the	actors	into	cohesive	subgroups.	One	way	would
be	to	calculate	the	density	of	each	of	the	groups	and	then	sum	them	up.	If	we	wish	to
partition	 our	 data	 into	 three	 groups,	 the	 best	 value	 we	 could	 achieve	 using	 this
measure	 is	 3.	This	would	 occur	when	 each	 group	 had	 the	maximum	density.	Any
measure	used	in	this	fashion	is	more	commonly	referred	to	as	a	‘cost	function’,	and
the	value	of	the	function	for	a	particular	partition	is	called	the	fit.	Unfortunately	it	is
not	possible	in	general	to	evaluate	all	possible	group	assignments	and	then	select	the
best.	 There	 are	 simply	 too	 many	 for	 a	 computer	 to	 examine,	 so	 we	 need	 an
alternative	approach.
The	algorithm	proceeds	as	 follows.	First,	 arbitrarily	assign	everyone	 to	one	of

the	groups	 and	 then	 calculate	 the	 fit	 to	 see	how	good	 the	partition	 is.	Next,	move
some	actors	from	one	group	to	another,	calculate	the	fit	again	and	see	if	there	is	any
improvement.	Continue	in	this	way	until	no	more	improvement	is	possible	and	the
result	 is	 the	 required	partition.	The	hard	part	 is	 how	 to	decide	on	what	 is	 a	 good
move.	There	 is	a	class	of	methods	called	 ‘combinatorial	optimizations’	which	are
specifically	designed	 to	 try	 to	do	 this.	 It	 should	be	noted	 that	 this	 is	a	deliberately
vague	description	of	how	the	methods	work:	the	interested	reader	would	be	advised
to	 look	at	 the	specialist	 literature	on	combinatorial	optimization	 techniques.	When
applying	any	of	 these	algorithms	to	a	real	problem,	 the	user	needs	 to	be	aware	of
the	 possible	 pitfalls	 in	 interpreting	 the	 results.	 The	 most	 important	 factor	 to	 be
remembered	is	 that	 there	will	always	be	a	solution.	That	 is,	 if	 the	data	contains	no
real	groups,	 the	data	will	still	be	partitioned	into	the	prescribed	number	of	classes
and	the	method	finds	the	best	of	the	possible	solutions	it	has	looked	at.	The	fact	that
none	of	 the	 solutions	 is	 any	good	 is	 ignored.	As	 an	 extreme	 example,	 consider	 a
network	 in	 which	 everyone	 is	 connected	 to	 everyone	 else.	 If	 we	 selected	 three
groups,	any	partition	into	three	would	have	the	same	fit	as	any	other.	The	algorithm
would	therefore	retain	the	original	arbitrary	split	and	this	would	be	reported	as	the
partition.	 Clearly,	 there	 is	 only	 one	 group	 within	 the	 data	 and	 yet	 the	 algorithm



would	report	three	factions	as	requested.	Note,	further,	that	the	density	cost	function
proposed	above	would	be	at	the	maximum	fit	of	3.	This	could	be	fixed	by	having	a
more	 sophisticated	 cost	 function,	 but	 the	 underlying	 problem	of	 always	 finding	 a
solution	 still	 remains.	 Linked	 to	 this	 is	 the	 problem	 of	 the	 uniqueness	 of	 the
solution.	That	is,	 there	may	be	more	than	one	partition	into	factions	with	the	same
maximum	fit.

Figure	11.6			A	network	with	two	cliques.

Consider	two	complete	networks	of	the	same	size	together	with	one	actor	linked
to	all	the	actors	in	the	network.	Figure	11.6	is	such	a	network:	each	of	the	complete
networks	consists	of	three	actors	{1,	2,	3}	and	{5,	6,	7},	with	actor	4	connected	to
everyone.	 Suppose	 now	 we	 wish	 to	 search	 for	 two	 factions.	 The	 two	 complete
graphs	will	each	be	 in	a	separate	faction,	but	 to	which	group	does	actor	4,	who	is
connected	to	everyone,	belong?	The	density	fit	will	be	perfect	whichever	group	is
selected.	That	is,	the	partition	{1,	2,	3,	4}{5,	6,	7}	is	as	good	as	{1,	2,	3}	{4,	5,	6,	7}.
There	 are	 therefore	 two	 possible	 partitions,	 both	 of	 which	 are	 valid.	 In	 more
complex	data	there	may	be	a	number	of	very	different	partitions	all	of	which	have
the	same	or	very	similar	fit	values.	One	way	to	check	the	robustness	of	a	partition	is
to	 repeat	 the	 analysis	 a	 number	 of	 times	 to	 see	whether	 the	 final	 factions	 are	 the
same	or	similar.
The	 simple	 density	 cost	 function	 used	 to	 illustrate	 the	 principles	 in	 factions	 is

often	 not	 effective.	 The	 reason	 is	 that	 it	 only	 captures	 part	 of	 the	 intuitive	 notion
discussed	 in	 the	 first	 section	 of	 this	 chapter.	 Since	 we	 are	 trying	 to	 partition	 the
whole	network,	we	are	 able	 to	 include	both	 the	 idea	of	 internal	 cohesion	between
group	members	 and	 a	 separation	 or	 distancing	 from	members	 outside	 the	 group.
One	way	to	achieve	this	is	to	measure	the	similarity	of	the	partitioned	data	matrix	to
an	‘ideal’	structure	matrix.	We	now	explore	this	approach.
By	way	of	an	example,	let	us	consider	a	partition	of	a	network	into	three	groups.

If	 we	 apply	 the	 intuitive	 notions	 discussed	 in	 the	 first	 section	 of	 this	 chapter,	 the
idealized	structure	consists	of	three	groups,	each	of	which	is	a	complete	component.
We	 can	 use	 this	 information	 to	 construct	 the	 adjacency	 matrix	 of	 the	 idealized



structure.	Suppose	 that	our	 three	groups	consist	of	3,	5	and	4	actors,	 respectively,
and	for	clarity	we	will	assume	that	actors	1,	2	and	3	are	in	the	first	group;	actors	4,
5,	6,	7	and	8	are	in	the	second	group	and	actors	9,	10,	11	and	12	are	in	the	last	group.
The	resultant	matrix	has	the	structure	shown	in	Matrix	11.4.

Matrix	11.4			An	ideal	cohesive	subgroup	structure.

We	can	now	compare	 this	matrix	with	our	data	matrix	 to	provide	a	measure	of
how	good	our	partition	is.	There	are	a	number	of	possible	measures	which	compare
matrices,	but	we	mention	just	 two	here.	Each	will	give	rise	 to	a	cost	function.	The
first	is	to	simply	count	the	number	of	cells	that	are	different	between	the	data	matrix
and	the	idealized	structure	matrix.	The	second	method	is	to	calculate	the	correlation
coefficient	 between	 the	 matrices	 (to	 do	 this	 we	 simply	 treat	 the	 entries	 of	 each
matrix	 as	 if	 it	 is	 one	 long	 vector	 split	 over	 a	 number	 of	 rows,	 as	 discussed	 in
Chapter	 8).	 It	 must	 be	 remembered	 that,	 since	 we	 do	 not	 have	 statistical
independence,	 the	 correlation	 coefficient	 can	 have	 no	 statistical	 significance
associated	with	it.	This	means	we	are	unable	to	interpret	any	particular	value	of	the
coefficient	in	absolute	terms.	We	are,	however,	able	to	establish	that	one	particular
partition	 is	 closer	 to	 the	 ideal	 than	 another.	Obviously,	 every	 time	 there	 is	 a	 new
distribution	of	actors	between	the	groups,	we	need	to	construct	a	different	idealized
matrix	and	use	this	as	the	basis	of	our	cost	function.
We	 shall	 now	 take	 as	 an	 example	 the	 karate	 club	 data	 that	was	 analyzed	 in	 the

previous	section.	We	already	know	from	the	study	that	every	actor	joined	one	of	the
two	 clubs,	 so	 the	 data	 should	 split	 into	 two	 factions.	 The	 Factions	 routine	 in
UCINET	was	 run	 using	 the	 correlation	 cost	 function.	The	 process	was	 repeated	 a
number	of	times	using	different	starting	configurations,	but	the	same	groups	always



emerged.	 The	 results	 are	 shown	 in	 Figure	 11.7.	 The	 group	 assignments	 are	 in
agreement	with	 those	reported	by	Zachary,	both	 in	 terms	of	 the	factions	 identified
by	observation	and	subsequent	club	membership,	with	the	exception	of	actor	9.	They
are	also	the	same	as	the	analysis	we	obtained	using	the	bimodal	method.

Figure	11.7			A	factions	analysis	of	the	karate	club	data.

11.4	Girvan–Newman	algorithm

One	 approach	 to	 finding	 cohesive	 subgroups	 is	 to	 try	 to	 find	 the	 structurally
important	edges	whose	removal	fragments	the	network	rather	than	finding	cohesive
groups	directly.	These	edges	cannot	be	within	the	cohesive	groups	and	so	must	be
between	them.	The	removal	of	these	edges	will	leave	just	the	cohesive	groups.	This



is	 the	 approach	 taken	 by	 the	 Girvan–Newman	 algorithm	 (Girvan	 and	 Newman
2002).
Edge	 betweenness	 is	 defined	 in	 a	 similar	 way	 to	 vertex	 betweenness.	 Edge

betweenness	 is	 a	 count	 of	 the	 number	 of	 times	 an	 edge	 lies	 on	 a	 geodesic	 path
between	a	pair	of	vertices.	Hence,	as	in	the	vertex	case,	we	take	all	pairs	of	vertices
and	 simply	 count	 in	 the	 same	 way	 the	 number	 of	 times	 each	 edge	 is	 part	 of	 a
geodesic	path.	If	we	delete	 the	edge	with	 the	highest	score,	we	will	either	 increase
the	 number	 of	 components	 or	 increase	 the	 fragmentation.	 If	we	 iteratively	 repeat
this	process,	the	number	of	components	will	continue	to	increase	until	we	are	only
left	with	 isolates.	We	usually	 stop	 the	 process	 before	 this	 happens.	The	 algorithm
proceeds	as	follows:

1.	 Set	the	maximum	number	k	of	cohesive	subsets	required.
2.	 Calculate	the	edge	betweenness	of	the	network	and	find	the	edge	(or	edges)

with	the	highest	score.
3.	 Delete	this	edge	(or	edges)	and	count	the	number	of	components	that	now	exist.
4.	 If	the	number	of	components	exceeds	k	then	stop,	otherwise	go	to	step	2.

As	 the	 algorithm	 iterates,	 we	 obtain	 different	 partitions.	 These	 do	 not	 increase
necessarily	 by	 1	 each	 time,	 as	 there	may	 be	more	 than	 one	 edge	with	 the	 highest
score.	In	addition,	the	algorithm	makes	an	assessment	of	how	good	each	partition	is
in	 terms	 of	 a	 numerical	 score	 called	 ‘modularity’,	 denoted	 by	 Q.	 Modularity
compares	the	number	of	internal	links	in	the	groups	to	how	many	you	would	expect
to	see	if	they	were	distributed	at	random.	Higher	values	mean	that	the	algorithm	has
found	more	significant	groupings.	Negative	values	are	possible,	indicating	that	the
groups	are	less	cohesive	than	a	purely	random	assignment.
If	 we	 used	 the	 Girvan–Newman	 algorithm	 on	 the	 karate	 club	 data,	 we	 would

obtain	very	similar	results	to	those	using	other	methods.	As	an	alternative	we	return
to	the	tailor	shop	data	briefly	mentioned	in	the	first	section	of	this	chapter.	We	first
look	at	time	period	1	when	the	strike	was	not	successful.	We	run	the	algorithm	for
up	to	10	groups	and	obtain	the	following	measures:

Partition	with	4	clusters:	Q	=	0.000
Partition	with	5	clusters:	Q	=	0.000
Partition	with	6	clusters:	Q	=	–0.001
Partition	with	7	clusters:	Q	=	–0.001
Partition	with	8	clusters:	Q	=	0.004
Partition	with	9	clusters:	Q	=	0.225
Partition	with	10	clusters:	Q	=	0.226

The	partition	measure	for	4,	5,	6,	7	and	8	clusters	is	very	small.	In	fact,	each	of	these



consists	 of	 one	 large	 group	with	 just	 a	 single	 actor	 in	 each	 of	 the	 other	 groups.
These	represent	an	unsuccessful	attempt	to	partition	the	data,	and	the	first	(and	only)
success	 is	 into	 9	 clusters.	Of	 course,	 7	 of	 these	 clusters	will	 consist	 of	 singleton
actors,	but	the	higher	score	shows	that	the	main	group	has	been	split.	The	fact	that
the	10-cluster	partition	has	nearly	the	same	score	as	the	9	shows	that	this	has	simply
added	another	singleton	group.	Figure	11.8	shows	the	9-cluster	solution.	Each	of	the
white	actors	is	in	their	own	cluster	and	the	main	split	of	the	large	group	is	into	black
and	 gray.	 The	 partition	 in	 Figure	 11.8	 divides	 the	 large	 central	 group	 into	 two,
indicating	that	they	are	not	as	united	as	they	should	have	been	in	order	to	organize	a
strike.	 If	 this	 analysis	 is	 repeated	 at	 time	 period	 2,	 there	 is	 no	 split	 of	 the	 main
group,	which	might	explain	why	the	strike	was	successful.

Figure	11.8			Girvan–Newman	split	of	the	tailor	shop	data.

11.5	Directed	and	valued	data

With	directed	data,	 the	maximum	cohesion	can	only	be	achieved	when	every	tie	 is
reciprocated.	The	approach	 to	directed	data	 is	 therefore	 to	 simply	 symmetrize	 the
data	 first	 to	 produce	 an	 undirected	 network	 of	 reciprocated	 ties.	 There	 may	 be
circumstances	when	 it	makes	more	 sense	 to	 examine	 the	underlying	graph,	which
means	that	we	consider	an	edge	to	be	present	if	there	is	a	link	in	either	direction.	For
example,	perhaps	there	are	very	few	(or	even	no)	reciprocated	links,	but	in	this	case
we	are	really	finding	cohesive	groups	based	on	a	different	relation	to	the	one	that	is
being	analyzed.	Again,	care	should	be	taken	in	interpreting	the	groups.
In	principle,	concepts	like	cliques	can	be	reformulated	for	valued	data,	but	at	the

current	 time	 there	 is	 no	 generally	 accepted	 valued	 definition	 of	 cliques.	 So	 the



standard	 approach	 to	 using	 cliques	with	 valued	 data	would	 be	 to	 dichotomize	 the
data	 in	 the	ways	 outlined	 in	 Chapter	 5.	 Often,	 one	 would	 want	 to	 dichotomize	 at
different	levels	and	compare	the	results.
In	contrast,	 the	factions	technique	is	easily	adapted	to	valued	data.	In	the	case	of

the	 UCINET	 program,	 the	 decision	 was	 made	 to	 simplify	 things	 by	 having	 the
factions	 procedure	 handle	 only	 dichotomous	 data,	 and	 include	 a	 separate	 routine,
called	Clustering|Combinatorial	Optimization,	 to	handle	 the	more	general	 case	of
valued	 data.	 The	 procedures	 are	 identical	 except	 that	 the	 measures	 of
correspondence	between	ideal	and	real	datasets	available	in	each	are	different,	since
some	procedures	 for	valued	data	would	be	 less	 than	appropriate	 for	dichotomous
data,	and	vice	versa.
As	an	example,	we	consider	the	now	familiar	valued	and	non-symmetric	dataset

called	Camp92	available	in	UCINET.	The	values	are	ranks	indicating	how	highly	the
row	person	has	 ranked	 the	 column	person	 in	 terms	of	how	much	 interaction	 they
have	had	over	the	last	week.	A	smaller	value	indicates	more	interaction.	If	we	block
the	matrix	 according	 to	 the	 factions	produced	by	 the	Optimization	 algorithm	 (see
Figure	 11.9),	 the	 smallest	 values	 occur	 with	 the	 blocks	 along	 the	 main	 diagonal,
meaning	that	social	‘distances’	are	mostly	small	within	factions,	as	they	should	be.
The	 density	 table	 at	 the	 bottom	 of	 the	 output	 gives	 the	 average	 rank	 within	 and
between	factions.
Most	computer	implementations	of	the	Girvan–Newman	algorithm	do	not	allow

valued	 data,	 although	 in	 principle	 the	 procedure	 can	 be	 applied	 to	 valued	 data,
particularly	where	the	values	represent	costs	or	distances	as	in	the	Camp92	dataset,
as	explained	by	Brandes	(2008).
Finally,	we	should	mention	 that	 symmetric	valued	data	 is	proximity	data,	 so	 the

standard	 methods	 of	 hierarchical	 clustering	 and	 multidimensional	 scaling	 can	 be
directly	applied	to	the	data.



Figure	11.9			Clustering	of	valued	data	into	three	groups.

11.6	Computational	considerations

All	the	techniques	in	this	chapter	require	a	computer	to	carry	out	any	analysis.	The
algorithms	 employ	 direct	 search	 methods	 for	 the	 cliques,	 combinatorial
optimization	 for	 the	 factions,	 and	 a	 simple	 polynomial-time	 algorithm	 for	 the
Girvan–Newman	 procedure.	 The	 time	 required	 for	 the	 searches	 can	 increase
exponentially	with	 the	 size	 of	 the	 problem,	making	 this	 a	 practical	 issue.	 For	 the
clique	 analysis,	 the	 important	 factors	 are	 the	 number	 of	 edges	 and	 the	 number	 of
cliques.	Since	larger	networks	tend	to	be	less	dense	in	general,	the	number	of	edges
is	not	a	major	 issue.	Thus,	a	clique	analysis	on	networks	containing	hundreds	and
even	 thousands	 of	 actors	 is	 feasible,	 provided	 there	 are	 not	 too	many	 groups.	 If
there	is	a	problem	in	terms	of	computation,	the	analyst	should	consider	increasing
the	minimum	 size	 of	 a	 group	 (this	 significantly	 decreases	 the	 number	 of	 groups,
and	sophisticated	software	can	use	this	information	to	reduce	the	number	of	edges).



For	 very	 large	 networks,	 we	 advise	 breaking	 them	 down	 into	 smaller	 portions
before	undertaking	an	analysis.
The	combinatorial	search	routines	have	computation	times	that	depend	upon	the

number	of	actors	and	the	number	of	factions.	They	are	best	suited	to	fewer	than	100
actors	 and	 partitions	 into	 five	 or	 fewer	 groups.	 It	 would	 be	 computationally
impossible	 to	 take,	 say,	1000	actors	 and	partition	 them	 into	15	groups.	Again,	 the
basic	 approach	 in	 dealing	 with	 large	 networks	 or	 many	 groups	 is	 to	 break	 the
network	 down	 into	 smaller	 portions.	 Girvan–Newman	 is	 a	 polynomial-time
algorithm	 and	 so	 does	 not	 suffer	 from	 the	 same	 computational	 constraints.
However,	when	the	networks	become	large,	the	algorithm	does	have	a	tendency	to
create	many	clusters	containing	singleton	actors.

11.7	Performing	a	cohesive	subgraph	analysis

In	 this	 section	 we	 give	 a	 step-by-step	 procedure	 for	 examining	 the	 cohesive
subgraph	structure	within	a	network.	These	steps	are	 intended	as	a	guide	only	and
should	not	be	seen	as	the	definitive	approach	to	analyzing	data.	The	guide	is	naive,
since	we	make	no	assumptions	about	the	nature	of	the	data	and	have	no	knowledge
of	 the	 research	 questions	 being	 investigated.	 A	 sophisticated	 analyst	 can	 take	 the
steps	in	a	different	order	and/or	bypass	some	of	them.

Step	1
If	the	data	is	binary,	go	to	step	2.	If	the	data	is	valued,	either	use	a	technique	designed
for	 valued	 data	 (e.g.,	 multidimensional	 scaling,	 hierarchical	 clustering,	 or
UCINET’s	Clustering|Combinatorial	Optimization	routine)	or	dichotomize	the	data.
When	 dichotomizing,	 it	 is	 important	 to	 make	 the	 1s	 in	 the	 resulting	 matrix
correspond	 to	 stronger	 social	 ties,	which	could	mean	 taking	values	greater	 than	a
given	threshold	for	similarity	data,	or	values	smaller	than	a	given	value	for	distance
data.	Once	the	data	is	in	binary	form,	go	to	step	2.	Always	repeat	the	analysis	with
different	cut-off	values	to	test	for	robustness	and	to	get	a	more	complete	picture	of
the	data.	For	data	with	multiple	relations,	analyze	each	relation	separately.

Step	2
Establish	 the	 components.	 For	 directed	 data,	 find	 both	 the	 weak	 and	 strong
components	 (see	Chapter	2).	Components	 represent	 the	 simplest	 form	of	cohesive



subgroup	 analysis	 and	 can	 sometimes	 provide	 sufficient	 information	 to	 answer
research	questions	(particularly	with	large	datasets).	If	this	is	the	case,	the	analysis	is
complete.	If	not,	proceed	to	step	3.

Step	3
If	a	partition	is	required	and	the	approximate	number	of	groups	has	been	decided,
go	to	step	6.	Otherwise,	find	all	the	cliques.	If	there	are	no	or	very	few	cliques,	try
the	following:
	

If	the	minimum	clique	size	is	4	or	more,	reduce	it	(but	do	not	go	below	3).
If	the	data	was	directed,	look	at	the	underlying	graph	–	that	is,	symmetrize	the
data	by	taking	the	minimum;	in	this	case	care	needs	to	be	taken	in	interpreting
the	cliques	as	the	relation	has	been	changed.
If	the	data	was	dichotomized,	reduce	the	cut-off	value	for	similarity	data	or
increase	it	for	distance	data.

If	all	these	steps	fail,	proceed	to	step	5.	If	too	many	cliques	are	found	(this	may	only
be	apparent	after	step	4),	try	the	reverse	of	the	options	above	for	too	few	cliques.	If
a	 simple	 listing	 of	 the	 cliques	 is	 sufficient,	 stop;	 however,	 unless	 the	 structure	 is
very	simple,	it	is	worth	going	on	to	step	4.

Step	4
Analyze	 the	pattern	of	overlap.	Both	methods	of	analyzing	 the	overlaps	described
earlier	 in	 the	chapter	should	be	used	 to	 try	 to	 identify	major	groupings	of	cliques
and	 actors	 –	 outsiders	 and	 possible	 leaders	 and	 spanners	 of	 the	 groups.	 It	 should
also	be	possible	to	deduce	the	approximate	number	of	groupings;	this	information
can	be	used	to	perform	a	factions	analysis.	If	a	partition	of	the	data	is	required,	go	to
step	6;	otherwise,	the	analysis	is	complete.

Step	5
Apply	 the	 Girvan–Newman	 algorithm.	 If	 this	 gives	 a	 satisfactory	 result,	 stop;
otherwise,	continue	to	step	6.



Step	6
Partition	 the	network	 into	 factions.	Factions	 should	be	 implemented	on	each	weak
component	of	the	network,	since	separate	components	will	always	fall	into	different
factions.	Therefore,	only	components	which	need	to	be	broken	into	smaller	groups
need	 to	 be	 analyzed.	Decide	 how	many	 factions	 should	 be	 used.	This	 number	 can
sometimes	 be	 determined	 from	 the	 clique	 analysis	 or	 is	 known/decided	 from
external	 sources.	 If	 there	 is	 no	 source	 of	 information,	 try	 different	 numbers	 of
groups	starting	from	2	moving	up	to	3,	4	and	5.	If	the	outcome	of	the	analysis	is	one
large	group	with	all	other	groups	consisting	of	single	or	few	actors,	 then	the	data
cannot	be	split	into	this	many	groups.	If	repeated	runs	produce	the	same	actors	in	the
smaller	groups,	the	routine	is	identifying	outsiders.	Remove	the	outsiders	and	repeat
the	analysis.	Outsiders	can	also	be	identified	using	the	clique	methods.	If	this	and	all
the	other	methods	fail,	it	is	reasonable	to	assume	that	the	data	does	not	possess	any
cohesive	subgroups.

An	Example

We	shall	now	use	the	steps	outlined	in	the	previous	section	to	analyze	the	New-comb
fraternity	data	discussed	in	Chapter	8.	Recall	 that	the	data	is	from	a	study	in	which
17	previously	unacquainted	undergraduate	transfer	students	were	allowed	to	live	for
free	in	a	fraternity	house	on	the	campus	of	the	University	of	Michigan	in	the	fall	of
1956.	In	return	for	board	and	lodgings,	each	student	supplied	data	over	a	16-week
period,	 including	 a	 complete	 rank	 ordering	 of	 the	 other	 16	 members	 by
‘favorableness	 of	 feeling’.	We	 shall	 examine	 the	 data	 for	 week	 15:	 rankings	 are
from	1,	most	favorable,	to	16,	least	favorable,	and	no	ties	were	allowed.	The	data	is
given	in	Matrix	11.5.

STEP	1

As	we	 have	 valued	 non-symmetric	 data,	we	 first	 try	 the	Clustering|Combinatorial
Optimization	method.	We	tried	two	and	three	groups:	the	three-group	split	was	not
very	successful;	the	two-group	split	produced	clusters	{1,	2,	4,	5,	6,	7,	8,	9,	11,	12,
13,	14,	17}	and	{3,	10,	15,	16},	with	a	blocked	data	matrix	as	shown	in	Figure	11.10.



Matrix	11.5			Newcomb	fraternity	data.

Figure	11.10			Clustering	of	raw	Newcomb	fraternity	data.

Rather	than	accept	this,	we	will	continue	with	subsequent	steps	to	see	if	the	other
methods	agree	with	these	groupings.	We	first	need	to	dichotomize	the	data.	We	shall
start	 by	 assuming	 that	 the	 actors’	 top	 five	 choices	 are	 important	 and	we	 therefore
replace	rankings	from	1	to	5	with	the	value	1	and	change	all	other	values	to	zero.
We	 shall	 change	 these	 values	 later	 to	 check	 that	 we	 have	 robust	 groupings.	 The
results	are	given	in	Matrix	11.6.



STEP	2

Perform	a	component	analysis.	The	data	has	only	one	weak	component,	consisting
of	 all	 the	 actors.	 There	 is	 one	 large	 strong	 component	 and	 four	 trivial	 strong
components	consisting	of	the	singleton	actors	3,	10,	15	and	16.	This	analysis	has	not
provided	us	with	any	 insight	 into	 the	 internal	structure	of	 the	group.	We	therefore
proceed	to	step	3.

STEP	3

A	standard	clique	analysis	reveals	seven	cliques,	shown	in	Figure	11.11.	We	see	that
actors	3,	10,	14,	15	and	16	are	not	in	any	cliques.	We	note	that	3,	10,	15	and	16	were
one	of	the	groups	found	by	the	clustering	method	in	step	1.	This	analysis	shows	they
were	 removed,	 since	 they	are	outsiders	 from	 the	main	group	and	are	not	a	group
within	 themselves.	 The	 number	 of	 cliques	 clearly	 provides	 us	 with	 some
information,	and	we	therefore	proceed	to	step	4.

Matrix	11.6			Dichotomized	fraternity	data.



Figure	11.11			Clique	analysis	results.

STEP	4

The	clique	co-membership	method	yields	a	large	group	consisting	of	actors	{1,	2,
4,	 5,	 6,	 8,	 9,	 13,	 17}	with	 a	 smaller	 group	 of	 {7,	 11,	 12}	 and	 the	 outsiders.	 The
bimodal	 method	 agrees	 with	 this,	 but	 provides	 some	 additional	 insight	 into	 the
structure	of	the	larger	group;	the	latter	can	be	split	into	{2,	4,	5,	9}	and	{1,	8,	13},
with	actors	6	and	17	as	part	of	both	and	acting	as	brokers	between	these	two	groups.
A	 repeat	 analysis	 taking	 just	 the	 top	 three	 choices	 gives	 similar	 results.	 In	 this

instance,	 the	 groups	 reported	 come	 from	 the	 component	 analysis	 and	 a	 clique
analysis	is	not	required.	Taking	the	top	seven	choices	produces	similar	results,	but
the	 outsiders	 tend	 to	 cloud	 the	 standard	 clique	 analysis.	 The	 faction	method	with
three	groups,	however,	gives	the	groupings	{1,	2,	4,	5,	6,	8,	9,	13,	14,	17},	{10,	15,
16}	 and	 {3,	 7,	 11,	 12},	 in	 close	 agreement	 with	 our	 previous	 analysis.	 In	 this
instance,	the	{10,	15,	16}	group	had	no	ties	with	the	other	two	groups.	We	therefore
conclude	that	our	analysis	is	robust	and	represents	the	structure	inherent	in	the	data,
and	we	terminate	our	analysis.

11.8	Supplementary	material

In	the	group	co-membership	method	outlined	above,	the	approach	was	to	cluster	the
actors	based	upon	 the	 frequency	of	pairwise	group	membership.	A	dual	 approach
would	be	to	cluster	the	groups	based	upon	a	measure	of	pairwise	overlap.	The	result
would	be	a	hierarchical	clustering	of	groups,	where	each	group	at	a	particular	level
would	be	uniquely	placed	in	a	cluster.	But,	since	the	actors	can	belong	to	more	than
one	group,	 the	clusters	of	groups	could	consist	of	 actors	belonging	 to	more	 than
one	cluster.	We	assume	that	group	X	and	group	Y	are	similar	if	they	share	a	lot	of
actors.	 We	 therefore	 define	 a	 similarity	 matrix	 called	 the	 ‘co-group	 matrix’	 B,
where	B(i,	 j)	 is	 the	 number	 of	 actors	 group	 i	 has	 in	 common	with	 group	 j.	 The
diagonal	entries	will	give	the	size	of	the	groups.	Matrix	11.7	is	the	co-group	matrix
for	 the	clique	analysis	of	 the	games	data.	Notice	 that	 the	matrix	 is	5	×	5	 since	we
identified	five	cliques.



Matrix	11.7			Co-group	matrix	for	the	games	data.

We	 see	 that,	 since	 the	 (2,	 3)	 entry	 is	 4,	 cliques	 2	 and	 3	 have	 four	 actors	 in
common:	 W1,	 W3,	 W4	 and	 S1.	 If	 this	 is	 now	 submitted	 to	 an	 average	 link
hierarchical	clustering	procedure,	we	obtain	the	clustering	given	in	Figure	11.12.
Here	we	 see	 that	 cliques	1,	 2	 and	3	 form	a	 cluster,	 and	 cliques	4	 and	5	 form	a

separate	cluster.	The	actors	in	cliques	1,	2	and	3	are	{I1,	W1,	W2,	W,	3	W4,	W5,	S1}
and	 in	cliques	4	and	5	are	{W6,	W7,	W8,	W9,	S4},	 repeating	 the	 results	obtained
from	the	actor-based	clustering.	The	reason	these	two	methods	agree	is	that	there	is
no	overlap	between	the	two	basic	groups.	However,	in	general	this	would	not	be	the
case.	Again,	this	analysis	is	done	automatically	within	UCINET.

Figure	11.12			Hierarchical	clustering	of	the	co-group	matrix.

11.9	Summary

Cohesive	 subgroups	 (sometimes	 referred	 to	 as	 communities)	 are	 portions	 of	 the
network	in	which	actors	interact	more	with	each	other	than	they	do	with	actors	who
are	 not	 in	 the	 group.	 Such	 groups	 often	 share	 common	 ideals,	 goals	 and/or
attributes	and	are	therefore	of	particular	interest.	There	are	two	distinct	approaches
to	looking	for	such	groups.	The	first	is	to	start	with	an	explicit	definition	such	as	a
clique	and	 then	 look	 for	cliques	 in	 the	data.	The	second	 is	 to	devise	an	algorithm
which	captures	subgroup	properties	and	then	use	this	to	identify	the	groups;	factions
and	 Girvan–Newman	 take	 this	 approach.	 Clique	 analysis	 usually	 requires	 a
secondary	analysis	to	untangle	the	complex	overlapping	structures	which	result.	The
two	 approaches	 to	 this	 are	 to	 use	 hierarchical	 clustering	 on	 the	 clique	 overlap
matrix	or	 to	use	 two-mode	 techniques	on	 the	clique	participation	matrix.	The	first
approach	 prevents	 an	 actor	 from	 being	 in	 more	 than	 one	 clique,	 although	 other
techniques	 could	 be	 used	 (such	 as	multidimensional	 scaling)	which	 do	 not	 suffer
from	 this	problem.	The	 second	approach	allows	 for	a	visualization,	which	can	be
explored	interactively.	More	complex	methods,	discussed	in	Chapter	13,	could	also
be	 used,	 but	 these	 are	 not	 usually	 necessary.	 The	 method	 of	 factions	 uses
optimization	 techniques	 to	 try	 to	 partition	 the	 data	 into	 meaningful	 groups.	 The
Girvan–Newman	 algorithm	 searches	 for	 central	 edges	 which	 hold	 the	 network



together	and	deletes	these	to	recursively	uncover	the	cohesive	subgroups.	Neither	of
these	 methods	 allows	 for	 overlap.	 Computationally,	 factions	 can	 be	 limiting	 and
Girvan–Newman	 does	 not	 always	 yield	 groups.	 In	 analyzing	 any	 real	 data	 a
combination	of	approaches	is	usually	recommended.



12

Equivalence
	

Learning	Outcomes
	

1.	 Understand	the	underlying	model	of	structural	and	regular	equivalence
2.	 Construct	and	interpret	blockmodels	for	both	regular	and	structural

equivalence
3.	 Undertake	a	core–periphery	analysis	of	a	network

12.1	Introduction

Ideas	of	social	role	have	been	important	to	social	theorists	since	the	middle	of	the
last	century.	Some	social	theorists	have	emphasized	the	set	of	rights	and	obligations
associated	 with	 social	 roles.	 Others,	 however,	 such	 as	 Nadel	 (1957),	 view	 roles
from	 a	 relational	 perspective.	 A	 teacher	 is	 a	 teacher	 because	 she	 has	 certain
characteristic	relations	with	her	students,	who	in	 turn	are	defined	in	 terms	of	 their
relations	with	their	teachers.	Social	networks	provide	an	ideal	environment	in	which
to	formalize	relational	perspectives	on	role	and	position.
We	 recall	 that	 a	 social	network	 in	 its	 largest	 sense	may	consist	of	 a	number	of

different	 relations	 collected	 on	 the	 same	 set	 of	 actors.	 One	 of	 the	 fundamental
aspects	of	social	role	is	that	it	is	determined	over	a	number	of	different	relations.	It
follows	 that	 any	 relational	 definition	 of	 role	 or	 position	 should	 be	 capable	 of
simultaneously	taking	account	of	multiple	different	kinds	of	ties	among	nodes.
Nodes	 that	 occupy	 the	 same	 structural	 roles	 or	 positions	 are	 said	 to	 be

equivalent.1	The	positional	approach	to	network	analysis	is	based	upon	identifying
similar	positions	and	should	be	contrasted	with	the	relational	or	cohesive	subgroup
approach	of	Chapter	11.	Whereas	positional	approaches	seek	classes	of	nodes	 that
have	 similar	 structural	 properties,	 cohesive	 subgroup	 approaches	 seek	 clusters	 of
nodes	that	are	connected	to	each	other.	Formal	definitions	have	been	developed	for
directed	and	undirected	networks.	These	definitions	have	then	been	relaxed	so	as	to



allow	for	the	analysis	of	noisy	and	valued	data.
Over	 the	 years,	 network	 researchers	 have	 developed	 a	 number	 of	 different

concepts	of	 structure-based	equivalence	 that	each	have	 their	utility.	 In	 this	chapter,
however,	we	shall	only	address	two	concepts:	Lorrain	and	White’s	(1971)	structural
equivalence	 and	 White	 and	 Reitz’s	 (1983)	 regular	 equivalence	 (which	 actually
includes	 structural	 equivalence	 as	 a	 special	 case).	 We	 begin	 with	 structural
equivalence.

12.2	Structural	equivalence

In	 its	 simplest	 form,	 structural	 equivalence	 examines	 the	 direct	 connections	 of	 an
actor	 to	other	actors	 in	 the	network.	Two	actors	are	structurally	equivalent	 if	 they
send	ties	to	the	same	third	parties,	and	receive	ties	from	the	same	third	parties.	They
do	 not	 need	 to	 have	 a	 direct	 tie	 to	 each	 other	 to	 be	 equivalent.	 Thus,	 an	 actor ’s
position	is	defined	by	whom	he	is	connected	to	–	his	‘location’	in	social	space.
A	useful	question	to	ask	is	why	we	should	care	about	structural	equivalence.	One

reason	 is	 that	 there	 is	 a	 lot	 of	 empirical	 evidence	 that	 shows	 that	 structurally
equivalent	 actors	 share	 other	 similarities	 as	 well,	 such	 as	 similarities	 in	 attitudes
(Erickson	 1988)	 and	 behaviors	 (Burt	 1980).	 In	 other	 words,	 actors	 in	 the	 same
equivalence	 class	 tend	 to	 show	 a	 certain	 amount	 of	 homogeneity,	 very	much	 like
actors	 in	 the	same	cohesive	subgroup.	The	mechanism,	however,	can	be	different.
For	example,	in	the	case	of	cohesive	groups,	actors	are	interacting	with	each	other
and	being	 exposed	 to	 each	other ’s	 ideas,	 language,	 infections,	 and	 the	 like.	 It	 is	 a
contagion	process.	In	the	case	of	structurally	equivalent	actors	(who	may	not	even
know	 each	 other),	 it	 is	 that	 their	 similar	 social	 environments	 provoke	 similar
responses.	For	example,	if	two	people	are	connected	to	the	same	set	of	very	gossipy
people,	 they	might	 both	 learn	 to	 keep	 their	mouths	 shut	 for	 their	 own	 protection.
Notice	how	different	this	is	from	a	contagion	process,	where	they	would	be	closed-
mouthed	 because	 their	 friends	were	 close-mouthed.	 In	 contagion,	 having	 gossipy
friends	would	mean	 becoming	 gossipy	 as	well.	 Thus,	 one	mechanism	 underlying
the	 relationship	 between	 structural	 equivalence	 and	 homogeneity	 is	 the	 idea	 that
persons	adapt	to	their	social	environments,	and	therefore	actors	with	similar	social
environments	will	 tend	 to	have	certain	 similarities.	Since	 the	concept	of	 sharing	a
niche	 in	 both	 ecology	 and	 marketing	 involves	 sharing	 the	 same	 environment
(whether	 physical/biological	 or	 client-based),	 structural	 equivalence	 provides	 a
network	definition	of	the	concept	of	niche.
Another	way	 to	 think	about	 structural	equivalence	 is	 in	 terms	of	 substitutability.

Nodes	 that	 are	 structurally	 equivalent	 are	 structurally	 indistinguishable	 and
therefore	substitutable.	For	example,	a	computer	programmer	working	on	a	project



may	fall	sick,	and	her	role	might	then	be	taken	over	by	a	contract	programmer.	In
terms	of	whom	he	reports	to	and	whose	code	his	code	has	to	connect	with,	the	new
programmer	relates	to	all	other	members	of	the	project	team	in	the	same	way	as	the
previous	programmer.	It	follows	that	the	new	and	the	old	programmer	have	exactly
the	same	connections	in	the	work	network	and,	as	such,	are	structurally	equivalent
and	substitutable.
A	final	reason	for	paying	attention	to	structural	equivalence	is	that	we	can	use	it

as	a	kind	of	data	reduction	device	because	it	enables	us	to	build	a	simplified	model
of	the	network	without	sacrificing	essential	features.	Hence,	it	provides	a	high-level
description	of	the	relations	within	the	network.
We	 shall	 now	give	 a	 formal	 definition	 of	 structural	 equivalence.	Although	 it	 is

possible	 to	 give	 a	 sophisticated	 mathematical	 definition	 (see	 Lorrain	 and	 White
1971),	we	shall	give	a	slightly	longer	but	less	technical	one.	This	definition	is	valid
for	 undirected	 data	 that	 allows	 self-loops.	 Two	 actors	 i	 and	 j	 are	 structurally
equivalent	if	the	following	two	statements	are	true	for	every	relation	in	our	dataset:

For	every	actor	k	different	from	i	and	j,	whenever	i	is	connected	to	k,	then	j	is
also	connected	to	k,	and	if	i	is	not	connected	to	k	then	neither	is	j.
If	i	is	connected	to	itself	then	so	is	j,	and	if	i	is	not	connected	to	itself	then
neither	is	j	–	so	that	both	actors	share	the	same	relationship	with	themselves.

Hence,	 for	 undirected	 graphs	 without	 self-loops,	 the	 definition	 reduces	 to	 the
following.	Actors	i	and	j	are	structurally	equivalent	if,	excepting	each	other,	they	are
connected	to	exactly	the	same	other	actors.
The	 extension	 to	 directed	 data	 simply	 deals	 with	 both	 the	 incoming	 ties	 and

outgoing	 ties	 separately.	 This	 also	 adds	 another	 level	 of	 complication	 in	 dealing
with	the	relationship	between	i	and	j,	but	fundamentally	the	concept	is	the	same.
Let	 us	 now	 consider	 some	 examples	 on	 single-relationship	 networks.	 If	 we

examine	R1	in	Figure	12.1,	we	can	easily	see	that	actors	3,	4	and	5	are	all	connected
to	1	and	2	and	are	all	therefore	structurally	equivalent.	Notice	further	that	actor	1	is
connected	to	2,	3,	4,	5	and	actor	2	is	connected	to	1,	3,	4,	5;	therefore	outside	of	each
other	 they	 are	 both	 connected	 to	 3,	 4,	 5	 and	 both	 have	 self-loops	 and	 hence	 are
structurally	 equivalent.	 In	 relation	R2	 actors	 3	 and	 4	 both	 only	 receive	 ties	 from
actors	 1	 and	 2	 and	 are	 therefore	 structurally	 equivalent.	 Actors	 1	 and	 2	 are	 both
connected	to	3	and	4	and	both	receive	ties	from	5;	in	addition,	the	connection	from
actor	1	to	2	is	matched	by	the	connection	from	2	to	1	so	that	they	too	are	structurally
equivalent.	Note	that	5	is	not	structurally	equivalent	to	any	of	the	other	actors.



Figure	12.1			A	multirelational	network.

We	now	look	at	Figure	12.1	as	a	multirelational	example	consisting	of	five	actors
on	three	relations.	In	relation	R1	actors	1	and	2	are	structurally	equivalent	and	so	are
actors	3,	4	and	5.	However,	 in	 relations	R2	and	R3	 actors	 1	 and	2	 are	 structurally
equivalent	and	so	are	3	and	4,	but	5	is	not	structurally	equivalent	to	any	other	actor
in	either	relation.	It	follows	that	the	structurally	equivalent	actors	are	1	and	2	as	one
pair	and	3	and	4	as	another	pair.
Another	 way	 of	 thinking	 about	 structural	 equivalence	 is	 that	 if	 we	 remove	 the

labels	 that	 identify	 two	structurally	equivalent	actors,	 i	and	 j,	 say,	on	a	diagram,	 it
will	no	longer	be	possible	to	tell	which	is	which.	This	is	because	they	have	exactly
the	same	pattern	of	relationships	over	all	relations.	If	we	look	back	at	R1	in	Figure
12.1	and	remove	the	labels	3	and	5,	we	have	no	way	of	knowing	which	label	belongs
to	which	 vertex.	 This	would	 not	 be	 the	 case	 if	 labels	 2	 and	 3	were	 removed:	we



know	that	the	actor	of	degree	4	is	2	and	the	one	of	degree	2	is	3.	A	consequence	of
this	is	that	structurally	equivalent	actors	are	identical	with	respect	to	any	structural
property.	 They	 have	 the	 same	 degree,	 the	 same	 centrality,	 participate	 in	 the	 same
number	of	cycles,	etc.	They	are	perfectly	substitutable	for	each	other.
To	 extend	 the	 definition	 to	 valued	 data,	 we	 simply	 insist	 that	 the	 identical

connections	 to	 other	 actors	 have	 identical	 values.	 If	 in	 relation	R2	 in	 Figure	 12.1
actors	1	and	2	are	structurally	equivalent	and	the	edge	(1,	3)	has	a	value	of	5.0,	the
edge	(2,	3)	must	have	a	value	5.0.	Furthermore,	if	the	edge	(1,	2)	has	a	value	of	7.0,
so	must	the	edge	(2,	1).

12.3	Profile	similarity

Our	definition	of	structural	equivalence	is	an	ideal	mathematical	model	and	would
rarely	 occur	 in	 real	 data.	 It	 does,	 however,	 provide	 a	 theoretical	 framework	 on
which	 we	 can	 base	 measures	 that	 try	 to	 capture	 the	 degree	 to	 which	 actors	 are
structurally	equivalent	to	each	other.	This	will	allow	us	to	analyze	data	that	contains
measurement	error,	respondent	variability	and	all	 the	other	inevitable	inaccuracies
associated	with	collecting	real	data.
We	first	observe	that	structural	equivalence	is	a	local	property	in	the	sense	that	to

determine	whether	a	pair	of	actors	are	structurally	equivalent	we	only	need	to	know
to	whom	they	are	directly	connected.	As	a	result,	ego	network	data	is	sufficient	for
calculating	structural	equivalence.	The	rows	and	columns	of	the	adjacency	matrix	of
the	 relation	 contain	 all	 the	 relevant	 information	 and	 can	 be	 used	 to	 determine	 the
sets	of	alters;	 they	are	known	as	profiles	 (Burt	1976).	The	profile	of	actor	 i	 in	an
undirected	single	relation	is	simply	the	 ith	row	(or	column,	as	this	is	the	same)	of
the	adjacency	matrix.	For	directed	data,	the	profile	is	the	ith	row	concatenated	with
the	ith	column.
We	illustrate	this	with	some	examples.	In	Figure	12.1	the	profile	of	actor	3	is	(1,

1,	0,	0,	0),	which	shows	that	actor	3	is	adjacent	to	actors	1	and	2	and	not	adjacent	to
itself	nor	to	actors	4	and	5.	Consider	actor	2	in	the	network	given	by	the	adjacency
matrix	in	Matrix	12.1.	The	second	row	of	the	adjacency	matrix	is	(1,	0,	1,	1,	0),	and
the	 second	 column	 is	 (1,	 0,	 0,	 0,	 1).	 The	 fact	 that	 2	 is	 not	 connected	 to	 itself	 is
recorded	in	the	second	entry	of	both	the	row	and	column	vectors	–	that	is,	this	value
has	been	noted	twice.	The	profile	is	therefore	(1,	0,	1,	1,	0,	1,	0,	0,	0,	1).	Once	we
have	the	profiles,	we	can	compare	them	and	check	whether	they	satisfy	the	structural
equivalence	definition.	To	do	so,	they	need	to	be	identical	except	for	the	entries	that
correspond	to	the	actors	that	are	compared.	Hence,	if	we	are	comparing	the	profile
of	actor	i	with	that	of	actor	 j,	we	need	 to	pay	particular	attention	 to	 the	 ith	and	 jth
entry	of	the	two	profiles.	If	the	two	profiles	compared	in	this	way	are	not	identical,



the	actors	are	not	structurally	equivalent.	It	would	be	useful	to	know	how	similar	the
two	vectors	are	to	each	other.	To	do	this,	we	could	use	any	of	the	standard	measures
for	comparing	vectors.	These	 include,	but	are	not	 limited	 to,	matches,	correlation
and	Euclidean	 distance.	One	 advantage	 of	 using	 the	 existing	 comparison	methods
for	vectors	is	that	they	can	be	applied	to	valued	data.

Matrix	12.1			A	directed	adjacency	matrix.

When	we	compare	two	profile	vectors,	we	have	to	make	sure	that	we	meet	all	the
conditions	 of	 structural	 equivalence.	 Suppose	 that	 we	 wish	 to	 use	 matching	 to
compare	the	profile	of	row	i	with	the	profile	of	row	j.	For	each	element	except	the
ith	 and	 jth	 entry	 in	 each	 row	 or	 column	 that	makes	 up	 the	 profile,	 we	match	 the
corresponding	element	in	each	vector.	We	then	match	the	ith	entry	in	row	i	with	the
jth	entry	in	row	j	and	the	jth	entry	in	row	i	with	the	ith	entry	in	row	j,	repeating	the
process	for	the	corresponding	column	entries.	This	process	is	known	as	‘reciprocal
swapping’	and	is	applied	regardless	of	the	method	of	comparing	vectors.
We	 then	 proceed	 to	 compare	 every	 pair	 of	 actors	 and	 from	 this	 information

construct	a	structural	equivalence	matrix.	The	(i,	j)	entry	in	this	matrix	is	the	profile
similarity	measure	 of	 actor	 i	 with	 actor	 j.	 Regardless	 of	 how	many	 relations	 are
being	considered,	and	whether	they	were	directed	or	not,	the	structural	equivalence
matrix	is	a	square	symmetric	matrix	with	the	same	number	of	rows	(and	columns)
as	the	number	of	actors	in	the	dataset.	Note	that	if	a	standard	statistical	measure	such
as	correlation	is	used,	we	could	not	apply	classical	statistical	inference	on	the	results
since	 the	 independence	 assumption	 has	 been	 violated.	We	 can,	 however,	 treat	 the
matrix	 as	 a	 proximity	measure	 and	 apply	 classification	 and	 clustering	 techniques.
This	is	necessary	since	one	of	the	goals	of	positions	is	to	place	actors	into	mutually
exclusive	equivalence	classes.
If	we	used	Euclidean	distance,	a	pair	of	structurally	equivalent	actors	would	yield

a	distance	of	zero.	Values	close	to	zero	would	indicate	that	the	actors	involved	are
nearly	structurally	equivalent.	Clearly,	if	we	used	correlation,	structurally	equivalent
actors	 would	 have	 a	 correlation	 coefficient	 of	 1.	 However,	 in	 contrast	 to	 the
Euclidean	 distance	 measure,	 it	 would	 also	 be	 possible	 for	 actors	 that	 were	 not
structurally	equivalent	to	have	a	perfect	correlation	score.	This	would	occur	if	one
profile	were	a	straight	multiple	of	another,	which	in	some	circumstances	would	be
desirable.	We	shall	return	to	this	topic	later.



In	 1968	 Sampson	 collected	 data	 on	 social	 relations	 in	 a	 contemporary	 isolated
American	 monastery.	 Towards	 the	 end	 of	 his	 study,	 there	 was	 a	 major	 crisis,
resulting	 in	 a	 number	 of	 members	 being	 expelled	 or	 resigning.	 Sampson	 (1969)
defined	 four	 sorts	 of	 relation:	 affect,	 esteem,	 influence	 and	 sanction.	 Breiger,
Boorman	 and	 Arabie	 (1975)	 report	 these	 matrices	 for	 the	 period	 just	 before	 the
dispute.	We	shall	consider	just	the	esteem	relation,	which	we	split	into	two	relations
of	esteem	and	disesteem.	Each	novitiate	ranked	the	other	monks,	giving	his	top	three
choices	 for	 that	 relation.	 In	all	 rankings,	3	 is	 the	highest	or	 first	 choice	and	1	 the
lowest;	ties	and	no	choices	were	permissible.	The	esteem	matrix	is	shown	in	Matrix
12.2a	and	the	disesteem	matrix	in	Matrix	12.2b.
Shortly	after	 this	data	was	collected,	Gregory,	Basil,	Elias	and	Simplicius	were

expelled.	 Almost	 immediately,	 John	 departed	 voluntarily.	 A	 few	 days	 later	 Hugh,
Boniface,	Mark	and	Albert	left,	and	within	a	week	Victor	and	Amand	departed.	One
month	 later	Romuland	also	 left.	Sampson	grouped	 the	monks	 and	 then	named	 the
groups	as	follows:

{Winifrid,	John,	Gregory,	Hugh,	Boniface,	Mark,	Albert},	the	Young	Turks;
{Bonaventure,	Ambrose,	Berthold,	Peter,	Louis},	the	Loyal	Opposition;
{Basil,	Elias,	Simplicius},	the	Outcasts;
{Romuland,	Victor,	Amand},	indeterminate.

The	 esteem	 and	 disesteem	 matrices	 were	 submitted	 to	 the	 profile	 similarity
routine	in	UCINET.	The	program	constructs	a	profile	for	each	actor	by	appending
its	row	in	the	disesteem	matrix	to	its	row	in	the	esteem	matrix.	Because	the	data	is
not	 symmetric,	 it	 also	 appends	 to	 these	 profiles	 the	 columns	 of	 each	 data	matrix,
yielding	 profiles	 on	 the	 order	 of	 4N	 cells	 in	 length.	 This	 is	 often	 referred	 to	 as
‘including	 the	 transposes’.	 Euclidean	 distance	 was	 selected	 as	 the	 choice	 for
measuring	the	amount	of	structural	equivalence	between	the	profiles.	The	results	are
shown	 in	 Matrix	 12.3,	 where	 the	 distances	 have	 been	 rounded	 up	 to	 the	 nearest
whole	number.
Since	 we	 used	 Euclidean	 distance,	 a	 value	 of	 zero	 would	 indicate	 perfect

structural	 equivalence.	 The	 only	 zero	 values	 are	 on	 the	 diagonal	 (actors	 are
structurally	 equivalent	 to	 themselves),	 so	 no	 two	 actors	 are	 perfectly	 structurally
equivalent.	The	smallest	values	are	5,	 so	 the	most	similar	actors	are	pairs	such	as
Bonaventure	and	Ambrose	or	Albert	and	Boniface.	The	least	similar	actors	have	a
score	 of	 13	 –	 for	 example,	 Peter	 and	 John.	 To	 obtain	 some	 form	 of	 structurally
equivalent	groups,	we	can	 submit	 this	matrix	 to	 either	 a	multidimensional	 scaling
routine	or	a	clustering	method.	Figure	12.2	is	the	clustering	diagram	associated	with
a	 single-link	 hierarchical	 clustering	 of	 the	 structural	 equivalence	matrix	 given	 in
Matrix	12.3.	The	following	groupings	are	obtained	from	this	clustering	at	the	level
8.674:



Matrix	12.2			Sampson	monastery:	(a)	esteem	matrix;	(b)	disesteem	matrix.



Matrix	12.3			Structural	equivalence	matrix	of	Sampson	data.
	

{Bonaventure,	Ambrose,	Berthold,	Victor}
{Romuland,	Winfrid,	Hugh,	Boniface,	Mark,	Albert}
{Louis,	Amand}
{Basil,	Elias,	Simplicius}

Peter,	John	and	Gregory	are	singletons	and	have	not	been	taken	into	any	clusters	at
this	 level.	 Each	 group	 is	 consistent	 with	 Sampson’s	 assignment,	 as	 none	 of	 the
members	 of	 the	 three	 major	 groupings	 are	 placed	 together.	 It	 also	 has	 to	 be
remembered	that	this	is	an	analysis	of	just	one	pair	of	the	relations	and	thus	is	not	as
rich	in	data	as	taking	all	the	relations.



Figure	12.2			Clustering	of	structural	equivalence	matrix.

12.4	Blockmodels

Once	we	have	identified	a	partition	of	the	nodes	based	upon	structural	equivalence,
we	 can	 produce	 a	 simplified	 or	 reduced	 matrix.	 We	 first	 arrange	 the	 rows	 and
columns	of	the	adjacency	matrix	so	that	structurally	equivalent	actors	are	grouped
together.	 This	 grouping	 induces	 blocks	within	 the	matrix.	Matrix	 12.4	 shows	 this
process	for	relation	R1	in	Figure	12.1.	We	note	that	the	blocks	consist	of	either	all
zeros	or	all	ones.	We	could	therefore	replace	each	block	by	a	zero	or	a	one	without
losing	any	 information.	This	 results	 in	a	new	and	smaller	adjacency	matrix	which
represents	 a	 reduced	 graph.	We	 call	 these	 the	 ‘image	matrix’	 and	 ‘image	 graph’,
respectively.	 The	 reduced	 adjacency	matrix	 and	 image	 graph	 for	Matrix	 12.4	 are
given	in	Figure	12.3.

Matrix	12.4			Blocks	for	R1	in	Figure	12.1.



Figure	12.3			Reduced	adjacency	matrix	and	image	graph	from	Matrix	12.4.

This	process	is	called	blockmodeling.	For	pure	structural	equivalence,	the	blocks
are	either	all	ones	or	all	zeros	and	are	called	‘1-blocks’	and	‘0-blocks’,	respectively.
For	real	data,	the	blocks	will	not	be	perfect,	but	the	0-blocks	will	be	predominantly
filled	 with	 zeros	 and	 the	 1-blocks	 should	 contain	 nearly	 all	 ones.	 The	 extent	 to
which	this	is	true	is	a	measure	of	how	well	the	method	has	managed	to	partition	the
data	 into	 structurally	 equivalent	 blocks.	 To	 illustrate	 blockmodeling,	 we	 have
repeated	the	profile	analysis	on	the	Sampson	esteem	data	but	dichotomized	the	data
first	and	used	correlation	as	the	measure	of	similarity,	which	is	usually	considered
the	better	option.	We	have	selected	a	four-block	solution,	and	Figure	12.4	gives	the
blockmodel.



Figure	12.4			Blockmodel	of	the	Sampson	data.

The	 results	 show	 four	groups,	 resulting	 in	16	matrix	blocks	 in	each	of	 the	 two
relations	(esteem	and	disesteem).	The	density	of	each	of	the	blocks	is	given	below
each	relation.	Of	the	32	blocks,	only	eight	are	perfect,	of	which	seven	are	0-blocks
and	one	is	a	1-block.	This	is	fairly	common	when	analyzing	data	of	this	type.	The
blockmodel	allows	us	to	uncover	structural	properties	of	the	data.	We	can	see,	for
example,	 that	 none	 of	 the	 groups	 has	 any	 esteem	 for	 the	 Outcasts	 (except
themselves!)	and	also	that	there	is	a	high	level	of	disesteem	from	each	of	the	groups
to	the	Outcasts.	This	confirms	that	Sampson	was	correct	in	his	observation	and	that
calling	this	group	the	Outcasts	was	justified.
In	general,	one	looks	for	certain	patterns	in	the	blockmodel	that	equate	to	known

structures.	 Core–periphery	 is	 one	 such	 pattern,	 and	 we	 discuss	 this	 later	 in	 the
chapter.	 Another	 common	 pattern	 is	 to	 have	 the	 1-blocks	 on	 the	 diagonal	 in	 the



image	 matrix;	 these	 equate	 to	 cohesive	 subgroups,	 and	 the	 blockmodel	 gives
additional	insight	into	the	interactions	between	these	groups.	This	is	precisely	what
was	done	using	the	factions	method	in	Chapter	11.
For	 valued	 data,	 we	 would	 expect	 the	 blocks	 to	 contain	 similar	 values.	 For

example,	instead	of	1-blocks	and	0-blocks,	we	may	have,	say,	a	5-block	(i.e.,	a	block
in	which	each	value	is	a	5).	The	image	matrix	will	now	consist	of	entries	that	are	the
average	 of	 all	 of	 the	 values	 in	 the	 blocks.	 We	 can	 again	 judge	 how	 good	 the
blockmodel	is	by	looking	at	the	variation	in	the	values	in	each	block.	The	standard
deviation	is	one	obvious	way	to	do	this,	and	this	is	reported	in	UCINET.
Finally,	when	using	the	profile	structural	equivalence	method	on	non-valued	data,

it	is	common	practice	to	first	convert	the	data	to	geodesic	distances.	Two	actors	that
are	structurally	equivalent	in	the	original	data	will	still	be	structurally	equivalent	in
the	 geodesic	 distance	 matrix.	 One	 reason	 for	 doing	 the	 conversion	 is	 that	 the
geodesic	distance	matrix	contains	information	about	how	well	an	actor	is	connected
into	 the	whole	network	and	not	 just	 their	 local	neighborhood.	This	 is	particularly
useful	 for	 sparse	 networks,	 but	 at	 a	 penalty	 of	 making	 the	 interpretation	 of	 the
results	more	difficult.

12.5	The	direct	method

We	 have	 constructed	 our	 blockmodels	 by	 first	 performing	 a	 profile	 analysis	 and
then	 using	 this	 to	 partition	 our	 adjacency	matrix.	An	 alternative	 is	 to	 use	 a	 direct
method	to	partition	 the	data	(Panning	1982).	As	already	mentioned,	we	are	able	 to
assess	how	close	a	partition	is	to	an	ideal	blockmodel	by	examining	the	entries	of
each	block.	To	compare	 two	different	partitions	on	 the	same	data,	we	 just	need	 to
count	the	number	of	changes	that	are	required	to	make	the	blockmodel	fit	the	ideal
structure	of	zeros	and	ones.	We	call	this	the	‘fit’,	and	we	can	now	try	to	optimize	the
fit	over	all	the	possible	assignments	of	actors	to	different	groups.	One	disadvantage
of	this	approach	is	that	we	have	to	specify	the	number	of	groups.	For	valued	data,	it
is	 not	 possible	 to	 simply	 count	 the	 number	 of	 errors.	 In	 this	 situation,	 more
sophisticated	 fit	 functions	 are	 used,	 but	 the	 principle	 remains	 the	 same.	 We
demonstrate	 the	 direct	 method	 on	 the	 dichotomized	 esteem	 data.	 Currently,	 the
UCINET	optimization	routine	only	accepts	a	single	relation,	so	we	did	not	include
the	disesteem	relation.	Matrix	12.5	is	a	three-block	optimization	of	the	data.	We	see
that	 it	 has	 identified	 the	Outcasts,	 but	 that	 two	of	 the	Young	Turks	 are	 now	 in	 the
Loyal	Opposition.	 In	 this	example,	 since	 the	monks	were	asked	only	 to	 rank	 their
top	 three	 choices,	 it	 is	 not	 possible	 for	 the	 larger	 blocks	 to	 have	 all	 ones.	 This
means	that	the	larger	blocks	cannot	be	made	to	fit	well,	with	the	consequence	that	the
technique	struggles	 to	 find	good	solutions.	The	researcher	needs	 to	be	aware	 that,



regardless	of	the	inherent	structure,	the	method	will	produce	an	answer.	This	answer
may	not	be	particularly	good	–	it	may	simply	be	the	best	of	a	bad	set.	 It	 is	always
good	practice	to	examine	the	results	carefully	to	see	if	they	fit	the	model	well.
One	 of	 the	 expectations	 we	 had	 of	 the	 structural	 equivalence	 model	 was	 that

actors	 who	 are	 structurally	 equivalent	 would	 exhibit	 similar	 behaviors	 and
outcomes.	This	did	seem	to	happen	to	a	significant	extent	with	the	Sampson	data.	All
members	of	the	Outcasts	were	expelled,	and	both	the	direct	and	the	profile	similarity
methods	 identified	 these	 as	 structurally	 equivalent.	The	Young	Turks	 all	 left,	 and,
again,	they	were	identified	using	the	structurally	equivalent	models.	The	four	core
members	of	the	Loyal	Opposition	remained,	and	each	method	placed	three	of	these
together	and	one	method	included	all	four.

Matrix	12.5			Three-block	optimization	of	the	Sampson	esteem	data.

More	 generally,	 a	 standard	 way	 to	 use	 the	 results	 of	 a	 structural	 equivalence
analysis	 would	 be	 to	 use	 QAP	 regression	 to	 relate	 structural	 equivalence	 to	 an
outcome	of	 interest,	 such	as	being	expelled	 together,	or	adopting	an	 innovation	at
similar	 times.	 In	 addition,	 there	 is	 no	 reason	 why	 we	 cannot	 treat	 structural
equivalence	 as	 a	 dependent	 variable	 and	 investigate	 how	 nodes	 come	 to	 be
structurally	 equivalent.	 Table	 12.1	 shows	 the	 results	 of	 predicting	 structural
equivalence	at	time	3	in	the	Camp92	dataset	as	a	function	of	being	the	same	gender
and	playing	the	same	occupational	role,	while	controlling	for	direct	ties,	reciprocity



and	transitivity	at	time	2.	The	results	show	that	gender	does	seem	to	affect	a	node’s
position,	but	occupational	role	does	not.

12.6	Regular	equivalence

One	of	the	restrictions	of	structural	equivalence	is	that,	to	be	equivalent,	actors	need
to	be	connected	 to	 the	 same	actors.	However,	 actors	can	be	 structurally	 similar	 in
ways	that	do	not	involve	being	connected	to	the	same	actors.	Krackhardt	and	Porter
(1986),	 for	 example,	 looked	 at	 turnover	 of	 staff	 in	 a	 number	 of	 fast-food	outlets.
They	 examined	 whether	 people	 with	 similar	 patterns	 of	 advice-seeking	 exhibited
similar	 turnover	patterns.	Clearly,	 they	could	not	use	 structural	 equivalence,	 since
the	actors	were	in	different	restaurants	and	so	could	not	be	connected	to	each	other.
In	 the	 study	 they	 used	 a	 generalization	 of	 structural	 equivalence	 called	 regular
equivalence	(White	and	Reitz	1983).	Regular	equivalence	relaxes	the	strict	condition
on	the	1-blocks	in	blockmodeling.	Rather	than	having	blocks	that	have	a	1	in	every
row	 and	 column,	 we	 simply	 require	 at	 least	 one	 1	 in	 each	 row	 and	 column.	 An
example	of	a	 regular	blockmodeling	 is	given	 in	Matrix	12.6.	The	blockmodel	has
three	0-blocks	as	in	structural	equivalence,	and	we	note	that	one	of	the	blocks	is	a	1-
block	but	the	other	blocks	each	have	at	least	one	1	in	every	row	and	every	column.
In	structural	equivalence,	 if	 two	actors	are	equivalent	 they	have	to	be	connected	to
exactly	the	same	others.	Hence,	two	teachers	are	structurally	equivalent	if	they	teach
the	 same	 students.	 In	 regular	 equivalence,	 the	 teachers	 have	 to	 teach	 at	 least	 one
student	 each	 (and	 not	 all	 students)	 and,	 equally,	 the	 students	 all	 need	 at	 least	 one
teacher.

Table	 12.1	 	 	 MR-QAP	 regression	 of	 structural	 equivalence	 on	 gender	 and	 role
similarity,	with	controls.	R-square	was	0.417.

To	 find	 a	 regular	 equivalence,	 we	 can	 use	 methods	 similar	 to	 structural
equivalence.	The	direct	method	simply	needs	a	small	change	to	the	fit	measure,	but
in	 all	 other	 respects	 is	 the	 same	 as	 for	 structural	 equivalence.	As	 an	 example,	we
consider	the	taro	data	collected	by	Schwimmer	(1973),	representing	the	relation	of
gift-giving	(taro	exchange)	among	22	households	in	a	Papuan	village.	Schwimmer



points	out	how	these	 ties	function	 to	define	 the	appropriate	persons	 to	mediate	 the
act	of	asking	for	or	receiving	assistance	among	group	members.	We	submitted	the
data	to	the	UCINET	direct	regular	equivalence	optimization	routine,	selecting	three
groups.	The	 routine	 returned	a	perfect	 solution	–	 that	 is,	one	 in	which	each	block
satisfies	the	condition	for	regular	equivalence.	The	solution	is	given	in	Matrix	12.7.

Matrix	12.6			Regular	blockmodel.

This	 three-group	 solution	 consists	 of	 a	 group	 that	 exchanges	 within	 itself	 and
with	 the	 other	 two	 groups.	 The	 two	 other	 groups	 only	 exchange	 outside	 of	 their
groups.	This	suggests	a	status	system	where	the	top	group	exchanges	with	everyone
else,	but	 the	 lower	group	exchanges	with	 the	 top	and	 the	other	group	but	not	with
themselves.	 There	 are,	 however,	 many	 other	 exact	 solutions	 which	 have	 similar
structures	but	where	actors	are	assigned	to	different	groups.	This	indicates	that	the
solution	is	not	stable	and	it	would	not	be	wise	to	read	too	much	into	this	blocking.



Matrix	12.7			Regular	blockmodel	of	the	taro	data.

12.7	The	REGE	algorithm

The	extension	of	profile	similarity	 to	regular	equivalence	is	not	as	simple.	Unlike
structural	 equivalence,	 where	 the	 measure	 is	 local	 and	 depends	 on	 the	 direct
connections	to	other	actors,	we	now	have	to	compare	profiles	of	actor	equivalences.
This	 is	a	 far	more	complicated	process,	 since	 the	equivalences	will	not	be	known
until	the	process	is	completed.	This	problem	is	solved	by	iteratively	moving	toward
an	 equivalence	 matrix	 and	 using	 the	 interim	 scores	 as	 equivalence	 measures
between	 iterations.	The	REGE	algorithm	accomplishes	 this.	We	do	not	present	 the
details	here,	but	we	note	some	important	facts	which	anyone	using	REGE	needs	to
know.	First,	the	algorithm	only	works	on	directed	data	(valued	data	must	therefore
not	be	 symmetric)	which	contains	 at	 least	 one	actor	with	 either	 zero	outdegree	 (a
sink)	 or	 zero	 indegree	 (a	 source).	 Second,	 the	 similarity	 values	 produced	 can	 be
difficult	 to	interpret	 in	absolute	terms	(except	scores	of	100,	which	signify	perfect
equivalence).	Scores	are	usually	used	to	partition	the	data	via	a	clustering	routine,	as



we	 did	 when	 we	 applied	 profile	 structural	 equivalence.	 As	 with	 structural
equivalence,	 if	 you	 have	 binary	 data,	 some	 analysts	 suggest	 converting	 the
adjacency	matrix	to	a	geodesic	distance	matrix	and	submitting	this	to	REGE.
The	REGE	algorithm	is	designed	to	converge	to	the	maximum	equivalence,	and,

as	 this	 is	a	unique	solution,	we	do	not	have	the	difficulty	of	 the	multiple	solutions
that	can	occur	with	the	direct	method.	Also,	 like	profile	structural	equivalence,	 the
REGE	algorithm	can	be	applied	to	datasets	containing	multiple	relations.
To	see	how	REGE	can	be	used,	we	return	to	the	Sampson	esteem/disesteem	data,

running	the	UCINET	routine	with	the	default	values.	The	results	are	shown	in	Figure
12.5.	If	we	examine	the	groups	at	the	74.855	level,	we	obtain	the	clusters:

{Bonaventure,	Ambrose}
{Louis,	Mark,	Hugh,	Albert,	Boniface}
{Berthold,	Victor}
{Peter,	Gregory}
{Basil,	Elias,	Simplicius}

The	 other	monks	 form	 singleton	 clusters.	 These	 groupings	 do	 not	 fit	 Sampson’s
description	 as	 well.	 The	 Outcasts	 have	 been	 clearly	 identified,	 and	 two	 of	 the
singleton	 clusters	 were	 labeled	 as	 indeterminate	 by	 Sampson.	 The	 pairing	 of
Bonaventure	 and	 Ambrose	 is	 consistent	 with	 Sampson’s	 description,	 as	 they	 are
both	members	of	 the	Loyal	Opposition;	we	 also	note	 that	 the	pairing	of	Berthold
and	Victor	is	not	inconsistent,	since	Victor	was	seen	as	indeterminate	by	Sampson.
The	inclusion	of	Louis,	a	member	of	the	Loyal	Opposition,	in	the	otherwise	Young
Turks	group,	and	the	pairing	of	Peter	and	Gregory	are	interesting.	It	turns	out	that
Gregory	was	seen	as	 the	 leader	of	 the	Young	Turks	and	Peter	as	 the	 leader	of	 the
Loyal	Opposition.	Hence,	 this	pairing	can	be	seen	as	a	 leaders	group.	The	 largest
cluster	contains	core	members	of	the	Young	Turks	together	with	the	solid	supporter
of	the	Loyal	Opposition,	Louis,	and	these	could	be	viewed	as	core	group	members.
It	 should	 be	 noted	 that,	 since	 structurally	 equivalent	 actors	 (with	 the	 exception	 of
isolates)	are	connected	 to	 the	same	others,	 they	are	more	 likely	 to	be	members	of
the	 same	 cohesive	 subgroups.	 This	 restriction	 does	 not	 apply	 to	 regular
equivalence,	 so	 this	 concept	may	well	 capture	 the	 concept	 of	 role	 independent	 of
group	membership.

12.8	Core–periphery	models

A	common	equivalence	pattern	in	social	networks	and	other	fields	is	that	of	a	core–
periphery	structure.	Networks	with	core–periphery	structures	have	been	observed	to



function	better	 than	networks	with	multiple	clique	 structures	 (Johnson,	Boster	 and
Palinkas	2003).	Core–periphery	is	a	partition	of	the	nodes	into	two	groups,	namely
the	core	and	the	periphery;	this	was	first	examined	in	detail	by	Borgatti	and	Everett
(2000).	 The	 partition	 produces	 four	 blocks,	 as	 depicted	 in	 Table	 12.2.	 The	 core
block	contains	 the	core-to-core	 interactions,	 and	 the	peripheral	block	contains	 the
periphery-to-periphery	interactions,	with	the	two	off-diagonal	blocks	containing	the
core-to-periphery	 and	 the	periphery-to-core	 interactions.	Clearly,	 in	 an	undirected
network	the	two	off-diagonal	blocks	are	simply	the	transpose	of	each	other.

Figure	12.5			REGE	coefficients	and	clustering.

In	a	core–periphery	structure,	we	expect	core	nodes	to	be	well	connected	to	other
core	nodes.	We	also	expect	peripheral	nodes	not	to	be	connected	to	other	peripheral
nodes.	 Hence,	 in	 an	 ideal	 structure	 the	 core	 block	 would	 be	 a	 1-block	 and	 the



peripheral	 block	 would	 be	 a	 0-block.	 Let	 us	 now	 assume	 that	 our	 network	 is
undirected.	If	we	used	structural	equivalence	as	our	underlying	model,	the	core-to-
periphery	 blocks	 could	 either	 be	 0-blocks	 or	 1-blocks.	 If	 they	were	 0-blocks,	 the
ideal	structure	would	consist	of	a	clique	serving	as	the	core,	and	only	isolates	as	the
periphery.	This	would	not	really	capture	the	notion	of	a	core–periphery	structure	as
we	 expect	 the	 periphery	 to	 be	 related	 in	 some	 way	 to	 the	 core.	 If	 the	 core-to-
periphery	 blocks	 were	 1-blocks,	 this	 would	 fit	 our	 intuitive	 notion,	 but	 with	 the
rather	 strict	 condition	 that	 every	 peripheral	 member	 is	 connected	 to	 every	 core
member.	The	network	shown	in	Figure	12.6	has	this	structure,	with	nodes	1,	2,	3	and
4	in	the	core	and	the	remainder	in	the	periphery.
Clearly,	 such	 idealized	 patterns	 are	 not	 likely	 in	 real	 data,	 so	 we	 relax	 the

conditions.	One	approach	is	to	consider	only	the	core	and	periphery	blocks	and	in
essence	ignore	the	off-diagonal	blocks.	In	so	doing,	it	would	make	sense	to	at	least
insist	on	some	core–periphery	interaction.	This	can	be	achieved	by	making	sure	that
the	 network	 is	 connected,	 or	 weakly	 connected	 if	 it	 is	 directed.	 We	 can	 in	 this
instance	apply	 the	direct	method	discussed	above	and	measure	 the	extent	 to	which
assignments	of	nodes	to	core	and	periphery	fit	the	ideal	core	model	in	Table	12.2.
This	is	known	as	the	‘discrete	core–periphery	method’.	If	we	use	the	criterion	that
minimizes	 the	 number	 of	 changes	 required,	 for	 non-valued	 data	 this	 can	 be	 done
very	efficiently.	It	turns	out	that	this	criterion	is	closely	related	to	the	degree	of	the
nodes,	and	 if	we	ordered	 the	nodes	 in	decreasing	degree,	we	 just	need	 to	check	at
what	 point	 we	 need	 to	 draw	 the	 line	 between	 core	 and	 periphery.	 In	 our	 ideal
example	the	core	nodes	have	degree	8	and	the	peripheral	nodes	have	degree	4,	so
this	 boundary	 is	 set	 between	 4	 and	 8.	 It	 follows	 that	with	 this	 fit	 function,	 degree
centrality	is	a	node-level	core–periphery	measure	and	all	we	need	to	do	to	identify
the	core	and	periphery	is	decide	at	what	value	of	degree	we	will	divide	core	from
periphery.

Table	12.2			Core–periphery	blockmodel	structure.



Figure	12.6			A	simple	core–periphery	structure.

This	approach	is	straightforward	but	does	have	a	few	problems.	First,	it	cannot	be
directly	 applied	 to	 valued	 data.	 Second,	 and	 more	 important,	 it	 does	 not	 give
information	about	 the	core–periphery	structure	of	 the	network.	 It	 is	quite	possible
for	the	best	assignment	of	nodes	to	a	core	and	periphery	structure	to	result	in	a	core
block	that	is	a	0-block	or	has	very	few	entries.	This	happens	when	the	core	contains
a	lot	of	errors	but	the	periphery	has	very	few,	for	example	in	a	very	sparse	network.
One	way	 to	overcome	 this	problem	 is	 to	use	a	measure	of	 fit	 that	 is	based	on	 the
correlation	between	the	data	matrix	and	 the	 idealized	block	model.	 In	 this	 instance
we	treat	the	off-diagonal	blocks	as	if	they	contain	missing	data.	As	an	example,	we
take	 the	co-citation	data	among	 the	 top	 social	work	 journals	 in	 a	one-year	period
(1985)	reported	by	Baker	(1992).	The	results	of	 the	core–periphery	analysis	using
the	correlation	method	are	given	in	Matrix	12.8.
We	 note	 that	 the	 journals	 do	 cite	 their	 own	 papers,	 producing	 the	 1s	 down	 the

diagonal,	which	 the	algorithm	ignores.	The	correlation	between	the	data	matrix	 in
Matrix	 12.8	 and	 the	 idealized	 block	 structure	 is	 0.81,	 indicating	 a	 strong	 core–
periphery	structure.	The	core	block	has	a	density	of	0.86,	and	the	peripheral	block
has	a	density	of	0.05.	These	results	indicate	even	more	strongly	the	core–periphery
structure	of	this	data	in	which	core	journals	cite	other	core	journals	and	peripheral
journals	 do	 not	 cite	 other	 peripheral	 journals.	 This	 is	 further	 reinforced	 by
examining	 the	 two	off-diagonal	 blocks.	The	 top	 right	 core–periphery	block	has	 a
density	 of	 0.15,	whereas	 the	 bottom	 left	 periphery-to-core	 block	 has	 a	 density	 of
0.32.	This	shows	 that	peripheral	 journals	cite	 twice	as	many	core	 journals	as	core
journals	 cite	 peripheral	 journals,	 providing	 further	 evidence	 of	 the	 hierarchical
structure	of	the	journals.
As	already	mentioned,	we	are	able	to	use	the	correlation	method	on	valued	data,

but	it	can	still	be	computationally	challenging	for	large	datasets.	One	other	issue	is



that	 this	method	places	nodes	either	 in	 the	core	or	 in	 the	periphery,	which	may	be
too	simplistic.	Some	authors	have	suggested	the	idea	of	a	semi-periphery,	which	is
equivalent	to	introducing	more	blocks	into	the	block	structure.	But	this	increases	the
complexity	 of	 the	 problem,	 and	 it	 becomes	 even	more	 difficult	 to	 decide	 on	 the
nature	and	structure	of	the	additional	blocks.	An	alternative	formulation	is	to	try	to
find	 a	 node-level	 measure	 of	 the	 amount	 of	 core–periphery.	 We	 have	 already
mentioned	 that	 degree	 centrality	 does	 precisely	 this	 if	 we	 use	 the	 model	 of	 fit
corresponding	 to	 the	number	of	 changes	 required.	High-degree	 actors	must	 be	 in
the	core,	low-degree	actors	must	be	in	the	periphery,	and	actors	who	are	close	to	the
boundary	value	would	be	in	 the	semi-periphery	or	on	the	edge	of	 the	core.	But	as
mentioned	 earlier,	 degree	 is	 not	 always	 a	 good	 measure	 and	 does	 not	 extend	 to
valued	data.	To	overcome	 this,	we	use	an	 ideal	 structure,	matrix	∆,	constructed	as
the	outer	product	of	a	vector	c	of	coreness	values,

Matrix	12.8			A	core–periphery	model	of	co-citation	data.

Hence	the	(i,	j)	entry	of	the	matrix	∆	is	simply	the	product	of	ci	with	cj.	If	two	nodes
have	a	high	coreness	score,	 their	product	and	hence	 the	corresponding	value	 in	∆
will	 be	 high.	 If	 both	 entries	 are	 low,	 the	 product	 will	 be	 low	 and	 so	 the



corresponding	 value	 in	 ∆	 will	 be	 low.	 If	 one	 is	 high	 and	 one	 is	 low,	 the
corresponding	 ∆	 value	 will	 be	 intermediate.	 In	 the	 extreme	 case	 in	 which	 we
constrain	 the	 entries	 of	 c	 to	 be	 either	 0	 or	 1,	 ∆	 would	 correspond	 exactly	 to	 a
blockmodel	structure	of	core–periphery	as	described	in	Table	12.2;	c	would	be	an
indicator	vector	where	a	value	1	would	indicate	a	core	node	and	0	a	peripheral	node.
It	follows	that	our	discrete	method	can	be	formulated	as	finding	a	binary	vector	c	in
which	 the	 correlation	 between	 our	 data	matrix	A	 and	 our	 product	 matrix	 ∆	 is	 as
large	as	possible.	If	we	now	relax	the	condition	that	c	is	binary	and	allow	c	to	take
on	any	positive	values,	we	obtain	the	continuous	core–periphery	model.	The	values
of	c	 now	 give	 the	 coreness	 of	 each	 node	within	 the	 network.	 This	 generalization
from	the	discrete	to	the	continuous	is	remarkably	similar	to	the	extension	of	degree
centrality	 to	 eigenvector	 centrality.	As	mentioned	 earlier,	 degree	 centrality	 can	be
thought	of	as	a	coreness	measure	when	we	use	the	‘number	of	changes’	measure	of
fit	for	core–periphery,	and	eigenvector	serves	a	similar	purpose	for	the	continuous
approach.	 (In	 fact,	 if	 we	 use	 Euclidean	 distance	 between	 matrices	 instead	 of
correlation,	this	similarity	becomes	explicit.)

Table	12.3			Continuous	core–periphery	scores	for	citation	data.

Applying	the	continuous	method	to	the	citation	data	used	for	the	discrete	method
in	Matrix	12.8	yields	the	results	given	in	Table	12.3.	The	two	columns	are	the	split
between	core	and	periphery	recommended	by	the	software.	This	recommendation	is
based	on	correlating	the	scores	above	with	an	ideal	set	of	scores.	The	ideal	scores
are	when	core	members	score	a	value	of	1	and	peripheral	members	score	a	value	of
0.	Correlations	 are	 examined	 for	 all	 possible	 core	 sizes	 from	1	 to	n	 –	 1,	 and	 the
recommended	split	is	the	highest	correlation	from	these	n	–	1	values.	In	this	case	a
vector	 of	 eight	 1s	 and	 twelve	 0s.	 This	 measure	 is	 called	 ‘concentration’.	 If	 we
compare	 this	output	 to	 the	one	 in	Matrix	12.8,	we	see	 that	 the	 two	results	have	six
core	 journals	 in	 common.	 We	 note	 that	 ASW	 is	 the	 highest-scoring	 peripheral
journal	and	that	the	discrete	method	has	this	journal	in	the	core.	Two	journals	that
were	peripheral	for	the	discrete	method	–	SWG	and	CYSR	–	are	placed	in	the	core



of	the	continuous	method.	The	discrete	output	shows	that	these	are	the	only	journals
with	multiple	peripheral	block	entries.	There	is	one	further	important	characteristic
of	the	continuous	method:	the	matrix	∆	must	be	symmetric	by	definition.	It	follows
that	 the	 continuous	 method,	 which	 must	 take	 account	 of	 the	 off-diagonal	 blocks,
cannot	 differentiate	 between	 core–periphery	 and	 periphery–core	 interaction.	 This
means	 that	 it	 is	better	 suited	 to	symmetric	data	 (or	at	 least	data	 that	 is	very	nearly
symmetric).	 In	 fact,	 if	 the	 two	methods	are	compared	on	symmetrized	versions	of
the	citation	data,	they	are	in	complete	agreement.
The	continuous	model	has	one	other	advantage	in	that	we	can	use	the	∆	matrix	to

help	 us	 get	 a	 good	 visualization	 of	 the	 data.	 If	 we	 submit	 ∆	 to	 metric
multidimensional	scaling,	then	use	this	output	to	position	the	nodes,	we	will	obtain	a
network	in	which	the	nodes	in	the	core	will	be	placed	at	the	center	and	the	nodes	in
the	periphery	will	be	around	the	outside.	We	can	then	immediately	see	which	nodes
are	on	the	edge	of	the	core	or	part	of	the	semi-periphery,	particularly	if	we	shape	or
color	the	nodes	that	are	in	the	recommended	core.	We	have	done	this	for	the	citation
data,	and	the	results	are	shown	in	Figure	12.7,	with	core	nodes	as	gray	squares	and
peripheral	nodes	as	black	circles.	The	position	of	the	core	journals	in	the	center	and
the	strong	connections	between	them	are	apparent.	In	addition,	we	see	that	ASW	is
placed	near	to	the	core	and	so	must	be	close	to	being	considered	a	member	of	the
core;	SWG,	JSWE	and	SWRA	are	clearly	on	the	edge	of	the	core	and	are	close	to
being	in	the	periphery.
A	natural	 question	 in	 examining	 for	 core–periphery	 patterns	 is	what	method	 to

use	–	discrete	or	continuous.	The	data	itself	may	give	an	indication.	Both	methods
can	 handle	 valued	 data,	 so	 this	 is	 not	 an	 issue.	 If	 the	 data	 is	 not	 symmetric,	 the
discrete	method	has	some	obvious	advantages,	provided	the	dataset	is	not	too	large.
For	 large	 datasets,	 the	 continuous	 method	 has	 computational	 advantages,	 and	 the
visualization	 as	 shown	 in	 Figure	 12.7	 is	 a	 real	 advantage.	 The	 recommended
approach	 is	 to	 use	 both	 methods	 whenever	 possible	 and	 to	 take	 account	 of	 the
advantages	and	disadvantages	of	each	to	gain	an	overall	view	of	the	data.



Figure	12.7			Core–periphery	layout	of	citation	data.

12.9	Summary

Actors	in	similar	structural	positions	across	multirelational	networks	share	certain
behavioral	 patterns.	 We	 try	 to	 capture	 these	 positions	 by	 using	 equivalences.
Structural	equivalence	captures	the	extent	to	which	equivalent	actors	are	connected
to	 the	 same	 others,	 whereas	 regular	 equivalence	 looks	 at	 the	 extent	 to	 which
equivalent	 actors	 are	 connected	 to	 equivalent	 others.	 These	 concepts	 need	 to	 be
relaxed	when	applied	to	real	data.	Profile	methods	measure	the	similarity	among	the
rows	 and	 columns	 of	 the	 adjacency	 matrix	 to	 produce	 a	 proximity	 matrix	 that
measures	the	extent	to	which	any	pair	of	actors	is	equivalent.	The	REGE	algorithm
has	the	same	goal	for	regular	equivalence	but	uses	an	iterative	technique	based	on
fuzzy	 sets.	 The	 proximity	 matrices	 can	 then	 be	 clustered	 to	 find	 the	 equivalent
groups.	 Alternatively,	 we	 can	 measure	 the	 amount	 of	 equivalence	 in	 a	 particular
partition	by	examining	the	blocks	it	induces.	Structural	equivalence	requires	blocks
of	all	0s	or	all	1s,	whereas	regular	equivalence	relaxes	the	1-blocks	so	that	there	is
at	 least	 one	 1	 in	 every	 row	 and	 every	 column.	Once	we	 have	 a	measure,	we	 can
apply	 optimization	 techniques	 to	 try	 to	 find	 the	 best	 fit.	 Partitioned	 matrices	 are
known	as	blockmodels,	which	can	be	used	to	give	summary	reductions	of	the	data.
One	 particularly	 useful	 blockmodel	 is	 the	 core–periphery	 model	 in	 which	 core
actors	 interact	with	other	core	actors	but	not	 the	peripheral	 actors,	 and	peripheral
actors	 also	 interact	 with	 the	 core	 actors	 and	 not	 the	 peripheral	 actors.	 Core–
periphery	structures	are	commonly	found	in	social	network	data	and	have	important
implications	for	their	functioning.
	



1	We	would	 like	 to	 say	 ‘structurally	 equivalent’,	 since	we	mean	 equivalence	with
respect	to	structural	position.	Unfortunately,	the	term	was	used	early	on	by	Lorrain
and	White	(1971)	to	refer	to	one	specific	type	of	structure-based	equivalence,	so	we
avoid	using	the	term	except	when	referring	to	the	more	specific	concept.



13

Analyzing	two-mode	data

Learning	Outcomes
	

1.	 Represent	two-mode	data	as	an	affiliation	matrix	and	a	bipartite	network
2.	 Project	two-mode	data	to	a	single	mode	effectively
3.	 Extend	one-mode	methods	to	bipartite	networks

13.1	Introduction

In	most	of	this	book,	we	have	focused	on	data	in	which	we	have	ties	among	a	single
set	of	actors,	and	the	ties	are	measured	directly,	either	by	asking	the	actors	involved
or	collecting	archival	data	on,	say,	transactions	between	actors.	However,	as	touched
on	elsewhere,	we	often	have	 the	 situation	where	we	cannot	 collect	 ties	 among	 the
actors	directly,	but	can	infer	or	predict	ties	based	on	belonging	to	the	same	groups
or	 attending	 the	 same	 events.	 Our	 basic	 data,	 therefore,	 consists	 of	 two	 types	 of
actors	in	which	there	are	only	connections	between	the	two	types	and	not	within.	As
we	discussed	in	Chapter	2,	this	is	known	as	two-mode	data	or	affiliation	data.
A	 simple	 example	would	be	 a	 group	of	 students	 and	 a	 set	 of	 classes.	We	could

construct	a	network	which	ties	students	to	classes.	The	relationship	is	‘attends	class’.
There	would	be	no	 ties	directly	between	students,	nor	would	 there	be	 ties	between
classes,	 only	 ties	 connecting	 students	 to	 classes.	 Recall	 that	we	 can	 represent	 this
data	 by	 a	 matrix,	 typically	 referred	 to	 as	 a	 two-mode	 incidence	 matrix	 or	 an
affiliation	matrix.	This	is	like	an	adjacency	matrix,	except	the	rows	would	represent
one	 group,	 the	 students,	 say,	 and	 the	 columns	 represent	 a	 different	 group,	 the
classes.
In	Chapter	2	we	 discussed	 the	Davis,	Gardner,	 and	Gardner	 (1941)	 data	 on	 the

attendance	at	 14	 society	 events	by	18	Southern	women.	For	 ease	of	 reference,	 the
data	is	given	again	in	Matrix	13.1,	where	 the	rows	of	 the	affiliation	matrix	are	 the
women	and	the	columns	are	the	14	events.



Matrix	13.1			Southern	women	dataset.

Data	 in	 this	 form	 is	very	common	 in	certain	areas	of	application.	For	example,
there	has	been	a	long	tradition	of	studying	data	on	interlocking	directorates.	In	this
case,	 the	 actors	 are	 company	 directors	 and	 the	 second	 mode	 (the	 events,	 in	 our
language)	 consists	 of	 the	 companies	 on	 whose	 board	 they	 sit.	 Data	 from	 social
movements	 often	 consist	 of	 actors	 and	meetings	 or	 events	 they	 have	 attended	 or
organizations	to	which	they	are	affiliated.	Methods	for	finding	connections	between
more	difficult-to-reach	populations	have	also	used	 two-mode	data	 techniques.	For
example,	 in	 looking	 at	 sexual	 health	 issues,	 the	 two-mode	 networks	 of	 gay	 men
attending	 saunas	 or	 of	 swingers	 attending	 parties	 are	 often	 easier	 to	 collect	 than
detailed	 sexual	practices	between	named	 individuals.	Large	 two-mode	datasets	can
be	 constructed	 from	 the	 Internet	 Movie	 Database	 (e.g.,	 actors	 by	 movies),	 as
discussed	in	Chapter	4.
In	analyzing	two-mode	data,	we	typically	make	the	assumption	that	attending	the

same	event	 is	 either	 an	 indicator	of	 an	underlying	 social	 relationship	between	 the
actors	or	 a	potential	 opportunity	 for	one	 to	develop.	When	events	 are	very	 large,
however,	 such	 as	 sporting	 events,	 co-attendance	may	 be	 a	 very	 poor	 indicator	 or
predictor	 of	 a	 social	 relationship.	 It	 is	 also	 worth	 noting	 that	 two-mode	 data	 not
involving	 interactions	 (e.g.,	 subscribing	 to	 the	 same	 magazines	 or	 watching	 the
same	TV	shows)	is	even	more	tenuously	related	to	social	relationships.
As	 an	 aside,	 two-mode	 data	 is	 normally	 treated	 as	 undirected,	 even	 when	 it	 is



clear	that	there	is	agency	in	only	one	direction.	For	example,	if	the	data	consists	of	a
person’s	attendance	at	public	events,	it	is	the	person	who	chooses	the	event,	and	not
the	other	way	around.	However,	 if	all	 the	 ties	point	 from	person	 to	event,	 there	 is
little	benefit	to	keeping	the	ties	directed	and,	in	fact,	doing	so	would	make	many	of
the	analyses	we	discuss	impossible.	Occasionally,	however,	we	find	two-mode	data
that	 really	 does	 have	 direction.	 A	 rule	 of	 thumb	 is	 that	 if	 both	 the	 persons	 and
groups	 are	 sending	 ties,	 and	 ties	 need	 not	 be	 reciprocated,	 then	 the	 data	 can
profitably	 be	 analyzed	 as	 directed.	An	 example	 occurs	 in	 the	US	 college	 football
recruiting	 process,	 where	 schools	 publicly	 announce	 which	 recruits	 they	 are
interested	 in,	and	recruits	similarly	announce	which	schools	 they	are	 interested	 in.
Similar	data	occurs	in	a	number	of	matching	situations,	such	as	heterosexual	dating
sites	 where	 males	 and	 females	 choose	 each	 other	 and	 do	 not	 choose	 within-sex
partners.
Two-mode	 data	 can	 be	 analyzed	 in	 a	 number	 of	 different	 ways.	 The	 most

commonly	 used	methods	 are	 converting	 to	 one-mode	 data	 or	 analyzing	 the	 two-
mode	 data	 directly	 as	 a	 bipartite	 graph.	 Although	 the	 first	 method	 is	 the	 most
common,	conventional	wisdom	until	recently	has	considered	the	second	method	to
be	better.	This	is	based	on	the	assumption	that	conversion	to	one-model	necessarily
entails	 loss	 of	 data.	 Recent	 work,	 however,	 suggests	 that	 this	 concern	 has	 been
exaggerated	(Everett	and	Borgatti,	2013).	We	consider	both	methods	in	this	chapter.
As	a	terminological	convenience,	we	shall	assume	one	mode	consists	of	a	set	of

actors	and	the	other	mode	a	set	of	events.	We	should	emphasize	that	this	is	only	to
simplify	the	exposition	and	we	do	not	require	the	modes	to	actually	consist	of	actors
and	events.

13.2	Converting	to	one-mode	data

One	approach	to	dealing	with	data	of	this	type	is	to	convert	it	to	one-mode	data	–	a
new	dataset	 in	which	a	pair	of	actors	is	said	to	be	tied	to	the	extent	 that	 they	share
affiliations.	 This	 can	 be	 a	 relatively	 simple	 process.	As	 an	 example,	 consider	 the
Davis	data	above.	We	can	construct	a	new	one-mode	matrix	in	which	both	the	rows
and	 columns	 represent	women,	 and	 the	matrix	 cell	 values	 indicate	 the	 number	 of
events	 the	 women	 with	 the	 relationship	 attended	 an	 event	 together.	 The	 co-
membership	 matrix	 for	 the	 Davis	 data	 in	Matrix	 13.1	 is	 given	 in	Matrix	 13.2.	 A
visualization	of	the	network	is	shown	in	Figure	13.1	where	the	thickness	of	the	lines
corresponds	to	the	values	in	the	matrix.



Matrix	13.2			Single-mode	projection	of	the	women.

It	is	important	to	remember	that	ties	inferred	from	two-mode	data	are	not	the	same
as	 ties	 obtained	 directly	 from,	 say,	 a	 survey.	 For	 example,	 if	 the	 events	 are	 large
(e.g.,	political	demonstrations),	two	actors	may	attend	several	of	the	same	events	and
never	 even	meet	 each	other,	 let	 alone	pass	 information.	 In	 such	 cases,	we	need	 to
interpret	 the	 co-membership	 tie	 as,	 at	 best,	 a	 potential	 for	 interaction	 –	 the	more
events	 a	 pair	 of	 women	 attend	 in	 common,	 the	 greater	 the	 chance	 of	 meeting,
establishing	a	relationship,	etc.	Or	we	may	see	co-attendance	or	co-membership	as	a
potential	for	activation.	For	example,	suppose	you	and	I	are	strangers,	but	I	would
like	 to	enlist	you	 to	 join	me	 in	donating	some	money	 to	a	charitable	cause.	 I	may
have	an	easier	time	if	I	can	point	out	that	we	attended	the	same	university,	belong	to
the	same	country	club,	and	so	on.	(Of	course,	as	discussed	in	Chapter	1,	we	can	also
see	co-attendance	as	the	observed	result	of	an	otherwise	hidden	relationship	between
the	two	actors.)



Figure	13.1			Woman-by-woman	co-attendance	network.

Mathematically,	 we	 can	 construct	 the	 one-mode	 matrix	 of	 co-occurrences	 by
post-multiplying	the	two-mode	matrix	by	its	transpose:

Or,	 more	 simply,	 for	 each	 pair	 of	 rows,	 we	 look	 at	 each	 column	 and	 count	 the
number	of	 times	 that	both	are	1.	Hence,	Evelyn	and	Laura	have	a	 link	 in	 this	new
dataset	since	they	both	attended	event	1,	for	example.	On	the	other	hand,	Flora	did
not	attend	any	events	with	Laura,	so	they	are	not	connected.	In	fact,	we	can	do	more
than	simply	construct	a	binary	matrix;	we	can	form	a	proximity	matrix	in	which	the
entries	give	the	number	of	events	each	pair	attended.	We	can	see	from	the	matrix	that
Brenda	 attended	 six	 events	 with	 Evelyn.	 These	 are	 sometimes	 called	 ‘co-
membership	matrices’.	Note	 that	 the	diagonal	 elements	give	 the	number	of	 events
each	woman	attended.
We	 could	 also	 form	 a	 one-mode	matrix	 of	 the	 events	 instead	 of	 the	women	by

pre-multiplying	the	two-mode	matrix	by	its	transpose.	This	would	result	in	an	event-
by-event	matrix	 in	which	 the	entries	would	 show	how	many	women	attended	both
events	in	common	(see	Matrix	13.3).	These	should	not	be	viewed	as	two	independent
data	 matrices,	 since	 they	 are	 clearly	 linked.	 In	 a	 classic	 paper,	 Breiger	 (1974)
explored	 the	 duality	 between	 the	 actors	 and	 the	 events	 and	 suggested	 that
consideration	should	be	given	to	both	projections	–	an	issue	we	shall	return	to	later
in	the	chapter.



Matrix	13.3			Event-by-event	matrix.

One	thing	to	think	about	in	this	kind	of	conversion	is	the	effects	of	varying	row
and/or	column	sums.	For	example,	in	Matrix	13.3,	events	7,	8	and	9	have	many	‘ties’
with	 each	 other	 (and	 with	 all	 other	 events),	 in	 part	 because	 they	 are	 simply	 well
attended.	Even	if	people	attended	events	at	random,	these	events	would	be	highly	co-
attended	by	chance	alone.	In	some	ways,	this	is	the	right	answer.	If	we	were	studying
the	 spread	 of	 disease,	 we	 would	 be	 very	 interested	 in	 those	 big	 events	 that	 are
capable	of	 spreading	disease	 to	many	other	 events	 (assuming	 they	occur	 after	 the
big	event).	In	other	cases,	however,	we	think	of	the	effects	of	variation	in	size	as	a
nuisance	that	we	would	like	to	normalize	away.	In	this	case,	a	solution	is	to	create	a
metric	 that	 measures	 the	 extent	 to	 which	 events	 are	 co-attended	 relative	 to	 the
amount	 we	 would	 expect	 by	 chance	 given	 the	 size	 of	 the	 events.	 UCINET’s
affiliations	procedure	provides	Bonacich’s	(1972)	metric	as	an	option.	Using	it	on
the	Davis	dataset	yields	Matrix	13.4	which	is	represented	graphically	in	Figure	13.2.
Now,	 the	 strengths	 of	 tie	 between	 events	 7,	 8	 and	 9	 are	 much	 smaller	 than	 the
strengths	among	1	through	5,	and	among	12	through	14.
The	choice	between	using	the	raw	and	the	normalized	numbers	can	be	put	in	the

following	 terms.	 Let	 us	 focus	 not	 on	 the	 event-by-event	 matrix	 above	 but	 the
women-by-women	 matrix	 of	 co-attendances	 at	 events.	 If	 we	 use	 the	 raw	 counts,
those	women	who	go	to	a	lot	of	parties	will	be	highly	central,	and	two	women	with
this	 characteristic	 will	 tend	 to	 have	 a	 strong	 tie	 with	 each	 other.	 If	 we	 use	 the
normalized	values,	 the	 effects	of	 these	differences	will	 be	 removed	and	what	will
remain	is	the	underlying	tendency	for	two	women	to	co-attend	events.	One	method
gets	 the	actual	pattern	of	co-attendance,	while	 the	other	 tries	 to	get	 the	underlying



preferences	 for	 co-attendance,	 correcting	 for	 the	 confounding	 influences	 of
differential	 tendencies	 to	 attend	 in	 general.	 It	 is	 similar	 to	 the	 situation	 in	 the
measurement	 of	 homophily.	 Suppose	 there	 is	 a	 population	 that	 is	 90%	white	 and
10%	black.	Unnormalized	measures	of	homophily	will	tend	to	show	that	whites	are
heavily	 homophilous	 while	 blacks	 are	 heterophilous.	 This	 is	 because	 almost	 all
available	interaction	partners	are	white.	Normalized	measures	of	homophily	seek	to
unpack	the	underlying	preferences	that	may	be	masked	by	the	unequal	distributions
of	group	sizes.	They	would	typically	show	both	groups	being	fairly	homophilous.

Matrix	13.4			Event-by-event	associations	using	Bonacich’s	(1972)	normalization.

Figure	13.2			Normalized	associations	among	events.	Line	thickness	corresponds	to
tie	strength.



To	summarize,	then,	when	converting	two-mode	data	to	one-mode,	we	can	make
use	 of	 two	 kinds	 of	 normalizations	 –	 one	 associated	 with	 the	 mode	 serving	 as
variables	and	the	other	associated	with	the	mode	serving	as	cases.	To	make	this	less
abstract,	let	us	take	the	case	of	converting	the	women-by-events	data	to	women-by-
women.	First,	we	realize	that	some	events	are	larger	than	others,	so	co-attendance	at
those	events	 could	be	counted	 less	 than	co-attendance	at	 small	 events.	One	way	 to
implement	 this	 that	would	allow	us	 to	 retain	equation	13.1	unchanged	 is	simply	 to
divide	each	value	in	the	original	two-mode	matrix	by	the	square	root	of	the	column
sums.	 Second,	 we	 realize	 that	 some	 women	 attend	 more	 events	 than	 others,	 and
therefore	have	higher	probabilities	of	having	a	co-attendance	tie	with	others.	Again,
to	 implement	 this	without	changing	equation	13.1,	we	could	further	divide	 the	cell
entries	by	the	square	roots	of	the	row	sums	of	the	original	matrix.	This	division	by
the	roots	of	the	row	and	column	sums	is	precisely	the	first	step	in	a	correspondence
analysis	 (see	 Chapter	 6).	 Alternatively,	 we	 can	 accomplish	 this	 row-wise
normalization	 implicitly	 by	 using	 a	 measure	 of	 row-row	 association	 that
automatically	takes	care	of	that.	Bonacich’s	(1972)	measure	is	one	example	that	was
specifically	designed	for	working	with	two-mode	data,	but	there	are	dozens	of	other
measures	 of	 association	 that	 have	 similar	 properties,	 including	 Cohen’s	 Kappa
(1960)	and	Freeman’s	S	(1978).

13.3	Converting	valued	two-mode	matrices	to	one-mode

So	 far,	 we	 have	 only	 considered	 binary	 affiliation	 matrices.	 If	 the	 original	 two-
mode	data	was	valued,	we	would	need	to	take	account	of	this	when	constructing	our
one-mode	 datasets.	As	 noted	 earlier,	Matrix	 13.2	 can	 be	 constructed	 from	Matrix
13.1	by	simply	multiplying	the	former	by	its	transpose.	Effectively,	for	each	pair	of
rows,	we	simply	multiply	the	entries	in	each	column	and	sum	them	up.	Since	zero
times	anything	is	zero,	the	sum	is	only	greater	than	zero	when	there	are	columns	in
which	both	values	 are	1s.	We	can	use	 the	 same	method	 for	valued	data.	However,
this	would	mean	the	elements	would	be	multiplied	and	then	summed	to	give	a	value
in	 the	one-mode	data.	This	 is	a	 figure	 that	 is	 rather	difficult	 to	 interpret,	 although
clearly	high	values	would	indicate	strong	ties	to	the	same	events.
A	more	 interpretable	 approach	would	 be	 to	 sum	 the	minimums	 of	 the	 two	 cell

values	rather	than	the	products.	Hence,	if	row	i	was	(5,	6,	0,	1)	and	row	j	was	(4,	2,
4,	0)	then	AAT(i,	j)	would	be	5	×	4	+	6	×	2	+	0	×	4	+	1	×	0	=	32	for	the	normal	matrix
product	 and	min(5,	 4)	 +	min(6,	 2)	 +	min(0,	 4)	 +	min(1,	 0)	 =	 6	 for	 the	minimum
method.	 These	would	 produce	 the	 same	 answers	 for	 binary	 data.	 To	 see	why	 the
minimum	is	more	interpretable,	suppose	the	two-mode	dataset	recorded	how	many
hours	each	member	of	a	consulting	company	spent	on	each	client	project.	That	 is,



the	rows	are	persons	and	the	columns	are	projects.	Then,	constructing	the	person-
by-person	one-mode	matrix	using	the	minimum	method	would	yield	the	maximum
possible	time	each	pair	of	persons	could	have	spent	together.
As	 in	 the	 case	 of	 binary	 data,	 what	 we	 are	 really	 doing	 here	 is	 computing

measures	of	similarity	on	the	rows	or	columns	of	the	two-mode	matrix.	Dozens	of
measures	have	been	devised	in	different	contexts	that	could	be	applied	here,	and	the
researcher	should	make	an	effort	to	consider	whether	one	of	these	other	measures
would	suit	their	research	better.

13.4	Bipartite	networks

One	of	the	problems	with	converting	the	affiliation	matrix	to	one-mode	is	that	there
can	be	a	loss	of	information.1	For	example,	two	women	could	have	the	same	degree
of	 overlap	 as	 another	 pair	 of	 women	 but	 through	 entirely	 different	 events.	 An
alternative	approach	is	to	treat	the	affiliation	matrix	as	if	it	were	a	piece	of	a	much
larger	adjacency	matrix	 in	which	 the	rows	consist	of	both	women	and	events,	and
the	columns	also	consist	of	both	women	and	events,	as	shown	in	Matrix	13.5.	Note
that	ties	exist	only	between	women	and	events	–	there	are	no	ties	among	women	or
among	events.	A	network	with	this	structure	is	known	as	bipartite.
A	graphical	representation	of	the	bipartite	version	of	the	Davis	data	is	shown	in

Figure	 13.3.	 In	 order	 to	 easily	 differentiate	 the	 modes	 of	 the	 nodes,	 we	 have
represented	 the	 events	 as	 squares	 and	 the	 women	 as	 circles.	 There	 are	 no	 edges
connecting	pairs	of	circles	or	pairs	of	squares.	An	alternative	visualization	is	to	put
the	women	on	one	side	of	the	picture	and	the	events	on	the	other	so	that	the	edges
only	go	across	the	page.



Matrix	13.5			Bipartite	matrix	of	Southern	women	data.

Since	 the	bipartite	network	 is	simply	a	network,	we	can	apply	all	of	 the	normal
network	methods.	However,	we	need	to	be	aware	that	our	results	will	be	affected	by
the	fact	that	edges	cannot	occur	within	the	two	groups.	For	example	we	cannot	find
any	 cliques,	 since	 the	 shortest	 possible	 cycle	 is	 of	 length	 4.	 Also,	 standard
normalizations	of	measures	such	as	centrality	usually	assume	that	all	actors	could	in
principle	be	connected	to	each	other.	Take	as	an	example	degree	centrality.	Ruth	has
degree	4,	so	the	normalized	degree	centrality	would	take	the	4	and	divide	it	by	n	–	1,
which	 is	 31	 in	 this	 case,	 to	 yield	 a	 normalized	 centrality	 of	 13%.	But	Ruth	 could
only	attend	a	maximum	of	14	events	and	so	her	normalized	degree	centrality	should
actually	 be	 29%.	 We	 can	 run	 all	 of	 the	 standard	 centrality	 and	 centralization
routines,	but	we	need	to	adjust	the	normalization	scores	to	reflect	the	nature	of	the
data.	 (Details	 can	 be	 found	 in	 Borgatti	 and	 Everett	 1997.)	 UCINET	 has	 special
routines	which	perform	the	correct	normalization	for	both	degree	and	betweenness
centrality	 (and	 also	 closeness,	 but,	 as	 already	 noted,	 this	 is	 not	 a	 very	 useful
centrality	measure).



Figure	 13.3	 	 	 Bipartite	 graph	 of	 Southern	 women	 data.	 Circular	 nodes	 indicate
women,	square	nodes	indicate	events.

Density	 can	 similarly	 be	 adjusted.	 We	 just	 count	 the	 number	 of	 edges,	 as	 we
normally	do	(see	Chapter	9)	and	then	divide	by	the	maximum	possible,	m	×	n,	where
m	 is	 the	 number	 of	 actors	 and	 n	 is	 the	 number	 of	 events.	 For	 valued	 bipartite
networks	we	simply	sum	the	edge	weights	instead	of	counting.
Other	 cohesion	 methods	 such	 as	 average	 geodesic	 distance	 need	 not	 be

renormalized,	 but	 in	 comparing	 networks	 we	 need	 to	 be	 aware	 that	 the	 bipartite
networks	have	different	properties	and	we	should	not,	for	example,	compare	these
scores	with	ones	derived	from	single-mode	networks.
The	 general	 approach	 of	 adapting	methods	 for	 bipartite	 networks	works	 for	 a

number	 of	 other	 techniques,	 but	 it	 does	 not	 work	 for	 all.	 For	 example,	 as	 noted
earlier,	most	two-mode	networks	are	not	directed	in	the	usual	sense,	so	reciprocity
is	either	100%	or	zero.	For	another	example,	bipartite	networks	have	no	transitive
triples,	 since	 that	 would	 require	 a	 within-mode	 tie.	 For	 properties	 such	 as
transitivity,	we	have	to	construct	a	new	concept	that	in	some	sense	retains	the	spirit
of	the	original	concept.	For	example,	one	way	to	think	about	transitivity	in	ordinary
networks	is	in	terms	of	closure:	if	A	is	connected	to	B	and	B	is	connected	to	C,	then
the	 open	 structural	 hole	 between	 A	 and	 C	 would	 be	 closed	 if	 A	 and	 C	 became
connected.	 In	 a	 bipartite	 network,	 closure	 can	 be	 defined	 in	 terms	 of	 4-cycles.	 In
other	words,	if	A	and	B	attends	event	X	and	A	attends	event	Y,	we	have	closure	if	B
also	attends	Y.	Other	generalizations	of	transitivity	also	exist	(Opsahl	2012).

13.5	Cohesive	subgroups



Clearly,	a	bipartite	network	cannot	contain	any	cliques	as	described	in	the	cohesive
subgroup	 chapter	 since	 we	 cannot	 have	 connections	 within	 the	 modes.	 However,
recall	 that	 a	 clique	 is	 defined	 as	 a	maximally	 connected	 subgraph.	This	definition
can	 still	 hold	 for	 a	 bipartite	 network;	we	 just	 need	 to	 refine	 it	 to	 be	 a	maximally
complete	bipartite	subgraph,	which	we	call	a	‘bi-clique’.	Cliques	usually	contain	at
least	 three	 actors;	 for	 bi-cliques,	we	 normally	 look	 for	 at	 least	 three	 actors	 from
each	mode,	but	 this	can	be	 lowered.	Also,	 there	 is	no	 reason	for	us	 to	 require	 the
same	minimum	criteria	 in	each	mode.	 It	may	happen	 that	one	mode	contains	a	 lot
more	vertices	than	the	other.	We	can	then	analyze	the	bi-cliques	in	the	same	was	as
we	did	for	the	cliques.

Figure	13.4			Clustering	of	bi-cliques	in	the	Southern	women	data.

The	Davis	data	has	22	bi-cliques	with	at	least	three	actors	in	each	mode.	We	then
constructed	an	actor-by-actor	bi-clique	co-membership	matrix	and	submitted	this	to
the	 average	method	 hierarchical	 clustering	 to	 obtain	 the	 diagram	given	 in	Figure
13.4.	 In	 this	 figure	 we	 can	 clearly	 identify	 two	 groups	 of	 women	 and	 the	 events
associated	with	each	group.
It	 is	 also	 possible	 to	 analyze	 the	 bi-clique	 overlap	 using	 the	 bimodal	 method

discussed	 in	 Chapter	 4.	 In	 this	 case,	 any	 visualization	 would	 have	 three	 different
node	types:	actors,	events	and	bi-cliques.	However,	 the	actors	and	events	would	be



treated	as	if	they	belonged	to	the	same	mode,	and	the	bi-cliques	would	be	the	second
mode.	This	would	require	sophisticated	use	of	any	of	the	current	software	tools,	and
thus	is	not	discussed	here	in	any	detail.

13.6	Core–periphery	models

Core–periphery	structures	generalize	naturally	to	two-mode	data.	The	events	and	the
actors	 are	 both	 divided	 into	 core	 and	 periphery	 groups.	 Core	 actors	 attend	 core
events	and	peripheral	actors	attend	peripheral	events.	As	with	the	single-mode	case,
the	 core–periphery	 interactions	 are	 often	 defined	 by	 the	 data	 and	 are	 not	 always
specified.	In	general,	we	might	expect	core	actors	to	attend	some	peripheral	events
and	peripheral	 actors	 to	 only	 attend	 a	 few	 core	 events;	 these	 can	be	 built	 into	 the
models.
As	with	 the	single-mode	case,	we	can	use	either	a	categorical	approach	and	use

optimization	 methods	 to	 fit	 our	 data	 to	 an	 ideal	 model,	 or	 use	 a	 continuous
approach.	 Note	 that	 the	 number	 of	 actors	 in	 the	 actor	 core	 will	 in	 general	 be
different	from	the	number	of	events	in	the	event	core,	so	the	optimization	algorithm
will	 be	 a	 lot	 slower	 for	 two-mode	 data.	 This	 is	 true	 to	 such	 an	 extent	 that	 only
relatively	small	networks	can	be	analyzed	using	this	approach.
We	 can	 adapt	 the	 continuous	 method	 to	 the	 bipartite	 network	 by	 analyzing	 the

affiliation	 matrix	 directly,	 using	 methods	 designed	 for	 non-square	 matrices
(singular-valued	 decomposition).	 However,	 it	 turns	 out	 that	 this	 technique	 is
basically	 equivalent	 to	 finding	 the	 core–periphery	 structures	 of	 the	 actor-by-actor
and	event-by-event	one-mode	networks	and	using	these	results	to	define	the	relevant
cores	and	peripheries.	Hence,	an	analysis	of	a	two-mode	dataset	would	proceed	by
first	constructing	the	two	one-mode	datasets	of	actors	and	events	as	described	in	the
second	 section	 of	 this	 chapter	 and	 then	 applying	 the	 continuous	 core–periphery
model	to	each	of	these	separately.	These	results	are	then	combined	and	represented
on	 the	 original	 affiliation	 matrix.	 Applying	 this	 to	 the	 Davis	 data	 and	 taking	 the
recommended	core	and	periphery	sizes	provided	by	UCINET	results	in	the	partition
shown	in	Figure	13.5.
We	note	that,	as	shown	in	Figure	13.5,	there	are	eight	core	women	and	five	core

events.	It	is	easy	to	see	that	the	core	events	are	simply	the	most	popular,	since	they
were	 all	 attended	 by	 eight	 or	more	women,	 and	 the	 peripheral	 events	 had	 six	 or
fewer.	The	core	women,	on	the	other	hand,	have	a	more	subtle	structure:	to	be	in	the
core,	 a	woman	had	 to	 either	 attend	either	 four	or	more	core	 events	or	 three	 core
events	 and	 at	 least	 four	 peripheral	 events.	 We	 see	 that	 Ruth,	 for	 example,	 only
attended	 four	events	but	 they	were	all	 core,	whereas	Katherine	attended	six	events
but	only	two	of	these	were	core,	so	she	is	placed	in	the	periphery.	We	also	note	that



the	 peripheral	women	Frances,	 Pearl	 and	Verne	 all	 attended	 three	 core	 events	 but
very	 few	 peripheral	 events	 (at	 most	 only	 one),	 and	 this	 was	 not	 enough	 to
compensate	for	their	lower	attendance	at	the	core	events.

Figure	13.5			Core–periphery	analysis	of	the	Southern	women	data.

The	approach	taken	here	can	be	seen	as	a	more	general	technique	for	analyzing
two-mode	networks.	We	have	taken	both	projections	(women-by-women	and	event-
by-event),	 analyzed	 these	 separately,	 and	 then	 combined	 the	 results.	 This	 is	 what
Everett	 and	 Borgatti	 (2013)	 call	 the	 ‘dual	 projection	 approach’.	 They	 show	 that
provided	you	use	both	projections	and	do	not	dichotomize,	there	will	almost	never
be	any	structural	data	loss.

13.7	Equivalence

The	approach	taken	in	Chapter	12	on	equivalence	requires	very	few	modifications
to	 apply	 directly	 to	 affiliation	 matrices.	 Core–periphery	 models	 can	 be	 seen	 as
nearly	structural	equivalence	blockmodels	with	a	1-block	for	core–core	interaction
and	 a	0-block	 for	 periphery–periphery	 interaction.	They	 are	not	 quite	 a	 structural
equivalence,	 since	we	 do	 not	 specify	 any	 patterns	 in	 the	 off-diagonal	 blocks.	The



block	 specifications	 are	 the	 same	 for	 one-mode	 and	 two-mode	 data;	 the	 only
difference	is	in	the	fact	that	we	allow	non-square	blocks	in	the	two-mode	data	as	we
partition	the	rows	independently	of	the	columns.

13.7.1	Structural	equivalence
As	normally	conceived,	two-mode	data	cannot	contain	self-loops	and	does	not	have
directed	 ties.	As	a	consequence,	we	can	use	a	very	simple	definition	for	structural
equivalence:	actors	i	and	j	are	structurally	equivalent	if	they	are	connected	to	exactly
the	same	events.	Events	A	and	B	are	structurally	equivalent	if	they	were	attended	by
exactly	the	same	actors.
We	can	apply	profile	 similarity	 in	exactly	 the	same	way	as	 for	 the	single-mode

case.	We	take	the	rows	as	the	profiles	of	the	actors	and	the	columns	as	the	profiles
of	 the	 events.	We	 can	 then	 form	 a	 structural	 equivalence	matrix	 of	 the	 actors	 by
comparing	 the	 rows	 using	 correlation	 Euclidean	 distance	 or	 matching,	 and	 a
structural	equivalence	matrix	of	 the	events	by	comparing	 the	columns	 in	 the	same
way.	Each	matrix	can	then	be	clustered	in	 the	same	way	as	for	 the	one-mode	case.
This	is	another	example	of	using	the	dual	projection	approach	to	guard	against	data
loss	when	converting	from	two-mode	to	one-mode.	Figure	13.6	gives	the	structural
equivalence	matrix	for	the	women	and	the	events	of	the	Davis	data.	The	measure	of
equivalence	 is	 matches,	 and	 the	 values	 give	 the	 fraction	 of	 matches	 between	 the
profiles	to	a	single	(truncated)	decimal	place.
We	can	see	from	Figure	13.6	that	Olivia	and	Flora	are	structurally	equivalent,	as

are	events	13	and	14.	The	least	structurally	equivalent	women	are	Evelyn	and	Nora,
and	 the	 least	 structurally	 equivalent	 events	 are	8	 and	11.	We	could	proceed	with	 a
clustering	 of	 these	matrices,	 but	 we	 shall	 postpone	 this	 so	 we	 can	make	 a	 direct
comparison	with	the	optimization	approach.
A	 blockmodel	 for	 structural	 equivalence	 has	 exactly	 the	 same	 form	 as	 for	 the

single-mode	 case.	 That	 is,	 the	 matrix	 blocks	 are	 either	 all	 0s	 or	 all	 1s.	 We	 can
therefore	apply	the	direct	method	to	the	Davis	data.	The	computational	complexity
of	 this	approach	means	that	 it	 is	often	quite	difficult	 to	find	good	partitions	of	 the
data,	 and	 there	 are	 often	 very	 many	 competing	 solutions,	 making	 this	 very
challenging	for	the	researcher.	The	structural	equivalence	partition	of	the	Davis	data
given	in	Figure	13.7	has	been	proposed	as	a	good	solution	(found	using	the	Pajek
software)	 and	 published	 by	 Doreian,	 Batagelj	 and	 Ferligoj	 (2004).	 This	 required
relatively	sophisticated	use	of	the	software,	specifying	the	model	precisely	together
with	certain	(non-default)	penalties	for	violating	the	structural	equivalence	criteria.
We	can	see	that	the	proposed	solution	has	four	pure	non-zero	blocks	and	contains

63	errors	in	the	1-blocks.	It	divides	the	women	into	three	groups.	One	group	attends
two	sets	of	events;	the	second	group	also	attends	two	sets	of	events	but	with	one	set



in	common	with	the	first	group;	and	the	final	pair	of	women	only	attend	the	events
the	first	 two	sets	of	women	had	in	common.	This	solution	is	consistent	with	many
other	analyses	of	these	data.

Figure	13.6			Structural	equivalence	of	women	and	events	from	the	Davis	data.

Figure	13.7			Direct	blockmodel	of	the	Davis	data.

To	 compare	 this	 solution	with	 the	 profile	method	 directly,	we	will	 first	 cluster



each	of	the	matrices	of	Figure	13.6	into	three	groups.	We	use	the	UCINET	Cluster
Optimization	 routine	 with	 the	 Density	 option	 to	 generate	 the	 clusters	 from	 the
equivalence	data.	The	resultant	two-mode	blockmodel	constructed	using	the	woman
and	event	partitions	is	given	in	Figure	13.8.
The	 event	 blocking	 is	 similar	 in	 both	 models,	 with	 just	 event	 6	 differently

allocated.	 The	 first	 block	 of	 women	 is	 also	 similar,	 with	 just	 one	 woman,	 Ruth,
placed	 in	 another	 block.	 However,	 the	 remaining	 blocks	 are	 quite	 different.	 The
overall	structure	is	very	similar,	inasmuch	as	all	women	attend	one	group	of	events
(the	middle	group	in	both	cases),	there	is	a	group	of	women	who	attends	these	and
one	other	set	of	events,	and	another	group	who	attends	these	and	a	different	set	of
events.	As	previously	noted,	Figure	13.7	has	63	errors,	whereas	the	model	in	Figure
13.8	has	just	43	errors	and	as	such	is	a	better	solution.

13.7.2	Regular	equivalence
Unfortunately,	the	fact	that	there	is	no	simple	profile	similarity	method	for	regular
equivalence	 means	 that	 we	 are	 more	 constrained	 when	 implementing	 two-mode
techniques	 for	 regular	 equivalence.	 As	 our	 two-mode	 data	 is	 not	 directed,	 the
maximal	regular	equivalence	found	will	always	be	trivial,	and	even	if	we	extended
the	REGE	algorithm	to	two-mode,	it	would	simply	cluster	together	all	actors	in	each
mode.	 It	 is	 possible	 to	 have	 profile	 methods	 that	 find	 approximations	 to	 other
regular	 equivalences	 (such	 as	 automorphic),	 but	 they	 have	 not	 been	 extensively
used.	This	means	that	the	direct	method	is	really	the	only	technique	available	besides
converting	the	data	to	one-mode.

Figure	13.8			Strucural	blockmodel	derived	from	profile	similarity.



The	blocks	for	a	regular	partition	of	a	two-mode	dataset	are	exactly	the	same	as
in	the	one-mode	case.	That	is,	any	block	must	either	be	a	0-block	or	contain	a	1	in
every	row	and	every	column.	We	can	therefore	use	this	fact	exactly	as	in	the	single-
mode	case	to	construct	a	direct	optimization	method.	Highly	sophisticated	methods
to	 do	 this	 have	 been	 implemented	 in	 Pajek.	 In	 fact,	 the	 structural	 equivalence
solution	given	in	Figure	13.7	has	only	one	regular	error	(in	the	center	block	of	the
bottom	row)	and,	if	viewed	as	a	regular	equivalence,	is	an	excellent	solution.	This
same	solution	can	be	found	by	using	the	regular	equivalence	model	rather	than	the
structural	equivalence	model.	The	blockmodel	in	Figure	13.8	has	seven	errors	and
as	 such	 is	 a	 far	worse	 regular	model	 than	 the	 one	 in	 Figure	 13.7.	 The	 interested
reader	 should	 look	 at	 Borgatti	 and	 Everett	 (1992)	 and	 Doreian,	 Batagelj	 and
Ferligoj	(2004)	for	more	details.

13.8	Summary

Network	data	consisting	of	ties	between	and	not	within	two	distinct	groups	is	known
as	 two-mode	data.	Such	data	naturally	arises	when	examining	structures	of	people
attending	 events	 or	 with	 memberships	 in	 organizations.	 It	 can	 be	 converted	 to
standard	 proximity	 data	 by	 constructing	 relations	 such	 as	 ‘number	 of	 events
attended	 in	 common’	 or	 ‘number	 of	 actors	 attending	 a	 pair	 of	 events’.	 These	 are
examples	of	projections,	which	can	be	analyzed	directly	(as	proximity	matrices)	or
dichotomized	and	analyzed	as	networks.	 If	only	one	projection	 is	 examined,	or	 if
the	data	is	dichotomized,	there	is	a	loss	of	structural	information.	However,	there	is
no	real	loss	of	information	if	both	projections	are	used.	An	alternative	is	to	examine
the	network	as	a	bipartite	graph	and	then	take	account	of	the	bipartite	structure.	This
can	be	done	either	by	normalizing	the	results	to	reflect	the	fact	that	ties	do	not	occur
within	the	modes,	or	by	modifying	the	concepts	so	that	they	are	consistent	with	the
two-mode	structure.	The	first	approach	is	recommended	for	centrality,	whereas	the
second	approach	can	be	used	 to	define	bi-cliques	–	 for	 example,	 to	 find	 cohesive
subgraphs.	Both	approaches	can	be	used	to	define	equivalences.	One	important	thing
to	 keep	 in	mind	 is	 that,	 for	 bi-cliques	 and	 centrality,	 attending	 the	 same	 event	 or
having	events	with	actors	in	common	is	a	proxy	for	the	related	one-mode	relation.
This	is	not	necessarily	true	for	equivalence,	but	care	in	this	case	needs	to	be	taken	in
interpreting	 the	 results	 so	as	not	 to	conclude	 that	 some	kind	of	 relationship	exists
when	in	reality	it	does	not.
	

1	However,	Everett	and	Borgatti	(2013)	have	recently	shown	that	this	need	not	be	the
case	if	we	consider	both	projections	together.
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Large	networks
	

Learning	Outcomes
	

1.	 Understand	the	challenges	of	dealing	with	large	networks
2.	 Implement	techniques	to	reduce	the	size	of	the	problem
3.	 Correctly	use	and	interpret	sampling	methods	4	Identify	small-world	and	scale-

free	networks

14.1	Introduction

Social	network	researchers	are	increasingly	interested	in	analyzing	large	networks.
Typically,	large	datasets	are	obtained	from	secondary	data	sources	rather	than	direct
survey	methods.	For	example,	 researchers	 interested	 in	how	 the	network	structure
of	project	teams	affects	project	success	might	analyze	the	Internet	Movie	Database,
which	 contains	 data	 on	 collaborations	 among	 more	 than	 2	 million	 persons.
Sociologists	interested	in	elites	and	inequality	might	study	the	pattern	of	who	sits	on
the	boards	of	what	companies.	This	data	is	available	from	a	number	of	sources	and
potentially	involves	millions	of	persons	and	organizations.	Within	organizations,	a
convenient	(even	if	problematic)	method	of	assessing	communication	patterns	is	to
analyze	the	pattern	of	emails	among	all	employees.
A	useful	first	question	to	ask	is	what	are	the	consequences	of	network	size.	There

are	 three	 basic	 issues	 associated	 with	 large	 networks:	 space	 (e.g.,	 computer
memory),	 time	 (i.e.,	 execution	 time),	 and	 usability	 (e.g.,	 usefulness	 of	 results).
Today,	 space	 is	 rarely	 a	 problem	 except	 insofar	 as	 accessing	 all	 the	 data	 affects
time.	 In	 general,	 time	 is	 the	 biggest	 problem.	There	 are	many	 analyses	we	would
like	to	do	which	are	feasible	for	very	small	networks	that	are	simply	impossible	for
networks	of	even	50	nodes.	For	example,	when	we	discussed	factions	in	Chapter	11
we	stated	that	it	was	difficult	to	look	at	all	possible	assignments	to	groups	for	larger
networks.	If	we	had	a	network	of	20	nodes	and	wanted	to	look	for	all	assignments



into	 three	groups	 and	our	 computer	 could	do	1000	 calculations	 a	 second	 it	 could
complete	the	calculation	in	just	over	0.02	seconds,	making	this	a	fairly	easy	task.	If
we	 increased	 this	 to	50	nodes	 it	would	 take	over	100	 trillion	years	–	over	10,000
times	longer	than	the	age	of	the	universe.
Usability	 is	 a	 more	 subtle	 problem.	 An	 example	 is	 the	 network	 visualization

problem.	 Programs	 like	 NetDraw	 can	 easily	 draw	 a	 network	 with	 thousands	 of
edges.	However,	whether	the	result	is	useful	depends	on	the	structure	of	the	network.
Diffuse	structures	of	even	a	 few	hundred	nodes	can	 look	 like	a	bowl	of	spaghetti.
But	a	 large	network	with	clear	subgroups	can	be	usefully	visualized	even	 if	 it	has
many	thousands	of	nodes	and	edges.	Another	example	 is	a	measure	 like	closeness
centrality	 (Chapter	 10).	 In	 large	 networks,	 we	 typically	 find	 that	 most	 nodes	 are
pretty	 far	 from	 a	 lot	 of	 nodes,	 so	 the	 closeness	measure	 tends	 to	 have	 very	 low
variance,	making	it	difficult	to	distinguish	between	nodes.
Another	 good	 question	 to	 ask	 is	 what	 is	 meant	 by	 network	 size.	 Most	 people

intuitively	 think	 in	 terms	 of	 the	 number	 of	 nodes,	 and	 indeed	 in	 many	 cases	 the
running	time	and	space	requirements	of	an	algorithm	are	in	fact	a	direct	function	of
the	 number	 of	 nodes.	 This	 is	 almost	 always	 true	 for	 methods	 derived	 from
multivariate	 statistics,	 such	as	correspondence	analysis	or	extracting	eigenvectors,
and	is	true	for	many	methods	derived	from	graph	theory	as	well.	More	commonly,
however,	for	graph-theoretic	algorithms	the	number	of	edges	in	the	graph	provides
a	better	guide	 to	an	algorithm’s	 running	 time	and	space	 requirements,	 and	so	 is	a
better	way	to	think	about	network	size.
Some	 programs	 such	 as	 Pajek	 (Batagelj	 and	Mrvar	 1998)	 have	 been	 designed

specifically	for	large	networks	and	are	capable	of	handling	networks	far	larger	than
UCINET.	 However	 all	 programs	 will	 at	 some	 point	 be	 unable	 to	 cope	 well	 with
networks	of	a	certain	size	and	so	all	have	limitations	and	all	need	to	take	account	of
usability.
Based	 on	 these	 considerations,	 in	 this	 chapter	 we	 present	 some	 strategies	 for

working	with	large	networks.

14.2	Reducing	the	size	of	the	problem

One	obvious	approach	is	 to	reduce	the	problem	from	a	large	network	to	one	of	a
reasonable	 size.	 This	 must	 involve	 losing	 some	 data	 and	 so	 needs	 to	 be	 done
carefully	and	in	the	full	knowledge	that	something	is	lost.

14.2.1	Eliminating	edges



For	 most	 graph-theoretic	 algorithms,	 including	 visualizing	 networks	 with	 graph
layout	algorithms,	the	single	best	thing	you	can	do	is	reduce	the	number	of	edges	in
the	graph.	If	the	data	is	valued,	this	means	dichotomizing	at	increasingly	high	levels.
For	example,	if	the	data	consists	of	the	number	of	days	that	pairs	of	people	worked
together	 on	 project	 in	 the	 previous	 year,	 you	 can	 increase	 the	 cut-off	 for	 what
counts	as	a	tie	from	anything	greater	than	0,	to	greater	than	1,	greater	than	2,	and	so
on	until	the	number	of	edges	is	just	small	enough	to	be	tractable,	or	until	some	other
criterion	 is	 reached,	 such	 as	 splitting	 a	 previously	 connected	 graph	 into
components.
An	example	of	this	strategy	is	provided	by	the	PV960	network	that	is	distributed

with	UCINET.	It	represents	the	number	of	days	that	pairs	of	scientists	in	a	research
organization	have	worked	together	on	funded	projects.	The	initial	visualization	of
the	 network	 is	 shown	 in	 Figure	 14.1.	 Simply	 restricting	 the	 links	 to	 those
representing	at	least	3	days	of	work	together	gives	the	result	in	Figure	14.2,	which
shows	significant	structure.	We	can	see	two	large	dense	groups	one	to	the	left	and
one	 to	 the	 right	 and	 a	 slightly	 smaller	 dense	 area	 below	 the	 left-hand	 group.	 An
analysis	 of	 the	 attributes	 of	 the	 nodes	 (not	 shown)	 shows	 that	 these	 three	 clusters
correspond	to	a	number	of	correlated	differences	(gender,	salary,	discipline	and	so
on)	between	the	groups.

Figure	14.1			Ties	among	960	scientists	(PV960	dataset).



Figure	14.2			PV960	dataset	in	which	ties	with	edge	weights	less	than	3	are	removed.

If	 the	data	 is	not	valued,	one	 strategy	 is	 to	delete	 ties	 that	do	not	have	a	certain
property.	 For	 example,	 if	 the	 data	 is	 logically	 undirected	 but	 in	 practice	 not
symmetric,	 you	 could	 choose	 to	 analyze	 only	 reciprocated	 ties,	 perhaps	 on	 the
theory	 that	 these	 are	 ‘real’	 or	 ‘corroborated’	 ties.	 For	 example,	 if	 you	 were
analyzing	 friendship	 ties,	you	would	construct	a	new	undirected	network	 in	which
there	is	a	tie	between	two	people	only	if	both	mentioned	the	other	as	being	a	friend.
Similarly,	 Krackhardt	 (1999)	 argues	 that	 Simmelian	 ties	 are	 especially	 important
ties	 that	 can	 usefully	 be	 analyzed	 alone.	 He	 defines	 Simmelian	 ties	 as	 existing
between	nodes	A	and	B	 if	 both	A	and	B	have	a	 tie	 to	 each	other,	 and	both	have	a
reciprocated	 tie	 to	 at	 least	 one	 third	 party	 in	 common.	Reducing	your	 network	 to
just	Simmelian	 ties	will	 significantly	 reduce	 the	number	of	 edges	 and	often	make
subgroup	clustering	more	obvious.

14.2.2	Pruning	nodes
An	obvious	tactic	is	to	try	to	reduce	the	number	of	nodes	in	the	network,	whether	in
addition	to	(recommended)	or	instead	of	removing	ties.	For	example,	we	might	start
by	 removing	 nodes	 that	 have	 no	 ties	 (i.e.,	 isolates).	 Since	 these	might	 be	 few,	we
might	go	a	step	further	and	remove	nodes	 that	have	just	one	tie	(i.e.,	pendants	and
isolated	 dyads).	 If	 degree	 varies	 widely,	 we	 might	 take	 this	 process	 many	 steps
further	until	we	are	only	left	with	nodes	that	are	pretty	well	connected.
One	problem	with	this	simple	degree-based	approach	is	that	when	you	delete	all

nodes	with,	say,	just	one	tie,	you	may	still	be	left	with	a	network	that	has	a	bunch	of
nodes	with	just	one	tie	–	these	will	be	the	nodes	that	used	to	have	two	ties	but	one	of
those	ties	was	to	a	node	that	was	just	deleted.	We	can	fix	this	by	taking	an	approach
based	on	k-cores	(Seidman	1983).	A	k-core	is	a	subgraph	in	which	every	actor	has
degree	k	 or	more	with	 the	 other	 actors	 in	 the	 subgraph.	Hence	 in	 a	 2-core	 every



actor	is	connected	to	at	least	two	other	actors.	A	k-core	analysis	can	be	run	relatively
quickly	 even	 on	 large	 graphs.	 Once	 we	 have	 run	 a	 k-core	 analysis,	 we	 can
successively	 eliminate	 nodes	 starting	 from	 the	 most	 peripheral	 (those	 who	 only
participate	in	a	1-core)	to	the	next	most	peripheral	(those	who	participate	only	in	a
2-core)	and	so	on	until	left	with	only	those	that	are	members	of	the	inner	core	of	the
network.	Figure	14.3	shows	the	results	of	retaining	only	nodes	who	are	members	of
a	10-core	or	higher.	This	is	the	inner	core	of	the	network	in	Figure	14.1,	but	it	can
now	be	seen	that	the	inner	core	actually	consists	of	several	subgroups.
k-cores	 are	 related	 to	 cohesive	 subgroups	 but	 are	 far	 more	 relaxed.	 Cohesive

subgroups	 live	 in	 k-cores,	 but	 a	 k-core	 itself	 need	 not	 be	 very	 cohesive.	 For
example,	 a	k-core	may	 contain	 two	 unconnected	 cliques.	Hence	 if	 the	 goal	 of	 the
network	analysis	were	to	find	cohesive	subgroups,	it	would	be	economical	to	look
for	them	within	k-cores	rather	than	in	the	graph	as	a	whole.

Figure	 14.3	 	 	 Nodes	 belonging	 to	 a	 10-core	 or	 higher	 in	 PV960	 dataset,	 after
removing	ties	with	edge	weights	less	than	3.

14.2.3	Divide	and	conquer
One	 approach	 to	 reducing	 the	 size	 of	 the	 problem	 is	 to	 analyze	 sections	 of	 the
network	separately.	These	could	be	a	priori	sections,	such	as	different	departments



within	an	organization,	or	something	based	on	the	structure	of	the	graph	itself.	The
most	obvious	approach	is	to	search	for	the	components	of	the	graph.	Most	network
methods	yield	the	same	answer	(normalization	aside)	for	a	given	node	whether	they
are	applied	to	the	whole	network	or	just	to	the	component	that	node	is	in.	Hence	the
logical	 strategy	 is	 to	 break	 up	 the	 large	 network	 and	 analyze	 each	 component
separately.	 Finding	 components	 is,	 fortunately,	 an	 efficient	 process	 and	 can	 be
readily	 applied	 to	 large	networks.	For	directed	networks	we	can	 look	at	 breaking
into	weak	components	or	strong	components,	although	in	 this	case	 it	 is	no	 longer
true	 that	 we	 generally	 get	 the	 same	 answer	 for	 a	 node-level	 measure	 when
comparing	the	whole-network	result	to	the	strong-component	result.
Unfortunately,	many	networks	have	just	one	large	component.	A	common	pattern

is	a	giant	component	together	with	a	number	of	little	fragments	too	small	to	analyze.
In	 these	cases,	 the	component	approach	does	not	help	much.	To	overcome	this	we
can	generalize	the	component	approach	to	a	less	perfect	partitioning	of	the	network.
Essentially,	we	apply	a	clustering	technique	to	find	sections	of	the	network	that	have
more	connections	within	 than	 to	outsiders,	 even	 if	 they	are	not	perfectly	 separate.
The	problem	now	becomes	how	to	cluster	a	large	network.
For	 networks	 under,	 say,	 10,000	 nodes,	 standard	 clustering	 approaches	 such	 as

Johnson’s	hierarchical	clustering	and	k-means	clustering	can	be	used.	(If	the	edges
are	not	valued,	then	we	must	first	convert	to	geodesic	distances	or	the	like	in	order
to	provide	the	clustering	algorithms	with	some	variance	to	work	with.)	For	larger
datasets,	there	are	graph	partitioning	algorithms	(e.g.,	Kernighan	and	Lin,	1970)	that
are	extremely	fast	but	unfortunately	not	very	accurate.	They	are	usually	used	to	do
things	 like	distribute	 tasks	for	parallel	computing	where	 the	only	consequences	of
generating	 a	 poor	 partition	 are	 reduced	 efficiency	 rather	 than	 getting	 wrong	 or
misleading	answers.	For	social	network	analysis,	however,	a	partition	that	does	not
correspond	well	to	actual	clusters	could	possibly	do	much	more	harm	than	good.

14.2.4	Aggregation
Finding	 the	 components	 or	 k-cores	 often	 helps	 in	 reducing	 the	 network	 but	 it	 is
rarely	a	complete	answer.	Sometimes,	the	network	has	just	one	large	component	and
our	k-cores	do	not	help,	and	so	we	must	find	other	ways	to	cut	the	problem	down	to
size.	One	approach	is	to	reduce	the	network	by	aggregating	nodes.	One	technique	is
to	aggregate	nodes	based	on	categorical	attributes.	For	example,	suppose	we	have
the	 entire	 communication	 network	 among	 employees	 of	 a	 large	 organization.
Instead	 of	 working	 with	 the	 individual-level	 data,	 we	 could	 instead	 look	 at	 the
communications	between	departments.	That	is,	we	merge	together	all	of	the	actors
in	the	same	department	to	form	a	department	‘super-node’.	This	is	repeated	for	all
the	 departments	 so	 that	we	 have	 a	 network	 of	 ties	 between	 departments.	 This	 is	 a



smaller	network	in	which	the	nodes	are	departments	and	the	ties	are	the	number	of
communications	 among	 employees	 of	 the	 departments.	 We	 now	 analyze	 this
reduced	network	so	that	we	get	an	overall	view	of	the	communication	structure.	We
then	 separately	 analyze	 each	 department	 to	 uncover	 the	 internal	 communication
structure.
This	 process	 is	 relatively	 easily	 accomplished	 using	 standard	 software	 such	 as

UCINET.	We	 illustrate	 this	with	a	network	of	504	actors	 available	 in	UCINET	 (as
PV504);	the	actors	are	in	10	departments	ranging	in	size	from	4	to	108.	We	can	run
UCINET’s	density	by	groups	routine	to	obtain	the	average	tie	strengths	within	and
between	the	departments	as	shown	in	Matrix	14.1.

Matrix	14.1			Average	values	between	departments.

Looking	 down	 the	 diagonal	we	 see	 that	 the	 department	 coded	 5	 has	 the	 lowest
average	 within-department	 communication.	 This	 may	 of	 course	 reflect	 their
function	as	we	also	 see	 their	values	 to	other	departments	 are	quite	 low.	While	we
could	examine	this	matrix	in	some	detail,	we	could	look	at	a	graphical	display	of	the
network	of	 average	values	 to	 try	 to	get	 a	better	 feel	 for	our	data.	The	network	 in
Figure	14.4	uses	this	data	but	we	have	only	shown	links	between	departments	if	the
average	 value	 is	 greater	 than	 0.4,	 and	 we	 have	 sized	 the	 nodes	 according	 to	 the
department	size	(an	alternative	would	have	been	to	size	the	nodes	according	to	the
average	 value	 of	 the	 internal	 communication).	 We	 can	 now	 see	 the	 central	 role
played	 by	 the	 small	 department	 labelled	 20.	 We	 note	 the	 clique	 involving
departments	1,	10,	20	and	30	and	can	see	the	relative	isolation	of	3,	5	and	6.



Figure	14.4			Inter-department	communication	for	the	PV504	data.

14.3	Choosing	appropriate	methods

In	 dealing	with	 large	 networks	 there	 are	 two	main	 considerations	when	 selecting
particular	methods.	The	first	relates	to	the	speed	of	the	algorithm.	When	the	network
becomes	large,	this	imposes	restrictions	on	which	algorithms	are	able	to	complete
the	 analysis	 in	 a	 reasonable	 time.	 It	 is	 useful	 to	 understand	 a	 little	 about	 how
efficiency	of	algorithms	is	measured.	It	is	normal	to	give	a	worst-case	value	related
to	 the	 size	 of	 the	 problem,	which,	 as	 discussed	 earlier,	 is	 usually	 indexed	 by	 the
number	 of	 nodes	 n.	 We	 use	 the	O	 notation	 to	 give	 an	 approximate	 idea	 of	 the
efficiency.	A	time	O(n3)	means	that	for	sufficiently	large	n	 the	time	to	execute	will
increase	at	the	rate	of	n3,	although	it	is	possible	for	a	2-fold	increase	in	n	to	result	in
a	20-fold	 increase	 in	 execution	 time,	 instead	of	 the	 expected	8-fold	 increase.	This
would	be	because	n	was	not	sufficiently	large	and	factors	other	than	size	are	at	play.
Timings	 which	 are	 exponential	 mean	 that	 the	 user	 should	 be	 aware	 that	 small

increases	 in	n	may	 cause	 very	 large	 increases	 in	 execution	 time;	 this	 is	 precisely
what	 was	 happening	 in	 the	 factions	 example	 we	 described	 above.	 These	 routines
cannot	be	used	on	even	moderately	sized	networks.	On	the	other	hand,	as	discussed
earlier,	 the	 number	 of	 nodes	 is	 not	 always	 the	 best	 indicator	 of	 the	 size	 of	 the
problem.	 A	 number	 of	 algorithms	 have	 an	 efficiency	 rating	 that	 is	 related	 to	 the
number	of	edges	as	opposed	to	the	number	of	actors.	This	is	important	since	many
large	networks	are	actually	sparse	and	as	they	increase	in	size	the	number	of	edges
may	not	increase	in	proportion	to	the	number	of	actors.	However,	the	help	routines
in	UCINET	give	 the	 timings	 in	 terms	 of	n	 and	 so	 do	 not	 highlight	when	 it	 is	 the
number	of	edges	that	determine	the	efficiency.
The	 following	 methods	 (among	 others)	 are	 very	 efficient	 and	 can	 be	 used	 on

large	networks:	components,	bicomponents,	degree	centrality,	brokerage,	structural
holes,	ego	density,	ego	betweenness,	density,	EI	index	(see	Chapter	15),	reciprocity,



transitivity	(clustering	coefficient)	and	k-cores.
There	are	some	slightly	 less	efficient	methods	which	are	usually	not	a	problem

but	 may	 require	 a	 long	 time	 even	 with	 a	 fairly	 powerful	 machine.	 These	 are:
geodesic	 distances,	 betweenness,	 closeness	 and	 profile	 similarity	 for	 structural
equivalence.
Theoretically,	 finding	 cliques	 should	 take	 too	 long	 to	be	practical,	 but	 in	many

cases	 it	 can	work	 fine	 –	 this	 rather	 depends	 on	 the	 structure	 of	 the	 network.	 The
optimization	methods	and	permutation	tests	are	not	possible	on	large	networks.
To	show	the	running	times	we	run	a	number	of	these	methods	on	three	different

size	networks	in	UCINET.	It	should	be	noted	that	when	running	larger	networks	and
the	results	are	a	matrix	larger	than	200	×	200	the	output	is	suppressed	and	has	to	be
viewed	by	running	Display.	The	networks	are	PV960,	an	undirected	network	which
has	960	nodes	and	38,540	edges;	a	directed	network,	Terro_4275,	which	has	4275
nodes	but	only	7874	edges;	and	a	random	network	with	1000	nodes	but	with	499,422
edges	 (density	 of	 0.5).	 The	 times	 in	 seconds	 for	 the	 three	 networks	 are	 shown	 in
Table	14.1.

Table	14.1			Running	times	(seconds)	for	large	networks.

The	first	thing	to	note	is	that	all	of	these	methods	had	no	real	problems	for	any	of
these	 networks.	 The	 highly	 efficient	 algorithms	 for	 density,	 clustering	 coefficient
and	components	mean	there	is	little	variation	in	the	timings	over	the	three	networks.
Comparing	columns	1	and	3,	we	can	see	that	the	number	of	edges	is	the	important
factor	for	the	last	three	methods.
It	should	be	noted	that	certain	methods	are	not	suitable	for	large	networks	simply

because	 they	 are	 based	 upon	 small-network	 assumptions.	 As	 already	 mentioned,
closeness	 centrality	 would	 be	 one	 such	 example	 as	 there	 is	 little	 variance	 in	 the
resulting	 closeness	 centrality	measure.	 Betweenness	 tends	 to	 produce	much	more
variance	 and	 can	 often	 detect	 structurally	 distinctive	 nodes	 in	 large	 networks.
However,	the	interpretation	of	betweenness	in	large	networks	can	get	complicated:
very	 long	paths	count	 just	 as	much	as	 short	paths	 in	 the	betweenness	calculations,
but	may	be	sociologically	much	less	meaningful.	Restricting	 the	path	 lengths	used
can	help	address	this	(and	is	an	option	in	UCINET);	it	has	been	suggested	that	path
lengths	of	2	are	often	sufficient	(Everett	and	Borgatti	2005),	and	this	is	the	same	as



ego	betweenness.

14.4	Sampling

The	vast	majority	of	 the	 efficient	methods	are	based	on	ego	networks.	That	 is,	 to
calculate	the	measure	we	only	use	local	information	captured	by	ego	and	its	alters.
Such	methods	are	always	efficient	as	they	depend	on	the	size	of	each	ego	network,
and	 this	 is	 nearly	 always	 limited	 by	 constraints	 (we	 can	 only	 maintain	 so	 many
friends).	In	this	case	we	have	the	added	advantage	that	we	may	not	need	to	calculate
the	value	for	every	ego.	Suppose,	for	a	 large	network,	 that	we	wanted	to	calculate
the	 average	 degree.	We	 could	 simply	 randomly	 sample	 a	 number	 of	 egos	 drawn
from	 the	whole	network	and	use	 the	mean	of	 these	as	an	unbiased	estimate	of	 the
average	degree.	We	could	use	this	value	to	predict	the	density	of	the	whole	network
(although	this	is	rarely	of	much	use	in	large	networks).	As	examples	we	apply	this
method	to	the	three	networks	used	in	Table	14.1.	Two	of	the	networks	are	directed
and	 in	 this	 case	we	use	both	 the	 indegree	 and	 the	out-degree;	 overall	 the	 average
indegree	will	 be	 the	 same	 as	 the	 average	 outdegree.	 The	 PV960	 and	 Terro_4275
networks	are	valued,	so	the	average	degree	is	simply	the	average	tie	strength	for	the
network	as	a	whole.	We	sample	just	1%	of	the	nodes	uniformly	at	random,	repeating
the	process	10	times.	The	aggregated	results	are	shown	in	Table	14.2.

Table	14.2			Sampled	degree.

We	 can	 see,	with	 just	 10	 repeated	 sweeps	 of	 1%	of	 the	 nodes	 sampled,	 that	 the
results	are	reasonable	without	being	excellent.	The	random	example	is	very	close;
this	 is	 because	 it	 was	 generated	 from	 a	 uniform	 distribution	 and	 so	 all	 of	 the
degrees	are	very	similar	and	it	has	a	very	low	standard	deviation.	The	other	two	are
actual	networks	and	have	very	high	standard	deviations,	and	so	the	sampled	values
are	far	less	accurate.	In	applying	this	method	to	real	data,	thought	needs	to	be	given
to	 the	 possible	 distribution	 of	 degrees.	 If	we	were	 looking	 at	 data	 taken	 from	 the
World	Wide	Web,	this	is	well	known	to	have	a	power	law	distribution	(see	the	next
section	for	a	detailed	description),	that	is,	it	has	a	large	number	of	low-degree	nodes
and	a	small	number	of	nodes	of	very	high	degree.	In	such	cases	sampling	at	random
means	you	are	unlikely	 to	get	a	distribution	 that	 reflects	 the	population,	since	 it	 is
very	likely	you	would	not	get	a	high-degree	node	and	so	you	would	underestimate
the	 average	degree.	However,	 if	 by	 chance	you	did	have	 a	high-degree	node	 then



you	 would	 overestimate	 the	 average	 degree.	 If	 the	 degree	 distribution	 is	 more
evenly	spread	(as	we	would	expect	in	a	social	network	in	which	it	takes	resources	to
maintain	 links)	 then	 this	 approach	would	 provide	 a	 reasonable	 estimate.	We	 have
used	degree	as	an	example	of	ego-based	estimation,	but	any	ego	measures	discussed
in	the	final	chapter	of	the	book	could	be	used.
In	the	example	above	we	tried	to	capture	summary	global	properties	that	require

us	 to	 deduce	 information	 from	 every	 node	 in	 the	 network.	 In	 general,	we	 do	 not
know	the	structure	and	so	this	makes	this	a	difficult	task	to	do	accurately.	However,
we	 can	 use	more	 sophisticated	methods	 to	 help	 us	 find	 information	 about	 certain
properties	of	the	network.	Suppose,	instead	of	wanting	to	know	the	average	degree,
we	wanted	to	know	what	the	maximum	degree	was.	If	we	just	randomly	sampled	the
network,	 the	chances	of	 finding	 the	node	with	highest	degree	would	be	 remote.	A
better	 strategy	would	 be	 to	 select	 a	 smaller	 number	 of	 seed	 nodes	 and	 then	 trace
random	walks	within	the	network.	To	create	a	random	walk	we	just	randomly	select
a	node	adjacent	to	the	current	node.	Since	high-degree	nodes	are	connected	to	lots
of	other	nodes	we	are	more	 likely	 to	 find	 them	using	 this	 technique.	To	 illustrate
this,	we	used	this	method	to	try	to	locate	the	high-degree	nodes	in	the	Terro_4275
network.	 We	 first	 dichotomized	 and	 then	 symmetrized	 it	 to	 form	 the	 underlying
graph.	We	 used	 five	 seeds	 and	 created	 random	walks	 of	 length	 3;	 this	 gives	 us	 a
maximum	of	20	nodes.	This	was	repeated	just	three	times.	The	first	run	produced	a
maximum	degree	of	71,	the	second	run	72,	and	the	final	run	65.	The	real	maximum
for	this	data	is	114,	but	72	is	the	second	highest,	71	the	third	and	65	the	sixth.	As	a
comparison	 we	 randomly	 selected	 20	 nodes	 uniformly	 three	 times.	 The	 first	 run
gave	a	maximum	degree	of	10,	the	second	45	and	the	final	17.	In	this	instance	it	is
clear	 that	 the	 random	 walk	 technique	 is	 a	 significant	 improvement	 on	 uniform
sampling.	 This	 is	 just	 a	 simple	 illustration	 of	 a	 more	 general	 approach,	 and	 the
interested	reader	should	look	at	the	paper	by	Backstrom	and	Kleinberg	(2011).

14.5	Small-world	and	scale-free	networks

Certain	 network	 properties	 can	 only	 be	 observed	 in	 large	 networks,	 and	we	 now
turn	 our	 attention	 to	 two	 of	 these.	 As	 already	 mentioned	 briefly	 in	 the	 previous
section,	some	networks	have	a	degree	distribution	that	follows	a	power	law.	That	is,
the	number	of	nodes	of	degree	k	is	proportional	to	k-γ,	where	the	power	γ	is	usually
in	 the	 range	 from	 2	 to	 3.	 We	 call	 networks	 with	 this	 distribution	 ‘scale-free’
networks.	If	the	degree	distribution	followed	this	law	and	γ	was	at	the	lower	range
of	2	and	we	had	1,000,000	nodes	of	degree	1,	then	we	would	expect	around	10,000
nodes	of	degree	10,	100	nodes	of	degree	100	and	just	1	node	of	degree	1000.	For
the	higher	value	of	3	it	would	be	1000	nodes	of	degree	10	and	just	1	node	of	degree



100.	In	this	case	the	networks	are	dominated	by	low-degree	nodes	with	just	a	very
small	 number	 of	 high-degree	 nodes	 –	 we	 do,	 however	 expect	 some	 high-degree
nodes	to	exist.	This	last	statement	has	important	consequences	for	social	networks.
In	almost	any	social	network,	it	requires	resources	to	make	or	maintain	links.	There
is	only	a	limited	amount	of	resource,	and	so	there	are	often	natural	boundaries	on
the	degree	of	a	node.	An	actor	can	only	have	so	many	 friends,	and	 this	cannot	be
unbounded.	 There	 are,	 however,	 a	 few	 situations	 in	 directed	 networks	 where	 the
resources	are	only	required	from	one	of	the	actors	in	any	dyad.	Two	examples	are
citation	networks	and	the	‘follow’	relation	on	Twitter.	The	citing	article	 is	 the	one
that	needs	to	provide	some	resource	to	do	the	citing,	whereas	 the	cited	article	 is	a
passive	recipient.	Similarly,	the	follower	on	Twitter	needs	to	implement	the	relation
and	the	one	being	followed	provides	no	resource	to	make	or	maintain	the	relation.
In	these	cases	it	 is	 the	indegree	that	follows	the	power	law	if	a	directed	relation	is
considered,	but	often	the	scale-free	concept	is	applied	to	the	underlying	(undirected
graph)	graph.
One	mechanism	 that	 gives	 rise	 to	 scale-free	 networks	 is	 the	Matthew	 effect	 (a

term	 coined	 by	Robert	Merton	 and	 taken	 from	 the	Gospel	 according	 to	Matthew:
‘For	everyone	who	has	will	be	given	more’),	also	known	as	preferential	attachment.
A	 new	 node	 creates	 links	 to	 existing	 nodes	 in	 proportion	 to	 the	 existing	 nodes’
degree,	so	that	nodes	of	high	degree	attract	edges	and	so	their	degree	increases	even
more	(often	expressed	as	‘the	rich	get	richer ’).	There	is	evidence	that	this	is	the	case
for	 citation	 networks	 and	 for	 the	 structure	 of	 the	World	Wide	Web;	 it	 is	 also	 a
plausible	explanation	for	the	distribution	of	followers	on	Twitter.	The	usefulness	of
identifying	 scale-free	 networks	 is	 still	 debated	 and;	 given	 the	 nature	 of	 the
distribution;	it	is	only	when	networks	are	of	the	sizes	mentioned	here	(i.e.	hundreds
of	 thousands	 or	 millions	 of	 nodes)	 that	 it	 makes	 any	 sense	 to	 try	 to	 fit	 the
distribution.
Most	people	are	familiar	with	the	idea	of	six	degrees	of	separation	–	that	is,	that

between	 any	 two	people	 there	 is	 a	 path	 of	 length	 6	 or	 less.	The	 value	 of	 6	was	 a
result	of	an	experiment	by	Stanley	Milgram	in	which	he	distributed	letters	randomly
to	people	in	two	US	cities	and	asked	them	to	pass	them	to	a	target,	and,	if	they	did
not	 know	 the	 target,	 to	 pass	 them	 to	 someone	 who	might.	 He	 found	 the	 average
number	 of	 steps	 from	 originator	 to	 target	 was	 6.4.	 A	 second	 example	 was	 the
analysis	of	Microsoft	Messenger	 in	2007	which	at	 the	 time	had	180	million	nodes
and	1.3	billion	edges;	it	was	calculated	that	the	average	geodesic	path	length	was	5.5.
A	good	overview	of	work	done	in	this	area	can	be	found	in	the	article	by	Schnettler
(2009).
Recall	 that	 in	 Chapter	 9	we	 looked	 at	 the	 average	 geodesic	 distance	L.	We	 are

interested	in	the	size	of	L	for	specific	networks	and	classes	of	networks.	There	is	no
agreement	on	what	constitutes	a	small	value	for	L,	but	it	has	been	suggested	that	we



require	L	 to	 be	 proportional	 to	 log	N	 (where	N	 is	 the	 size	 of	 the	 network).	 This
definition	relates	to	a	class	of	networks	and	not	to	an	individual	network.	It	can	be
shown	that	scale-free	networks	fall	into	this	category.	In	fact	even	if	we	uniformly
randomly	generate	edges	on	a	 set	of	nodes,	 then	 this	 too	will	 create	a	network	 in
which	L	is	small;	and	even	if	we	start	with	a	network	with	a	large	L	and	randomly
rewire	a	few	edges	L	is	quickly	reduced.	It	would	seem	that	nearly	all	networks	have
a	 small	 average	 path	 length.	As	 discussed	 in	Chapter	9,	Watts	 and	 Stogatz	 (1998)
noted	that	these	random	graphs	differed	from	observed	social	networks	inasmuch	as
the	observed	networks	had	higher	 than	expected	clustering	coefficients	(recall	 that
the	clustering	coefficient	is	the	average	density	of	all	the	open	neighborhoods).	As	a
consequence	 they	defined	a	 small-world	network	 to	be	one	with	 low	average	path
length	 and	 a	 high	 clustering	 coefficient	 (also	 known	 as	 Watts	 and	 Strogatz
networks).	Such	networks	consist	of	highly	connected	cliques	or	clumps	which	are
linked	 together	 by	 relatively	 short	 paths	 and	 are	 the	 sort	 of	 structures	 commonly
found	in	observed	social	networks.
Investigations	 into	 small-world	 and	 scale-free	networks	 are	usually	 confined	 to

describing	 these	 properties,	 that	 is,	 deciding	 whether	 a	 network	 is	 scale-free	 or
small-world.	The	 consequences	 of	 such	 structures	 are	 not	well	 understood,	 and	 it
would	be	difficult	to	draw	conclusions	about	individual	actors	or	even	small	groups
of	 actors	 in	 such	 networks.	 The	main	 goal	 is	 to	 gain	 some	 understanding	 of	 the
overall	network	structure.

14.6	Summary

Large	networks	present	a	number	of	challenges	 in	 terms	of	both	computation	and
interpretation.	We	 can	 try	 to	 reduce	 the	 size	 of	 the	 problem	 either	 by	 cutting	 the
network	 into	smaller	pieces,	pruning	away	 less	 important	parts	of	 the	network,	or
merging	 together	 nodes	 and	 edges.	 If	 we	 are	 unable	 to	 reduce	 the	 size	 of	 the
problem,	we	need	 to	 think	 carefully	 about	what	methods	we	 are	 able	 to	 use.	This
decision	 is	 based	 on	 our	 ability	 to	 make	 meaningful	 interpretations	 for	 large
datasets,	 as	 well	 as	 on	 computational	 considerations	 of	 what	 is	 feasible.	 We	 can
uniformly	sample	from	large	networks	to	obtain	average	ego-based	measures;	this
is	a	useful	approach,	provided	the	network	does	not	have	a	highly	skewed	structure.
If	the	network	is	skewed,	techniques	based	on	random	walks	allow	us	to	glean	some
global	 information.	 Finally,	 large	 networks	 give	 us	 an	 opportunity	 to	 look	 for
structures	such	as	small-world	and	scale-free	networks	which	would	not	be	apparent
in	more	modest-sized	networks.
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1.	 Collect	ego	network	data	using	standard	personal-network	research	design
tools

2.	 Analyze	ego	networks	consisting	of	just	ego–alter	ties	and	both	ego–alter	and
alter–alter	ties

3.	 Format	and	analyze	ego	network	data	using	appropriate	software

15.1	Introduction

As	discussed	in	Chapter	2,	an	ego	network	(or	ego	net)	is	the	part	of	a	network	that
involves	 a	 particular	 node	we	 are	 focusing	 on,	 which	we	 call	 ego.	 This	 network
consists	 of	 ego,	 the	 nodes	 ego	 is	 connected	 to	 (referred	 to	 as	 ego’s	 alters),	 and
usually	 the	 ties	 between	 ego’s	 alters.	 As	 discussed	 in	 Chapter	 3,	 there	 are	 two
fundamental	ways	of	obtaining	ego	network	data.	One	way	is	via	a	whole-network
research	design,	in	which	the	ties	among	all	pairs	of	actors	are	collected.	Once	the
whole	 network	 is	 obtained,	we	 can	 simply	 extract	 the	 subgraph	 corresponding	 to
any	particular	node’s	first-order	neighborhood,	which	we	call	an	ego	network.	The
other	way	is	via	a	personal-network	research	design,	in	which	we	sample	to	obtain	a
set	 of	 respondents	 and	 then	 collect	 from	 each	 respondent	 (ego)	 the	 list	 of	 people
(alters)	they	are	connected	to,	the	nature	of	the	ties	connecting	them,	characteristics
of	these	alters,	and	the	respondent’s	perceptions	of	the	ties	among	the	alters.	In	this
chapter	we	focus	on	personal-network	research	designs,	but	most	of	our	comments
on	the	analysis	of	the	data	will	also	apply	to	ego	network	data	extracted	from	whole
networks.
The	 personal-network	 research	 design	 has	 become	 particularly	 popular	 in	 the

social	sciences	since	it	fits	well	within	a	standard	survey	approach	(McCallister	and
Fischer	1978).	Personal-network	questions	can	be	readily	added	to	a	standard	survey



instrument,	 and	 (unlike	 whole-network	 designs)	 do	 not	 require	 respondents	 to
identify	 themselves.	Hence,	 the	 survey	 can	 remain	 anonymous.	 In	 this	 chapter	we
review	data	collection	 in	a	personal-network	research	design,	and	also	discuss	 the
analysis	 of	 ego	 network	 data	 (including	 ego	 network	 data	 drawn	 from	 a	 whole-
network	study).

15.2	Personal-network	data	collection

In	a	personal-network	research	design,	ego	network	data	is	ideally	collected	in	three
steps	or	questionnaire	sections,	although	they	can	also	be	intertwined.	The	first	step
is	generally	referred	to	as	a	‘name	generator ’	and	consists	of	a	series	of	open-ended
questions	designed	to	generate	the	names	or	nicknames	of	people	in	a	person’s	life.1
The	second	step	is	the	name	interpreter,	in	which	we	ask	the	respondent	about	each
name	that	came	up	in	the	name	generator.	Two	kinds	of	data	are	requested:	attributes
of	the	alter,	such	as	gender	and	age,	and	qualities	of	ego’s	relationship	with	the	alter,
such	 as	whether	 they	 are	 friends,	 co-workers,	 kin,	 etc.	 Sometimes	 these	 questions
are	asked	immediately	after	a	name	is	generated,	so	the	generators	and	interpreters
do	 not	 actually	 form	 different	 sections	 of	 the	 survey.	 The	 third	 (optional)	 step	 is
what	 we	 call	 the	 ‘name	 interrelater ’,	 where	 we	 ask	 the	 respondent	 about	 the	 ties
between	the	alters.	For	instance,	we	might	ask	‘does	Mary	know	Jane?’.

15.2.1	Name	generators
Classically,	 the	 primary	 purpose	 of	 the	 name	 generator	 is	 to	 develop	 a	 list	 of
distinct	names	that	we	can	then	systematically	ask	the	respondent	about.	The	idea	is
that	 respondents	 are	 known	 to	 forget	 names,	 so	 we	 like	 to	 give	 them	 several
opportunities	to	name	relevant	alters,	and	then,	in	the	name	interpreter	portion	of	the
questionnaire,	 go	 back	 and	 clarify	 the	 respondent’s	 relationship	with	 each	 person
named.	This	 ideally	 includes	asking	the	name	generator	questions	again	because	a
respondent	might	neglect	 to	mention	a	friend	when	asked	‘who	are	your	friends?’
but	mention	them	later	in	response	to	a	different	question.	If	the	respondent	is	then
shown	every	name	that	came	up	in	any	question	and	asked	to	check	off	whether	they
are	a	friend,	the	neglected	name	will	be	properly	identified	as	a	friend.
What	 questions	 should	 be	 asked	 to	 generate	 names?	 The	 answer,	 of	 course,	 is

determined	 by	 the	 research	 context.	 In	 general,	 the	 questions	 asked	 can	 be	 drawn
from	any	of	the	social-tie	categories	listed	in	the	typology	of	Chapter	1	 (see	Table
15.1).	There	are	usually	 just	a	handful	of	name-generating	questions,	and	 they	can
be	mixed	and	matched,	although	there	is	a	tendency	in	actual	studies	to	ask	questions



within	 a	 given	 type,	 such	 as	 only	 affective	 questions,	 or	 only	 exchange-based
questions	 (Marin	 and	 Hampton	 2007).	 For	 example,	 in	 studies	 of	 corporate
employees,	 the	 name-generating	 questions	 tend	 to	 be	 highly	 circumscribed,
focusing	 on	 co-workers	 and	 ignoring	 ties	 to	 family	 and	 non-work	 friends.	 In
contrast,	in	anthropology,	it	is	not	unusual	to	be	interested	in	the	totality	of	everyone
in	a	person’s	 life	–	 ideally,	everyone	 they	know.	 In	 this	case,	 the	name-generating
questions	 are	 like	 mnemonic	 devices	 designed	 to	 stimulate	 the	 respondent’s
memory.	 For	 example,	 one	 might	 use	 ‘grand	 tour ’	 questions,	 such	 as	 ‘take	 me
through	your	neighborhood.	Who	lives	next	to	you	on	the	right?’.	One	can	also	go
through	 a	 list	 of	 common	 names	 and	 ask	 ‘do	 you	 know	 any	Andersons?’,	 ‘what
about	Borgattis?’,	etc.

15.2.2	Position	and	resource	generators
An	alternative	 type	of	name	generator	–	 the	position	 and/or	 resource	generator	–
elicits	types	of	persons	rather	than	individuals.	For	example,	the	respondent	is	asked
if	they	know	any	doctors	(a	role	or	position),	or	anybody	who	owns	a	car	(control
of	 a	 resource).	 This	 approach	 is	 often	 used	 in	 studies	 of	 social	 capital	 (Lin	 and
Dumin	 1986;	Van	 der	Gaag	 and	 Snijders	 2005)	where	 the	 objective	 is	 to	 provide
estimates	 of	 ego’s	 access	 to	 resources	 through	 their	 ties.	 In	 this	 type	 of	 study,
position	and	resource	generators	can	be	more	efficient	than	name	generators.

Table	15.1			Types	of	relations	used	in	name	generators.

However,	 position	 generators	 limit	 the	 kinds	 of	 analysis	 that	 can	 be	 done.	 For
example,	it	usually	does	not	make	sense	to	ask	the	respondents	how	the	positions	are



related	 to	each	other,	 as	 in	 ‘do	any	of	your	priests	know	any	of	your	nurses?’.	 In
addition,	 these	kinds	of	questions	can	be	difficult	 for	 respondents,	 since	 they	may
not	 index	alters	 in	 their	minds	by	categories.	For	example,	 they	may	have	 trouble
recalling	 whether	 they	 know	 anyone	 who	 enjoys	 gardening.	 In	 contrast,	 eliciting
names	of	friends	and	then	asking	‘do	they	like	gardening?’	may	be	more	successful.
An	example	of	the	position-based	approach	is	the	study	by	Avenarius	and	Johnson

(2012)	on	beliefs	about	the	rule	of	law	and	social	capital	in	China.	Table	15.2	shows
the	structure	of	the	matrix	used	in	the	survey	instrument	to	collect	the	position-based
data.	The	instrument	was	administered	in	Mandarin.	Egos	were	shown	a	list	of	jobs
and	asked,	 for	each	 job	 in	 turn,	 ‘would	you	please	 tell	me	 if	you	happen	 to	know
someone	 doing	 this	 job?’.	 This	was	 followed	 by	 the	 series	 of	 questions	 about	 an
alter	corresponding	to	each	job	type,	such	as	the	gender	of	the	person	doing	the	job,
the	 duration	 of	 ego’s	 relationship	 with	 them,	 and	 so	 on.	 The	 data	 was	 used	 to
construct	measures	of	individual-level	social	capital	that	could	be	used	as	either	an
independent	or	dependent	variable.
The	 resource-based	 approach	 elicits	 ego’s	 access	 to	 whichever	 resources	 are

important	to	the	study.	Collection	of	this	type	of	data	requires	preliminary	research
in	order	to	produce	a	list	of	resources	that	are	both	relevant	to	the	respondents	and
of	 theoretical	 interest.	 Resource-based	 approaches	 may	 also	 limit	 comparability
across	studies	performed	in	research	sites,	since	resources	seen	as	essential	in	one
location	may	not	be	important	in	another.
An	example	of	this	approach	can	be	found	in	Van	der	Gaag	and	Snijders	(2005).

The	 authors	 obtained	 data	 from	 a	 representative	 sample	 (N	 =	 1004)	 of	 the	Dutch
population	between	1999	and	2000.	They	were	interested	in	how	a	multidimensional
approach	 to	 the	 study	 of	 social	 capital	 might	 aid	 in	 better	 understanding	 the
relationship	 between	 social	 capital	 and	 what	 they	 term	 ‘productivity’	 or	 the
attainment	 of	 an	 actor ’s	 goals	 as	 well	 as	 the	 accumulation	 of	 resources.	 The
resource-generator	portion	of	the	instrument	included	a	series	of	questions	eliciting
ego’s	access	to	a	predetermined	list	of	social	resources.	The	resource	questions	first
ask	ego	‘do	you	know	anyone	who	…’,	followed	by	a	list	of	resources	such	as	‘can
repair	 a	 car,	 bike,	 etc.’,	 ‘owns	 a	 car ’,	 ‘is	 handy	 repairing	 household	 equipment’,
‘reads	 a	 professional	 journal’,	 etc.	 Egos	 respond	 either	 yes	 or	 no	 and	 then	 are
queried	 about	 the	 nature	 of	 their	 relationship(s)	 to	 the	 alters	 in	 question.	 For
example,	if	they	say	yes	to	knowing	a	person	handy	with	household	repairs,	they	are
then	asked	if	the	person	is	an	acquaintance,	friend,	or	family	member.	(In	this	case,
the	 name-interpreter	 questions	 are	 mixed	 in	 with	 the	 name-generator	 questions.)
Ego	is	also	asked	whether	they	can	serve	as	their	own	resource	for	repairing	cars	or
bicycles,	 reading	 professional	 journals,	 owning	 a	 car,	 etc.	 For	 a	 review	 of
instruments	 and	 measures	 employing	 these	 approaches,	 see	 Van	 der	 Gaag	 and
Webber	(2008).



Table	15.2			Position-based	data	survey	matrix.

15.2.3	Name	interpreters
Once	 a	 set	 of	 names	 has	 been	 generated	 in	 a	 name	 generator,	 the	 researcher
compiles	 them	 into	a	 roster	of	unique	names	and	asks	a	 series	of	questions	about
each	name.	Two	kinds	of	questions	are	asked:	(a)	what	kinds	of	ties	ego	has	with	the
alter,	and	(b)	characteristics	of	the	alter.	The	former	questions	are	typically	the	same
as	one	would	ask	in	a	whole-network	design,	and	the	same	considerations	of	format
and	wording	apply	(see	Chapter	4).	One	special	point	is	worth	mentioning	however:
because	the	name	interpreter	offers	the	respondent	an	aided	list	of	all	contacts	that
emerged	 in	 the	 name-generator	 section,	 it	 is	 freer	 of	 the	 recall	 issues	 that	 plague
open-ended	 questions.	As	 a	 result,	 it	 is	 usually	 good	 practice	 to	 re-ask	 the	 name-



generator	questions	here,	 though	possibly	 in	slightly	different	form.	For	example,
the	 name-generator	 phase	might	 have	 asked	 ‘who	 did	 you	 talk	with	 about	 health-
related	matters	 in	 the	 last	month?’,	 but	 the	 name-interpreter	 step	might	 ask	 for	 a
rating	such	as	‘how	often	did	you	talk	with	this	person	about	health-related	matters
in	the	last	month?’.
The	alter-attribute	questions	are	interesting	in	a	personal-network	design	because

they	are	not	collected	from	the	alters	 themselves,	but	 rather	reported	by	ego.	This
means	the	alter	characteristics	are	perceptions,	and	could	be	quite	wrong.	Whether
this	 is	 a	 problem	 depends	 on	 the	 mechanisms	 that	 link	 network	 properties	 to
outcomes.	 For	 example,	 if	 we	 are	 interested	 in	 the	 wealth	 of	 information	 about
diseases	available	to	a	person	through	their	social	contacts	(in	order	to	predict	ego’s
health	outcomes),	it	is	important	to	know	who	their	contacts	really	are	and	what	they
really	know.	Ego	may	 think	 their	 friend	 is	an	expert,	but	 they	may	be	wrong,	and
this	would	be	a	source	of	error	in	our	measurements.	On	the	other	hand,	if	we	are
interested	in	social	influence	and	how	that	changes	ego’s	attitudes	and	behavior,	it	is
far	more	 important	 to	 know	what	 ego	 thinks	 is	 true	 of	 their	 friends	 than	what	 is
really	 true.	 If	 I	 think	 you	 are	 a	wine	maven,	 I	will	 be	more	 inclined	 to	 take	 your
advice	on	wines,	even	if	in	reality	you	know	little	about	wines.

15.2.4	Name	interrelaters
The	name-interrelater	section	is	probably	the	most	challenging	ego	network	data	to
collect	 for	 two	 reasons:	 (a)	 ego	 may	 have	 limited	 knowledge	 of	 the	 ties	 among
alters;	and	(b)	the	task	can	be	tedious	and	time-consuming.	With	respect	to	the	first
issue,	there	are	real	questions	about	the	accuracy	of	respondents’	knowledge	about
the	ties	among	their	alters.	In	fact,	in	cognitive	social	structure	designs,	where	every
respondent	 is	 asked	 about	 the	 ties	 among	 the	 same	 set	 of	 alters,	 it	 is	 evident	 that
individuals	vary	widely	in	their	knowledge	of	the	network	(Krackhardt	1987).	In	an
ego	network	setting,	there	is	no	way	to	assess	accuracy	or	even	consensus	because
ego	 is	 the	 only	 person	 responding	 about	 that	 particular	 set	 of	 alters.	Once	 again,
though,	whether	this	constitutes	a	problem	depends	on	what	social	processes	we	are
studying.	If	it	is	peer	influence	on	behavior,	perceptual	data	may	in	fact	be	preferred.
For	 example,	 if	 I	 think	 my	 friends	 talk	 to	 each	 other	 about	 me,	 it	 can	 have	 a
constraining	effect	on	my	behavior	 (e.g.,	 avoiding	 lies),	 even	 if	 in	 reality	 they	do
not	talk	to	each	other	at	all.
With	 respect	 to	 the	 tediousness	of	 the	 task,	 there	 is	a	 real	danger	of	 respondent

fatigue.	As	McCarty,	Killworth	and	Rennell	(2007)	point	out,	for	an	ego	network	of
50	 alters,	 ego	 would	 have	 to	 report	 on	 1225	 undirected	 ties,	 which	 is	 quite	 a
daunting	task	that	may	have	to	be	spread	out	over	multiple	data	collection	sessions.
Van	der	Gaag	and	Snijders	 (2005)	 report	 that	 an	 interview	 in	 their	 study	 typically



took	an	hour	and	a	half	to	administer.	There	have	been	a	number	of	suggestions	for
reducing	 respondent	 burden	 in	 ego	 network	 studies.	 An	 obvious	 solution	 is	 to
simply	limit	the	number	of	alters	that	ego	lists	(Marsden	1990).	The	disadvantage	of
such	a	fixed-choice	methodology	is	that	it	severely	limits	one’s	ability	to	measure	a
variety	of	constructs,	starting	with	simple	density.	In	addition,	respondents	typically
do	not	list	alters	in	random	order	(Brewer	2000),	so	that	limiting	alters	to	the	first	k
could	introduce	significant	bias.
Another	 solution	 involves	 sampling	 from	 a	more	 comprehensive	 list	 of	 alters.

Marin	 and	Hampton	 (2007)	 advocate	 using	what	 they	 call	 the	 ‘multiple	 generator
random	 interpreter ’.	 This	 involves	 using	 multiple	 name-generator	 questions	 to
create	an	exhaustive	 list	of	alters,	but	 then	 randomly	selecting	alters	 from	that	 list
for	use	 in	 the	name	 interpreters	and	 interrelaters.	McCarty,	Killworth	and	Rennell
(2007)	also	suggest	using	a	sampling	approach	and	find	that	a	random	sample	of	20
alters	for	use	in	the	name	interrelater	is	sufficient	to	capture	many	of	the	structural
measures	of	interest.
There	are	a	number	of	different	 formats	 for	collecting	 these	 types	of	data.	One

approach	 is	 the	 matrix	 form	 shown	 in	 Figure	 15.1	 in	 which	 respondents	 simply
check	 a	 box	 to	 show	 an	 alter–alter	 tie.	 Another	 approach,	 particularly	 useful	 for
directed	 data,	 is	 to	 have	 a	 page	 or	 screen	 for	 each	 alter.	 Each	 page	 prominently
displays	the	alter ’s	name	(let	us	call	them	the	focal	alter)	and	then	presents	a	roster
of	 all	 alters.	 The	 respondent	 is	 instructed	 to	 fill	 out	 the	 survey	 as	 the	 focal	 alter
would	do	it.	For	example,	if	the	social	relation	is	‘talks	to’,	the	respondent	is	asked
to	 check	 off	 the	 names	 of	 all	 the	 people	 that	 the	 focal	 actor	 talks	 to.	 Figure	 15.2
gives	a	variation	on	this	approach	drawn	from	Krackhardt	(1984).

15.2.5	Specialized	data	collection	software
EgoNet	(McCarty,	Killworth	and	Rennell	2007)	is	a	program	specifically	designed
for	 the	 collection	 of	 ego	 network	 data,	 using	 both	 name-generator	 and	 name-
interpreter	types	of	questions.	EgoNet	also	allows	for	visualization	of	ego	networks
and	 provides	 a	 number	 of	 standard	 network	measures.	 The	measures	 can	 then	 be
output	directly	into	an	SPSS	data	file.



Figure	15.1			Example	of	format	for	name	interrelater.

Figure	15.2			An	alternative	approach	to	collecting	alter–alter	ties.

Some	programs	employ	a	visual	approach	to	the	collection	of	ego	network	data.
VennMaker	(Gamper,	Schönhuth	and	Kronenwett	2012),	for	example,	uses	a	visual
interface	 that	 allows	 the	 respondents	 to	move	 alters	 around	 the	 screen	 to	 indicate
their	relationships	with	them.	Once	the	respondent	is	satisfied	with	the	visualization
of	their	network,	the	data	is	written	to	a	file	for	analysis.



15.3	Analyzing	ego	network	data

Research	on	ego	networks	(like	all	node-level	network	analysis)	generally	falls	into
one	of	 two	basic	 camps	 that	we	 refer	 to	 as	 social	 capital	 and	 social	 homogeneity
(see	 Table	 15.3).	 In	 the	 social	 capital	 camp,	 the	 canonical	 research	 agenda	 is	 to
investigate	 how	 achievement	 and	 success	 are	 a	 function	 of	 an	 individual’s	 social
ties,	particularly	how	those	ties	enable	access	 to	resources	and	support.	Given	this
connection,	 there	 is	 of	 course	 also	 an	 interest	 in	 how	 individuals	 acquire	 the
network	ties	that	they	do.	In	the	social	homogeneity	camp,	there	is	a	strong	interest
in	how	ego’s	 ties	determine	ego’s	attitudes	and	behavior,	with	particular	 focus	on
the	contagion	mechanism	–	how	the	attitudes	and	behavior	of	ego’s	alters	infect	or
influence	 ego’s	 own	 attitudes	 and	 behavior.	 There	 is	 an	 equally	 strong	 interest	 in
understanding	how	the	characteristics	of	actors	affect	which	actors	become	involved
with	each	other,	whether	it	is	how	firms	choose	alliance	partners	or	persons	choose
their	 friends.	 Here,	 one	 of	 the	 best-known	 findings	 is	 a	 strong	 tendency	 toward
homophily	–	seeking	ties	with	actors	who	are	similar	to	ego	in	socially	significant
ways.
In	 general,	 much	 of	 ego	 network	 analysis	 consists	 of	 constructing	 measures

describing	 each	 actor ’s	 ego	 network.	 These	 measures	 become	 new	 actor-level
variables,	which	are	then	related	statistically	to	other	actor-level	variables,	such	as
demographics,	attitudes,	performance	and	behavior.	Table	15.4	categorizes	some	of
the	main	ego	network	measures	 that	are	used.	We	discuss	each	row	of	 the	 table	 in
turn.

Table	15.3			Social	capital	and	social	homogeneity.

Table	15.4			Classification	of	measures	used	in	the	analysis	of	ego	networks.



15.3.1	Tie	analysis:	central	tendency
At	the	top	of	the	table	is	‘tie	analysis:	central	tendency’,	which	refers	to	statistically
summarizing	 the	 kinds	 and	 magnitudes	 of	 ties	 that	 egos	 have.	 For	 binary	 data
(recording	only	 the	presence	or	absence	of	a	 tie),	 this	means	basically	measuring
network	size	with	respect	to	different	kinds	of	ties	–	for	example,	how	many	friends
a	 person	 claims	 to	 have,	 or	 how	many	 different	 people	 they	 discuss	 confidential
matters	with.	In	terms	of	using	variables	of	this	type	in	research,	we	might	predict
that	 the	 more	 friends	 a	 person	 has,	 the	 better	 their	 mental	 health	 (with	 causality
running	in	both	directions).
For	 valued	 data	 (recording,	 say,	 strengths	 of	 social	 relations	 or	 frequencies	 of

interactions)	 this	 analysis	 of	 central	 tendencies	 of	 tie	 characteristics	 means



measuring	things	like	the	average	tie	strength	for	each	ego,	or	the	average	duration
of	ego’s	friendships.	A	social	capital	perspective	might	argue	that	stronger	ties	can
be	 counted	 on	 for	 providing	 help	 when	 needed,	 so	 we	 would	 predict	 that	 the
stronger	 their	 average	 tie	 to	 others,	 the	 better	 off	 the	 person	 will	 be.	 A	 social
embeddedness	 perspective	might	 argue	 that	 the	 effect	would	 have	 an	 inverted	 ‘U’
shape,	because	the	strong	ties	also	imply	a	heavy	load	of	obligations	to	others.	In	a
social	homogeneity	study,	we	typically	expect	stronger	 ties	 to	be	more	 influential,
so	that	a	person’s	attitude	toward	something	would	be	more	similar	to	the	attitudes
of	their	alters	when	ties	are	strong,	and	more	a	function	of	ego’s	own	characteristics
when	ties	are	weaker.

15.3.2	Tie	analysis:	dispersion
The	next	category	is	‘tie	analysis:	dispersion’.	For	binary	data,	this	category	refers
to	measuring	the	extent	to	which	a	person’s	ties	are	equally	distributed	across	types.
For	example,	does	a	person	have	mostly	instrumental	relationships,	or	do	they	have
equal	numbers	of	expressive	relationships?	For	valued	data,	this	refers	to	having	a
wide	 range	 or	 high	 standard	 deviation	 in	 tie	 characteristics	 such	 as	 strengths,
durations,	frequencies,	and	so	on.	For	example,	older	people	can	potentially	have	a
mix	of	friends	they	have	known	for	decades	along	with	friends	they	have	just	met.
We	 might	 predict	 that	 variety	 along	 this	 dimension	 would	 be	 an	 indicator	 of	 a
healthy,	happy	lifestyle	in	which	one	retains	old	friends	but	is	open	to	new	ones.

15.3.3	Alter	analysis:	central	tendency	and	dispersion
The	 next	 two	 categories	 are	 ‘alter	 analysis:	 central	 tendency’	 and	 ‘alter	 analysis:
dispersion’.	These	 are	 analogous	 to	 the	 tie	 characterizations	 described	 above,	 but
refer	to	attributes	of	the	alters,	such	as	their	gender	and	wealth.	These	categories	are
probably	the	most	commonly	used	types	of	variables.	For	instance,	in	social	capital
research,	 we	 expect	 that,	 say,	 entrepreneurs	 with	 ties	 to	 a	 diverse	 set	 of	 others
(computer	 experts,	 finance	 experts,	 human	 resource	 experts)	 will	 be	 in	 a	 better
position	 to	 cope	with	 threats	 to	 their	 fledgling	 enterprises.	 In	 social	 homogeneity
research,	we	might	 expect	 that	 people	 surrounded	by	unhappy	people	will	 tend	 to
become	less	happy	themselves.

15.3.4	Ego–alter	similarity
The	penultimate	category	is	ego–alter	similarity.	These	are	measures	of	the	extent	to



which	ego	is	similar	to	their	alters	on	attributes	such	as	demographics,	personality,
attitudes	 and	 behavior.	 These	 are	 often	 used	 to	 test	 hypotheses	 of	 homophily	 (the
tendency	 to	 have	 positive	 ties	 with	 socially	 similar	 others)	 and	 hypotheses	 of
diffusion	(the	tendency	to	adopt	the	attitudes	and	practices	of	one’s	relevant	alters).
This	is	one	area	where	ego	networks	drawn	from	whole-network	data	are	superior
to	 ego	 networks	 obtained	 via	 a	 personal-network	 research	 design.	 In	 the	 ego
networks	 drawn	 from	 whole	 networks,	 in	 addition	 to	 whom	 the	 respondent	 has
chosen,	we	know	whom	the	respondent	did	not	choose.	With	 the	personal-network
design,	we	do	not	have	this	information.	This	matters	because	the	non-choices	can
help	 us	 distinguish	 between	 homophily	 due	 to	 availability	 and	 homophily	 due	 to
preference	 (which	 we	 might	 regard	 as	 true	 homophily).	 For	 example,	 if	 a	 white
person’s	 friends	 at	work	 are	 85%	white	 and	 15%	black,	 this	 looks	 highly	 homo-
philous.	But	 if	we	 find	 that	 the	people	our	 respondent	 is	not	 friends	with	 are	 also
85%	white	and	15%	black,	we	realize	that	they	are	not	actually	showing	differential
interest	in	whites.	This	can	be	expressed	as	a	contingency	table,	as	shown	in	Matrix
15.1.	A	chi-square	test	on	this	table	would	show	perfect	independence.

Matrix	15.1			Crosstab	of	tie	status	and	alter–ego	similarity	for	one	respondent.

Moreover,	we	can	use	standard	measures	of	association	such	as	Yule’s	Q	to	assess
the	 degree	 to	 which	 ties	 (and	 non-ties)	 tend	 to	 correspond	with	 being	 similar	 or
different,	 controlling	 for	 the	 relative	 sizes	 of	 the	 different	 categories.	 Given	 a
generic	contingency	table	as	shown	in	Matrix	15.2,	Yule’s	Q	is	defined	as

Matrix	15.2			Generic	contingency	table.

For	 the	 case	 of	Matrix	 15.1,	Yule’s	Q	 is	 a	 perfect	 0.0,	 indicating	 no	 relationship
between	tie	status	and	similarity.
An	important	advantage	of	Yule’s	Q	as	a	measure	of	alter–ego	similarity	is	that	it

is	 invariant	under	 changes	of	 category	 sizes.	For	 example,	doubling	 the	values	 in



the	first	column	of	the	table	would	not	change	the	value	of	the	measure.	In	contrast,
the	 well-known	 EI	 index	 (Krackhardt	 and	 Stern	 1988),	 an	 inverse	 measure	 of
homophily,	is	defined	entirely	in	terms	of	the	first	row	of	the	contingency	table:

As	a	result,	the	EI	index	is	sensitive	to	differences	in	group	sizes.	For	example,	if	a
population	consists	mostly	of	whites,	the	first	column	of	the	contingency	table	will
be	 large	 (because	 most	 people	 are	 the	 same	 race)	 and	 the	 EI	 index	 will	 indicate
strong	homophily	(–0.8	in	the	case	of	Matrix	15.1).	However,	because	 it	only	pays
attention	 to	 ties	present	 (the	 first	 row),	 the	EI	 index	 is	actually	computable	 in	data
collected	via	a	personal-network	design,	whereas	Yule’s	Q	is	not.

15.3.5	Ego	network	structural	shape	measures
The	final	category	in	Table	15.4	is	structural	shape	measures.	This	category	refers
to	measures	that	characterize	the	pattern	of	ties	among	an	ego’s	alters.	In	personal-
network	designs	these	ties	are	as	perceived	by	ego;	in	whole-network	designs	these
ties	are	reported	by	the	alters	themselves.
Because	an	ego	network	is	a	network	unto	itself,	all	of	the	measures	discussed	in

Chapter	9,	which	 characterize	whole	networks,	 are	 applicable	 to	 ego	networks.	 In
the	case	of	ego	networks,	however,	we	must	decide	whether	to	include	ego	and	her
ties	in	the	calculations.	In	general,	we	do	not,	but	there	are	some	notable	exceptions
that	we	will	discuss	later.
One	 of	 the	 most	 commonly	 used	 measures	 in	 this	 category	 is	 density.	 This	 is

normally	 computed	without	 ego,	 so	 it	 is,	 loosely,	 the	proportion	of	 ego’s	 friends
who	 are	 connected	 to	 each	 other.	More	 exactly,	 it	 is	 the	 number	 of	 ties	 between
ego’s	friends	divided	by	the	total	number	of	ties	possible.	This	is	usually	seen	as	an
indicator	of	constraint	on	ego’s	behavior	since	communication	between	my	friends
makes	it	more	difficult	for	me	to	present	inconsistent	images	of	myself.
Another	useful	 analysis	 is	 to	 identify	 components	 (see	Chapter	2)	 and	 cohesive

subgroups	(Chapter	11)	within	the	ego	network	(leaving	out	ego).	The	presence	of
separate	 components	 indicates	 that	 ego	 has	 friends	 from	 different	 social	 worlds,
which	could	suggest	a	greater	level	of	cosmopolitanism	in	ego,	either	as	cause	or
effect.
Perhaps	 the	most	common	measures	 to	calculate	 in	ego	networks	are	 the	set	of

measures	corresponding	to	potential	for	brokerage,	such	as	Burt’s	(1995)	structural
holes	measures.	A	 structural	hole	 is	 the	 lack	of	 a	 tie	between	 two	alters	within	 an
ego	 network.	 Burt	 argues	 that	 unconnected	 alters	 are	 more	 likely	 to	 offer	 ego
different	 points	 of	 view	 (non-redundant	 information)	 and	 can	 also	 be	 played	 off



against	each	other	to	ego’s	benefit.	One	measure	of	structural	holes	is	effective	size.
In	 the	 case	 of	 binary	 data,	 effective	 size	 can	 be	 defined	 as	 ego’s	 degree	 (i.e.,	 the
number	 of	 alters	 ego	 has)	minus	 the	 average	 degree	 of	 her	 alters	within	 the	 ego
network	(which	can	be	seen	as	a	measure	of	their	redundancy).	For	example,	for	the
ego	network	shown	in	Figure	15.3,	ego	has	degree	6,	and	the	average	degree	of	her
alters	 (not	 including	 ties	 to	ego)	 is	1.33.	So	 the	effective	 size	of	ego’s	network	 is
4.67.	If	none	of	the	alters	had	ties	with	each	other,	the	effective	size	would	be	6,	and
if	all	the	alters	had	ties	with	all	of	the	others,	the	effective	size	would	be	1.
Another	measure	 of	 structural	 holes	 is	 constraint.	Constraint	 is	 another	way	 of

measuring	the	extent	to	which	ego’s	alters	have	ties	to	each	other	by	measuring	the
extent	 to	 which	 ego	 invests	 time	 and	 energy	 in	 alters	 who	 invest	 in	 each	 other.
Investment	in	another	actor	is	measured	by	the	proportion	of	contacts	they	have;	in	a
binary	network	it	assumes	time	is	evenly	divided.	As	an	example,	in	Figure	15.3	the
actor	 B	 spends	 a	 third	 of	 their	 time	with	 each	 of	 D,	 EGO	 and	A.	 The	 constraint
matrix	has	as	its	entries	the	square	of	the	sum	of	the	direct	and	indirect	proportions
(the	indirect	proportions	are	the	products	along	paths	of	length	2).	The	row	sum	of
this	matrix	 gives	 the	 constraint	 of	 an	 actor;	 it	 is	 an	 inverse	measure	 of	 structural
holes	 in	 that	 a	 smaller	 number	 indicates	more	 structural	 holes.	 It	 should	be	noted
that	for	small	ego	networks,	the	measure	can	be	larger	than	1.

Figure	15.3			An	ego	network	with	few	structural	holes.

Both	constraint	and	effective	size	are	a	function	of	not	only	ego	network	density
but	also	of	ego’s	degree,	the	logic	being	that	a	person’s	social	capital	increases	with
the	number	of	alters	they	have	and	decreases	with	the	extent	to	which	the	alters	are
connected	 to	 each	 other.	 As	 a	 result,	 researchers	 using	 structural	 holes	 as	 an
independent	variable	in	a	regression	should	not	control	for	degree,	as	degree	is	one
of	 the	 two	 factors	 that	 make	 up	 the	 concept.	 If	 one	 is	 interested	 in	 the	 relative
importance	of	density	and	degree,	it	would	make	more	sense	to	use	both	of	these	as
independent	 variables	 and	 omit	 the	 structural	 holes	measures.	 If	Burt	 is	 right,	we
should	normally	find	density	to	be	negatively	related	to	performance	and/or	reward
and	find	degree	to	be	positively	related.



15.4	Example	1	of	an	ego	network	study

Here	 we	 give	 an	 example	 of	 an	 ego	 network	 study	 (Johnson	 and	 Griffith	 2010)
using	 a	 personal-network	 research	 design.	 The	 study	 was	 concerned	 with	 the
relationship	between	access	to	social	and	institutional	resources	and	psychological
well-being.	Data	was	collected	from	a	small	sample	of	individuals	who	experienced
catastrophic	 property	 loss	 from	 flooding	 in	 the	 aftermath	 of	 Hurricane	 Floyd	 in
North	Carolina	in	1999.
The	 study	 used	 exchange-type	 name	 generators	 to	 measure	 the	 social	 and

institutional	 resources	 available	 to	 respondents.	 The	 name	 generator	was	 a	 single
question	asking	respondents	to	list	the	names	of	alters	that	provided	‘informal’	help
during	 the	 flood.	 The	 term	 ‘informal’	 was	 used	 here	 to	 distinguish	 between	 aid
received	 from	 ordinary	 individuals	 and	 actors	 serving	 as	 agents	 of	more	 formal
organizations	such	as	the	Federal	Emergency	Management	Agency	(FEMA)	or	even
local	churches.
Respondents	were	encouraged	to	 list	as	many	alters	as	possible.	The	number	of

alters	could	have	been	fixed	or	a	cut-off	could	have	been	used,	limiting	the	number
by	 some	 level	 of	 tie	 strength.	 However,	 for	 the	 purposes	 of	 this	 study,	 it	 was
important	to	know	the	full	inventory	of	alters	that	may	have	provided	help.
The	 name	 generator	 was	 followed	 by	 a	 name-interpreter	 phase	 asking	 ego	 to

identify	their	relationship	to	each	alter	(e.g.,	immediate	family,	extended	family,	co-
workers)	and	the	type	of	aid	received	(e.g.,	emotional	support,	food,	money).	Table
15.5	 provides	 examples	 of	 the	 types	 of	 assistance	 and	 role	 relations	 used	 in	 the
study.	In	addition,	respondents	were	asked	to	provide	data	on	more	formal	sources
of	aid	during	and	following	the	flood	via	this	question:	‘please	list	the	names	of	all
institutions/organizations	that	assisted	you	during	the	flood.	List	as	many	names	as
possible.’	 Formal	 institutions	 included	 such	 things	 as	 the	 FEMA,	 Salvation	Army
and	 Red	 Cross.	 This	 was	 followed	 by	 an	 elicitation	 of	 the	 types	 of	 assistance
provided	by	each	organization.

Table	15.5			List	of	assistance	and	relational	variables	used	in	the	Hurricane	Floyd
study.	
Types	of	assistance Types	of	relations
Financial/money	support Immediate	family
Emotional	support Extended	family
Clothing Friends
Food Acquaintances
Shelter/place	to	stay Co-workers
Use	of	phone Neighbors



Help	in	gathering/moving	belongings	prior	to	flood Other
Help	in	gathering/moving	belongings	during	flood 	
Help	in	gathering/moving	belongings	after	flood 	
Furniture 	
TV/electronics 	
Rides/transportation 	
Help	in	cleaning	damaged	residence 	
Help	with	filling	out	forms 	
Babysitting 	
Transportation	to	help	in	moving	belongings 	

Because	the	data	was	collected	using	a	personal-network	design,	the	analysis	was
conducted	 using	 E-Net	 (Borgatti	 2006a;	 Halgin	 and	 Borgatti	 2012),	 a	 software
package	 specifically	designed	 for	data	 collected	using	 a	personal-network	design.
Figures	 15.4–15.6	 show	 a	 simplified	 dataset	 in	 a	 format	 known	 as	 the	 row-wise
format.	For	simplicity,	just	three	egos	are	shown.	In	the	row-wise	format,	there	are
three	 sections	 of	 data.	 The	 first	 consists	 of	 ego	 attributes	 (e.g.,	 gender,	 age,
education).	 The	 second	 consists	 of	 data	 on	 alters,	 including	 alter	 attributes	 (as
perceived	by	ego)	and	information	on	the	types	of	tie	ego	has	with	each	alter.	This	is
followed	by	a	list	of	alter–alter	ties,	characterized	by	strength	and/or	type	of	tie.	As
we	will	see	in	the	next	example,	 there	is	also	a	column-wise	format	in	which	each
row	 is	an	ego	and	 the	columns	are	variables	 for	ego	and	alter	characteristics	and
ego–alter	characteristics	(e.g.,	tie	strength,	length	of	time	known).
Once	the	data	was	entered	into	E-Net,	a	set	of	simple	compositional	analyses	were

conducted	(corresponding	to	the	first	four	rows	of	Table	15.4).	A	screenshot	of	E-
Net	is	shown	in	Figure	15.7,	and	additional	measures	are	listed	in	Table	15.6.	These
were	then	related	statistically	with	measures	of	depression	and	psychological	well-
being.	Ego	network	variables	can	be	analyzed	in	a	number	of	different	ways.	For	the
purposes	of	 this	example	we	present	 the	results	of	a	series	of	regressions	relating
ego	 network	 composition	 variables	 with	 depression,	 controlling	 for	 some	 basic
demographic	 variables	 (see	 Table	 15.7).	 The	 analysis	 shows	 a	 clear	 relationship
between	 dependency	 on	 immediate	 family	 for	 help	 and	 levels	 of	 depression.	 It	 is
also	 the	 case	 that	 the	 extent	 of	 help	 from	 neighbors	 had	 a	 mediating	 effect	 on
depression.	 This	 analysis	 focused	 on	 compositional	 variables,	 but	 of	 course	 a
number	of	more	structural	variables,	such	as	ego	network	density,	could	have	been
used.



Figure	15.4			Row-wise	format	in	E-Net:	ego	attributes	section.

Figure	15.5			Row-wise	format	in	E-Net:	alter	attributes	section.



Figure	15.6			Row-wise	format	in	E-Net:	alter–alter	ties.

Table	15.6			Compositional	variables	constructed	by	E-Net.

Individual	sources	of	aid
	

%	of	immediate	family
%	of	extended	family
%	of	acquaintances/friends
%	of	co-workers
%	of	new	(met	during	crisis)
%	of	neighbors
%	of	males	that	helped
%	neighbors
%	Greenville	area
%	outside	area
%	outside	state
average	age	of	those	who	helped
%	of	same	ethnicity	that	helped
top	type	of	assistance
second	highest	type	of	assistance
median	(in	days)	period	of	help	received

Figure	15.7			E-Net	output	measures	for	Hurricane	Floyd	study.

15.5	Example	2	of	an	ego	network	study

In	 this	example	we	demonstrate	 the	use	of	E-Net’s	column-based	data	 format.	The
data	 is	 taken	 from	 the	 1985	 General	 Social	 Survey	 –	 see	 Burt	 (1985)	 for	 a
discussion.	A	name	generator	was	used	to	elicit	alters	where	the	relation	of	interest
was	 people	with	whom	 the	 respondent,	 ego,	 discussed	 important	matters	 over	 the
last	 6	months.	The	 actual	 question	was	 as	 follows	 (Burt	 1985:	 19):	 ‘From	 time	 to
time,	most	people	discuss	important	matters	with	other	people.	Looking	back	over



the	last	six	months,	who	are	the	people	with	whom	you	discussed	matters	important
to	 you?	 Just	 tell	 me	 their	 first	 names	 or	 initials.’	 This	 was	 followed	 by	 a	 name
interpreter	 that	 asked	 about	 the	 sex,	 race/ethnicity,	 education,	 age,	 and	 religious
preference	 of	 the	 alters,	 as	 well	 as	 respondents’	 strength	 of	 tie	 to	 each	 alter
(closeness),	frequency	of	contact,	and	duration	of	acquaintance.	Finally,	there	was	a
name	 interrelater	 that	 asked	 respondents	 to	 judge	 the	 level	 of	 closeness	 between
each	pair	of	alters.

Table	15.7	 	 	Regression	models	comparing	the	effects	of	 the	various	composition
network	 variables	 on	 the	 dependent	 variable	 depression	 while	 controlling	 for
demographic	 variables	 (included	 are	 standardized	 coefficients	 with	 t–values	 in
parentheses).

P<0.1*,	p<0.05**,	p<0.01***

Figure	15.8			Example	of	column-wise	E-Net	format	for	the	GSS	data.

Figure	15.9			Continuation	of	the	column-wise	format	in	E-Net	showing	alter–alter
ties.



Figures	15.8	and	15.9	provide	an	example	of	the	GSS	data	in	column-wise	format
in	Excel.	This	follows	the	standard	survey	format	of	one	row	per	respondent	with
columns	 containing	 the	 variables	 for	 each	 respondent,	 including	 dyadic
information.	For	example,	 in	Figure	15.8	 the	variables	on	 the	 left	are	attributes	of
ego,	 the	 respondent.	The	variable	 ‘rclose1’	 refers	 to	how	close	 the	ego	 is	 to	 their
first-named	 alter.	 ‘Age1’,	 ‘sex1’,	 ‘educ1’	 and	 so	 on	 are	 ego’s	 perceptions	 of
attributes	 of	 Alter	 1.	 Farther	 to	 the	 right	 (not	 seen	 in	 the	 figure)	 are	 the	 same
variables	 for	Alter	2,	Alter	3,	 and	 so	on.	 If	one	of	 several	naming	conventions	 is
used,	 the	 E-Net	 program	 can	 automatically	 detect	 which	 variables	 are	 ego
characteristics	and	which	are	dyadic.	Figure	15.9	 shows	 the	 far	 right-hand	 side	of
the	 data	 file,	which	gives	 ego’s	 estimation	of	 the	 level	 of	 closeness	 between	 each
pair	of	her	alters.
As	an	 illustration,	we	use	 this	data	 to	examine	how	a	person’s	 social	capital,	 as

measured	 by	 structural	 holes,	 might	 vary	 with	 their	 race/ethnicity.	 Figure	 15.10
shows	 output	 from	E-Net	 giving	 a	 number	 of	 structural	 hole	measures.	 The	 race
variable	 in	 this	 study	 consisted	 of	 a	 categorical	 variable	 with	 three	 classes.
Therefore,	 a	 simple	 first	 cut	 at	 the	 analysis	 is	 to	 use	 analysis	 of	 variance	 to	 see
whether	 there	 is	 a	 significant	 difference	 in	 social	 capital	 among	 the	 three
race/ethnicity	 groups.	 Figure	 15.11	 shows	 that	 there	 is	 a	 significant	 difference	 in
Burt’s	 constraint	 measure	 among	 the	 three	 ethnic	 categories.	 A	 post	 hoc	 test,
Tukey’s	HSD	(not	shown),	found	that	whites	have	more	of	this	kind	of	social	capital
than	blacks.

Figure	15.10			E-Net	structural	holes	output.

Figure	15.11	 	 	ANOVA	output	 for	 the	 test	of	 the	hypothesis	concerning	constraint
and	race/ethnicity.



15.6	Hybrid	designs

Drawing	data	from	social	media	sites	such	as	Facebook	provides	an	example	of	a
data	 collection	 strategy	 that	 has	 elements	 of	 both	 whole-network	 and	 personal-
network	designs.	A	person’s	Facebook	page	contains	a	good	deal	of	data	about	the
person	 (e.g.,	 gender,	 sexual	 orientation,	 educational	 history,	 interests,
memberships),	 along	 with	 ‘friend’,	 ‘like’	 and	 ‘tag’	 links.	 Furthermore,	 links
between	their	friends	are	accessible	to	ego,	and	applications	exist	that	will	visualize
and/or	download	this	ego	network.	Because	the	data	on	alter–alter	 ties	is	collected
by	Facebook	from	the	alters	themselves	(rather	than	perceived	by	ego),	the	resulting
ego	network	 is	actually	a	 subgraph	of	 the	 full	Facebook	network,	not	a	perceived
network	as	in	a	personal-network	design.
Figure	15.12	is	an	example	of	Facebook	data	for	one	of	the	authors,	showing	how

his	 alters	 are	 connected	 to	 one	 another	 and	 to	 other	 entities	 such	 as	 universities,
corporations	 and	 organizations.	 The	 cluster	 at	 the	 bottom	 is	 populated	 by	 alters
affiliated	 with	 ego’s	 workplace	 –	 East	 Carolina	 University	 –	 and	 ego’s	 city	 of
residence.	 The	 cluster	 at	 the	 top	 includes	 many	 alters	 affiliated	 with	 a	 summer
workshop	run	by	ego.	The	network	is	clearly	divided	into	two	parts	involving	alters
from	very	disparate	walks	of	 life	and	geographical	 locations;	 there	 is	 little	 if	any
redundancy	in	ties	between	the	two.	It	is	worth	noting	that	although	the	network	has
both	individuals	and	groups,	it	is	not	a	two-mode	network	in	the	usual	sense	because
two-mode	networks	only	have	ties	between	modes,	whereas	here	there	are	ties	from
individuals	to	individuals,	and	individuals	to	groups.

15.7	Summary

Ego	networks	consist	of	a	focal	node	together	with	the	nodes	connected	to	the	focal
node.	We	refer	to	the	focal	node	as	‘ego’	and	the	nodes	connected	to	ego	as	‘alters’.
In	 addition,	 we	 often	 collect	 one	 or	 more	 of	 the	 following:	 ego	 attributes,	 alter
attributes	and	alter–alter	connections.	In	personal-network	research	designs,	the	data
(including	 alter	 characteristics	 and	 alter–alter	 ties)	 is	 collected	 entirely	 from	ego,
and	 the	survey	can	be	completely	anonymous.	 In	addition,	egos	can	be	sampled	at
random	from	a	larger	population.	In	a	whole-network	research	design,	information
about	 alters	 is	 collected	 from	 the	 alters	 themselves,	 and	 the	 surveys	 cannot	 be
anonymous.	The	ego	networks	are	then	extracted	from	the	whole	network	as	needed.
Personal-network	designs	make	use	of	name	generator,	name	interpreter	and	name-
interrelater	 questions.	 The	 analysis	 of	 ego	 network	 data	 generally	 consists	 of
characterizing	the	ego	network	in	some	way	(e.g.,	the	average	income	of	the	alters,



the	 density	 of	 ties	 among	 alters)	 and	 then	 relating	 these	 variables	 statistically	 to
characteristics	of	ego.

Figure	15.12			Ego	network	from	Facebook	for	one	of	the	authors	using	the	Touch-
Graph	app	showing	80	‘friends’	and	10	‘networks’,	in	this	case	universities.
	

1	An	important	advantage	of	personal-network	research	designs	is	that	actual	names
of	 a	 person’s	 contacts	 need	 not	 be	 collected.	 Nicknames,	 initials	 or	 any	 code	 the
respondent	 can	 remember	 will	 do.	 In	 addition,	 the	 respondents	 themselves	 can
remain	anonymous.
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