Social Network Analysis

Paulo Serôdio

University of Essex

July 2023

Content

- Introduction to Core Social Network Concepts
- Overview of the field and the tools
- Mathematical foundations
- SNA Data \& Survey Design
- Centrality
- Social Capital
- Cohesion
- Subgroups
- Equivalence (Role \& Position)
- Hypotheses testing
- Introduction to network analysis in UCINET

History

Previous instructors: Steve Borgatti (Kentucky) \& Rich DeJordy (Fresno State)

Structure

- Monday : Introduction, Fundamentals \& Software
- Algebra
- Graph theory
- Network data
- Intro to UCINET
- Tuesday : Centrality, Centralization, Cohesion
- Wednesday : Local Neighbourhood \& Ego-networks
- Thursday : Communities \& subgroups
- Friday : Testing Hypotheses, Stochastic Models \& Optional Topic

Objectives

- Build intuition
- Expose key concepts
- Highlight big questions
- provide abstract examples
- Some pointers to other studies
- NOT a substitute for technical work

Introduction

- Name
- Affiliation
- Discipline
- SNA Experience/Knowledge
- Phenomena of interest

What Defines SNA?

- Phenomenon studied
- distinctive type of data
- Perspective taken
- Perhaps one perspective, but multiple theories
- Methodological toolkit
- new concepts, new tools

Reasoning about Networks

-What can achieve from studying networks?

- Patterns and statistical properties of network data;
- Design principles and models;
- Understand the organisation of networks;
- How can we reason about networks?
- Empirical : study data; measure and quantify;
- Mathematical Models: graph theory \& stats, distinguish surprising from expected phenomena
- Algorithms : for hard computational challenges

how mathematicians reason about networks

- Mathematicians are concerned with the abstract structure of a graph
- Mathematicians define operations to analyze and manipulate graphs. Moreover, they develop theorems based upon structural axioms.

how physicists reason about networks

- Physicists are concerned with modeling real-world structures with networks.
- Physicists define algorithms that compress the information in a network to more simple values (e.g. statistical analysis).

what are networks?

- an approach
- a mathematical representation
- provide structure to complexity
- structure above individuals / components
- structure below
system / population

system / population

History of SNA

- 1736- Euler
- 1930s- Sociometry
- 1940s Psychologists
- 1950s \& 60s Anthropologists
- 1970s Rise of Sociologists
- Small Worlds, Strength of weak ties
- 1980s IBM computation
- Computer programs developed
- 1990s Ideas spread
- UCINET released, spread of network analyis to multiple fields, social capital, embedded ties
- 2000s Physicists jump on the bandwagon

Graph Theory Beginnings: Leonard Euler

- Swiss mathematician and logician (1707-1783)
- Network analysis begins with solution to the "Bridges of Königsberg" question in 1735

The Seven Bridges of Königsberg

Big Question: Can one walk across all seven bridges and never cross the same one twice?

Definition: an Euler path walks through a graph without revisiting edges; an Euler circuit is an Euler path that starts and stops at the same vertex.

Euler theorem: if a graph has an Euler circuit, then every vertex has even degree.

What is a network?

Network

- Set of nodes
- Set of ties among them
- Ties interlink through common nodes
- Resulting in paths
- In social network analysis, ties typically represent a social relation
- E.g., kinship, family

Adjacency matrix

- Can represent a network as a node-by-node matrix
- Typically $1 s$ and $0 s$, could be strengths of tie

	a	b	c	d	e	f
a		1	0	0	0	0
b	1		1	1	0	0
c	0	1		1	0	0
d	0	1	1		1	0
e	0	0	0	1		1
f	0	0	0	0	1	

Marriage ties between families

Padgett \& Ansell (1991). Marriage ties among Florentine families during the Renaissance

Business ties between families

Dyadic variables

- A given type of relation, such as marriage, can be seen as a dyadic variable that describes the relationship between every pair of nodes
- A dyadic variable assigns a value to each pair of nodes

Dyad	Married	Business
ACCIAIUOLI-GUADAGNI	0	0
GUADAGNI-STROZZI	0	0
PUCCI-STROZZI	0	0
BISCHERI-SALVIATI	0	0
ACCIAIUOLI-GINORI	0	0
GUADAGNI-RIDOLFI	0	0
MEDICI-TORNABUONI	1	1
CASTELLANI-SALVIATI	0	0
BARBADORI-GUADAGNI	0	0
CASTELLANI-LAMBERTESCHI	0	1
ACCIAIUOLI-ALBIZZI	0	0
GUADAGNI-PUCCI	0	0
LAMBERTESCHI-STROZZI	0	0
MEDICI-PUCCI	0	0

Acquaintance network

Is this a network?

Diagram courtesy of Valdis Krebs www.orgnet.com

Internet Marketing Cluster

Comparing airlines' route structures

Major Carrier

Note:
Route maps defined around one specific hub only
Source: Industry data, BCG analysis
"Discount" Airline

Entailed interactions

- Friendship carries with it certain norms about how the friends will behave toward each other
- Rights and obligations
- Expectations
- Kinship ties have these too
- Professor / student
- So this means that a given "base relation" entails a variety of interactions
- And base relations also have a variety of different functions, e.g., material aid, emotional support, advice, etc.

Multiplexity

- A given dyad (pair of persons) can be connected by more than one kind of base relation at the same time
- E.g., both kin and co-worker
- I wouldn't classify being friends and talking often as multiplex
- Because the base relation entails the talking

Multiplex
relationship

Dyad	Married	Business
ACCIAIUOLI-GUADAGNI	0	0
GUADAGNI-STROZZI	0	0
PUCCI-STROZZI	0	0
BISCHERI-SALVIATI	0	0
ACCIAIUOLI-GINORI	0	0
GUADAGNI-RIDOLFI	0	0
MEDICI-TORNABUONI	1	1
CASTELLANI-SALVIATI	0	0
BARBADORI-GUADAGNI	0	0
CASTELLANI-LAMBERTESCHI	0	1
ACCIAIUOLI-ALBIZZI	0	0
GUADAGNI-PUCCI	0	0
LAMBERTESCHI-STROZZI	0	0
MEDICI-PUCCI	0	0

Directed and undirected

undirected

directed

The 3 people you interacted with the most over the last week

Organization chart

Who reports to whom

- Drawn without arrows, but is a directed relation

Krackhardt, D. 1992 "The Strength of Strong Ties: The Importance of Philos in Organizations." In N. Nohria \& R. Eccles (eds.), Networks and Organizations: Structure, Form, and Action: 216-239. Boston, MA: Harvard Business School Press.

2-mode data: who attended what event

Nates or Partuctinats of Group I														
	6/27	(2)	(3) 4	(4)3	$2(x) 25$	(6)	(7)	${ }_{9 / 16}{ }^{\text {(8) }}$	4/8)	6/10	(11)	(12)		(14)
1. Mrs. Evelyn Jefferson.	X	X	x	X	\times	\times		\times	X					
2. Miss Laura Mandeville.	\times	\times	\times		\times	\times	\times	\times						
3. Miss Theresa Anderson.		\times												
4. Miss Brenda Rogers..	\times		\times	\times	\times	\times	\times	\times						
5. Miss Charlotte McDowd.			\times	\times	\times		\times							
6. Miss Frances Anderson.			X	...	\times	\times		\times						
7. Miss Eleanor Nye....					\times	\times	\times	\times						
8. Miss Peard Oglethorpe.						\times		\times	\times					
9. Miss Ruth DeSand.					\times		\times	\times	\times					
10. Miss Verne Sanderson.							\times	\times	\times			\times		
11. Miss Myra Liddell.								\times	\times	\times		\times		
12. 2 aiss Katherine Rogers.								\times	\times	\times		\times	\times	\times
13. Mrs. Sylvia Avondale. .							\times	\times	\times	\times		x		
14. Mr3. Nora Fayette.						\times	\times	\ldots	\times	\times	\times	\times		\times
15. Mrs. Helen Lloyd. .							\times	\times		\times	\times	\times		
16. Mrs. Dorothy Murchison.								\times	\times					
17. Mrs. Olivia Carleton..														
18. Mrs. Flora Price.									X		\times			

Figure 1. Davis, Gardner and Gardner (1941) Deep South women-by-events matrix.

Co-participation data

Valued adjacency matrix

	EVE	LAU	THE	BRE	CHA	FRA	ELE	PEA	RUT	VER	MYR	KAT	SYL	NOR	HEL	DOR	OLI	FLO
EVELYN	8	6	7	6	3	4	3	3	3	2	2	2	2	2	1	2	1	1
LAURA	6	7	6	6	3	4	4	2	3	2	1	1	2	2	2	1	0	0
THERESA	7	6	8	6	4	4	4	3	4	3	2	2	3	3	2	2	1	1
BRENDA	6	6	6	7	4	4	4	2	3	2	1	1	2	2	2	1	0	0
CHARLOTTE	3	3	4	4	4	2	2	0	2	1	0	0	1	1	1	0	0	0
FRANCES	4	4	4	4	2	4	3	2	2	1	1	1	1	1	1	1	0	0
ELEANOR	3	4	4	4	2	3	4	2	3	2	1	1	2	2	2	1	0	0
PEARL	3	2	3	2	0	2	2	3	2	2	2	2	2	2	1	2	1	1
RUTH	3	3	4	3	2	2	3	2	4	3	2	2	3	2	2	2	1	1
VERNE	2	2	3	2	1	1	2	2	3	4	3	3	4	3	3	2	1	1
MYRNA	2	1	2	1	0	1	1	2	2	3	4	4	4	3	3	2	1	1
KATHERINE	2	1	2	1	0	1	1	2	2	3	4	6	6	5	3	2	1	1
SYLVIA	2	2	3	2	1	1	2	2	3	4	4	6	7	6	4	2	1	1
NORA	2	2	3	2	1	1	2	2	2	3	3	5	6	8	4	1	2	2
HELEN	1	2	2	2	1	1	2	1	2	3	3	3	4	4	5	1	1	1
DOROTHY	2	1	2	1	0	1	1	2	2	2	2	2	2	1	1	2	1	1
OLIVIA	1	0	1	0	0	0	0	1	1	1	1	1	1	2	1	1	2	2
FLORA	1	0	1	0	0	0	0	1	1	1	1	1	1	2	1	1	2	2

1-mode co-attendance matrix

Co-participation in events

Project collaboration network

Bank Wiring Room

- Hawthorne Studies
- Western Electric Plant
- 1920s \& 1930s

Roethlisberger, FJ, and WJ Dickson. 1939.
Management and the Worker (Cambridge: Harvard University Press.

Diagram of Observation Room Showing Wiremen's Positions (A \& B)

Game Playing Relations

Roethlisberger, FJ, and WJ Dickson. 1939.
Management and the Worker. Harvard University Press.

Networks: why do we care?

Networks are everywhere

So maybe we should try to understand them?

- A molecule is a network of atoms

- A brain is a network of neurons
- A body contains many networks, including the circulatory system
- Genes form regulatory networks that turn other genes on and off
- Firms are networks of individuals, passing along information, orders and coordinating efforts
- Buildings contain many networks, including heating/cooling, plumbing, electrical
- Economies are networks of firms and other agents buying and selling
- Societies are networks
- Countries contain many networks, e.g., transportation systems, phone systems
- The internet is a network
- Ecosystems are networks of species eating each other, creating environments for each other, etc.

But ...

- Networks are also a lens
- We see networks everywhere because we like to think that way
- A network is created any time a researcher says
- I'm interested in this set of people,
- And, I define a tie as [having the same color hair] [having met before] [etc]
- Don't want to over-reify networks
- And yet ...

Network mechanisms

Consider the case of AIDS

- 1981 CDC aware of increasing number of cases of opportunistic illnesses like Kaposi's sarcoma
- Virtually all cases were gay men
- Syndrome initially named Gay-Related Immune Deficiency (GRID)
- Logistic regression of opportunistic illness on being gay
- Proposed mechanism
- Stigmatized identity causes stress, leading to weakened immune system

Subject ID	Age	Gay	Rare Cancer
1	33	0	0
2	27	0	0
3	89	1	1
4	34	0	0
5	56	1	0
6	23	0	0
7	54	0	0
8	12	1	1
9	45	0	0
10	67	0	0
11	43	1	1
12	21	1	0

Contagion | diffusion | influence mechanisms

Subject ID	Age	Gay	Rare Cancer
1	33	0	0
2	27	0	0
3	89	0	0
4	34	0	0
5	56	1	0
6	23	0	0
7	54	0	0
8	12	1	1
9	45	0	0
10	67	0	0
11	43	1	1
12	21	1	0

Network structure provides backcloth that enables and constrains flows

Network models of style

- Why do people ...?
- Wear the clothes they do
- Speak the way they do
- Believe the things they do
- Do things the way they do
- Etc.

- Partly individual reasons (maximize utility function), but partly contagion/influence from people they know
- Contagion, diffusion, adoption of innovation, common fate

Modeling achievement

- Why some individuals/organizations are more successful than others
- Standard answer is human capital
- Motivation, education, intelligence, etc
- Network answer is social capital
- Position in the network
- Bridging/Brokering positions
- Access to non-redundant info
- Freedom of action
- Combine knowledge from one group to that of another

What are the consequences of networks?

Diffusion \& influence

- Networks provide a system of pipes through which things can flow
- Information
- Goods
- Money
- Infections
- Interpersonal influence processes
- I adopt vaping, you adopt vaping, your other friend adopts...
- Eating patterns - e.g., so-called obesity contagion

Coordination \& access to resources

- Like common culture, social networks bind people together so they can accomplish more than individuals working alone
- Can literally link arms
- More figuratively can agree/ally with each other, vote together
- Dependencies, kinship ties lead to help
- Ties bind people together to create superordinate entities, like bureaucracies
- Entrepreneur can use friends'
- Money
- Computer expertise
- Time
- Access to city council

Network theory provides explanations for ...

- Style
- Why people have the particular beliefs, behaviors, and belongings they do
- Generic research question: explain hetero/homogeneity
- Generic network explanation: contagion, diffusion, interpersonal influence processes
- Contagion of obesity, happiness, etc
- Diffusion of innovations
- Spread of disease
- Fads and fashion
- Social conformity
- Success
- Achievement and reward
- Why some people are more successful than others
- Generic research question: explain differential success
- Generic network explanation: social capital
- Ties provide access to resources
- Certain positions in social structures are advantageous
- Coordination \& collaboration
- Innovation knowledge creation

Levels of analysis -- organized by most to least number of units

- Dyad level - O(n^{2})
- Units are pairs of persons
- Variables are things like presence of absence of a certain kind of tie between each pair of persons in network
- Node level - O(n)
- Units are persons
- Variables are things like the number of friends each person has
- Group/network level - O(1)
- Units are whole networks (e.g., teams, firms or countries)
- Variables are things like the density of trust ties, or the average number of degrees of separation between members of the group

Dyad level

- Raw network data are dyadic
- for each pair of persons we measure
- whether they have a tie or not (are they friends?)
- How strong the relationship is (how close are they?)
- Other aspects of the tie
- How long have they been friends?
- How often do they talk?
- Measurement can undirected or directed
- Undirected: are they co-workers? If A is coworker of B, then B is coworker of A
- Directed: advice. Does A give advice to B ? If so, maybe B does not give advice to A

Dyad level : antecedents and consequences

- Consequences

- If A has tie to B, and A knows something, they may tell B, and now both know it
- So, a consequence of the tie is similarity/homogeneity
- I have same info as you
- I adopt same shoes as you
- Antecedents
- What determines which pair are friends are which are not?
- Often look to attributes of the individuals
- So, an antecedent of the tie is similarity

Node level: antecedents and consequents

- Consequences

- Employees with more friends in the higher levels of the organization get promoted earlier and have better raises
- In management the canonical hypothesis is that managers with more structural holes perform better and get rewarded better
- Antecedents
- Individuals with more outgoing personalities tend to be more central in the organizational network

Structural hole

- People with ability to interact productively with diverse kinds of people are more likely to ties to people who are not tied to each other

Group level

- Consequences
- Teams with more centralized communication networks solve problems more quickly
- Antecedents
- Teams with greater demographic homogeneity more likely to have core/periphery network structures rather than clumpy structures

Antecedents and consequences

Antecedents

- Socio/cultural/psychological processes that give rise to social ties, interactions, exchanges
- What determines who is connected to whom?
- Why do some people have more ties than others?
- Why does the network have the structure it does?
- Theory of networks

Consequences

- Mechanisms that translate ties, positions, structure into outcomes
- How does the tie between two actors affect what happens between them?
- How does centrality translate into power?
- How does network structure determine diffusion speed?
- Network theory

Types of studies

	Dyad Level	Node Level	Group Level
Theory of Networks (Antecedents)	Understanding who becomes friends with whom	Explaining why some people are more liked than others	Explaining why some groups have more centralized network structures
Network Theory (Consequences)	Predicting similarity of opinion as a function of friendship	Explaining why some employees rise through the ranks faster than others as a function of social ties	Predicting team performance as a function of structure of trust network within team

Characteristics of network thinking

Structure matters

- This is a fragile structure easily broken up

Which networks are good for what?

- Consequences of these structures for the organization and for nodes

Position matters: the emergence of Moscow

- Pitts (1979) study of $12^{\text {th }}$ century Russia and the later emergence of Moscow
- Why did Moscow come to dominate?
- Great man theory
- Resource richness

Position matters

- Rivers enable trade between citystates
- System of rivers creates network of who can trade directly and indirectly with whom
- What happens in the network is a function of global paths and position
- Moscow very high in betweenness centrality

SNA as open systems perspective

- Importance of an individual's environment
- To explain individual outcomes, must take into account the node's social environment in addition to internal characteristics
- In SNA, the environment is conceptualized as network
- An emphasis on structure relative to agency
- Consistent with an open systems perspective
- The contrast is with an essentialist/dispositional perspective
- Predict individual's outcomes using other characteristics of the individual
- Employee's success a function of ability and motivation

We are all embedded in a thick web of relations

Environment as location in network

- Many fields have concept of environment affecting the individual
- Turbulent/differentiated environments in organizational theory
- In networks, the environment is conceptualized as other agents
- And these agents are connected to each other and to ego in a particular pattern/structure

Traits versus environment

- Traditionally, social science has focus on attributes of individuals to predict individual outcomes
- Income as a function of education
- Essentialist, dispositional, closed system perspective
- SNA looks not only at your own attributes, but also the attribs of the people in your life

Research designs

Whole network / sociocentric design

- Start with a set of people (typically a "natural" group such as a gang or a department)
- Collect data on the presence/absence (or strength) of ties of various kinds among all pairs of members of the set
- Who doesn't like whom; How frequently each pair of persons have a conversation
- Typically collected via survey: respondent presented with roster of people to select/rate
- Issues
- The set of persons needs to be some kind of census - can't randomly pick sample of 100 persons from the population of all Americans
- The set can't be too big
- Problems with inferential validity - how to generalize results?

Personal network / egocentric design

- Select random sample of respondents/subjects
- Call them egos
- For each subject, identify the set of persons in that subject's life
- Call them alters
- For each alter, determine their individual characteristics
- E.g., ask ego how old the alter is, whether they use drugs, etc.
- For each alter, determine the nature of the relationship with ego
- E.g., ask ego how often they talk to alter, whether alter is a neighbor, etc.

- For pairs alters, determine their relationships to each other
- E.g., ask ego whether alter 1 is friends with alter 2 , etc.

Issues with personal network design

- Can use random samples, enabling generalizability of findings
- Can study very large populations
- Can't say anything about network structure, or position of nodes within the structure
- Typically collected via survey, so all of the information about alters is obtained from ego's perceptions
- May be inaccurate
- But maybe it is ego's perception that matters ...

Cognitive social structures (CSS) design

- A blend of whole network and personal network designs
- Start with natural group of persons as in whole network design
- Ask each person to indicate not only their own relationship with each other person, but also their perception of the relationships among all pairs of persons
- Result is a perceived network from each member of the network
- Issues
- Tedious for the respondent - can only be used with small groups
- Extremely rich data. Can calculate accuracy of each person's perceptions. Study effects of social perceptions
"Who would this person consider to be a personal friend? Please place a check next to all the names of those people who that person would consider to be a friend of theirs"

Friendship network -- ilas

"Who would this person consider to be a personal friend? Please place a check next to all the names of those people who that person would consider to be a friend of theirs"

Chris's perception of the friendship network

"Who would this person consider to be a personal friend? Please place a check next to all the names of those people who that person would consider to be a friend of theirs"

Ev's perception of the friendship network

Chris

Fundamentals of Network Analysis

- Data structure
- Matrix Algebra
- Set and graph theory

Defining \& Describing a network

- In social network analysis, we draw on two major areas of mathematics regularly:
- Matrix Algebra
- Tables of numbers
- Operations on matrices enable us to draw conclusions we couldn't just intuit
- Graph Theory
- Branch of discrete math that deals with collections of ties among nodes and gives us concepts like paths

Network vs. Case Perspective

- One of the biggest differences between the SNA perspective and more traditional social science perspectives is the nature of the data
- Instead of individual cases, where we collect the same information for a bunch of people
- Here, we collect information about the interaction of pairs of people

Mainstream Logical Data Structure

- 2-mode rectangular matrix in which rows (cases) are entities or objects and columns (variables) are attributes of the cases
- Analysis consists of correlating columns
- Emphasis on explaining one variable

ID Age Education Salary

Network Logical Data Structures

Friendship
Jim Jill Jen Joe

Jim	-	1	0	1
Jill	1	-	1	0
Jen	0	1	-	1
Joe	1	0	1	-

Proximity

	Jim Jill Jen Joe			
Jim	-	3	9	2
Jill	3	-	1	15
		1		
Jen		1	-	3
	Joe	15	3	-

- Multiple relations recorded for the same set of actors
- Each relation is a variable
- variables can also be defined at more aggregate levels
- Values are assigned to pairs of actors
- Hypotheses can be phrased in terms of correlations between relations
- Dyadic-level hypotheses

Network Representation

Kinds of Network Data

1-mode Complete Network

2-mode Complete Network

 Gardner

Complete Network Data vs. Complete Graph

- The term "Complete Network Data" refers to collecting data for/from all actors (vertices) on the graph
- The opposite if Ego-Network or Ego-Centric Network data, in which data is collected only from the perspective an individual (the ego)
- The term "Complete Graph" refers to a graph where every edge that could exist in the graph, does:
- For all $i, j(j>i), v(i, j)=1$

Complete
 Network

 Data
Complete Graph

Ego Network Analysis

- Combine the perspective of network analysis with the data of mainstream social science

1-mode Ego Network

Carter Administration meetings

Year 1

Data courtesy of Michael
Link

2-mode Ego Network

representing networks - simple undirected

adjacency matrix

A	1	2	3	4	5	6
1	0	1	0	0	1	0
2	1	0	1	1	0	0
3	0	1	0	1	1	1
4	0	1	1	0	0	0
5	1	0	1	0	0	0
6	0	0	1	0	0	0

adjacency list

$$
\begin{aligned}
& A \\
& \hline 1 \rightarrow\{2,5\} \\
& 2 \rightarrow\{1,3,4\} \\
& 3 \rightarrow\{2,4,5,6\} \\
& 4 \rightarrow\{2,3\} \\
& 5 \rightarrow\{1,3\} \\
& 6 \rightarrow\{3\}
\end{aligned}
$$

representing networks - complex

representing networks - directed networks

$$
A_{i j} \neq A_{j i}
$$

directed acyclic graph

directed graph

```
WWW
friendship?
flows of goods, information
economic exchange
dominance
neuronal
transcription
time travelers
```


representing networks - bipartite networks

representing networks - link types

representing networks - network modes

representing networks - directed networks

representing networks - symmetric networks

representing networks - affiliation networks

	A	B	C	D	E
A	0	1	1	0	0
B	1	0	0	0	1
C	1	0	0	1	1
D	0	0	1	0	0
E	0	1	1	0	0

Network Data

storing network data

1. Adjacency matrix
2. Edgelist
3. Adjacency/node list

1. Adjacency Matrix

- Representing edges (who is adjacent to whom) as a matrix
- $\mathrm{A}_{\mathrm{ij}}=1$ if node i has an edge to node j
$=0$ if node i does not have an edge to j
- $A_{i i}=0$ unless the network has self-loops
- $A_{i j}=A_{\mathrm{ij}}$ if the network is undirected, or if i and j share a reciprocated edge

1. Adjacency Matrix

$$
A=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0
\end{array}\right)
$$

Issues:

1. Your dataset will likely contain network data in a non-matrix format;
2. Large, sparse networks take way too much space if kept in a matrix format

1. Adjacency Matrix

Which adjacency matrix represents this network?
A) $\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$
B) $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$

C) $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$
2. Edge list

- Edge list
- 2, 3
- 2, 4
- 3, 2
- 3, 4
-4, 5

- 5, 2
- 5, 1

2. Edge List (with weights)

Source Destination Weight
B A 1
B \quad E 1
C A 1
C \quad E 1
C D 1
Note: Weights are optional.

3. Adjacency list | Node list

- Adjacency list
- is easier to work with if network is
- large
- sparse
- quickly retrieve all neighbors for a node

- 1:
- 2: 34
- 3: 24
- $4: 5$
- 5: 12

Matrix Algebra

Matrix Algebra

- Matrix Concepts, Notation \& Terminologies
- Adjacency Matrices
- Transposes
- Matrix Operations

Matrices

- Symbolized by a capital letter, like A
- Each cell in the matrix identified by row and column subscripts: a ij
- First subscript is row, second is column

```
ID Age Gender Income
Mary a_11
Bill
John a_32
Larry
```


Vectors

- Each row and each column in a matrix is a vector
- - Vertical vectors are column vectors, horizontal are row vectors
- Denoted by lowercase bold letter: y
- Each cell in the vector identified by subscript x_{i}

Ways and Modes

- Ways are the dimensions of a matrix.
- Modes are the sets of entities indexed by the ways of a matrix

Event Event Event Event

	1	2	3						
EVELYN	1	1	1	1					
LAURA	1	1	1	0					
THERESA	0	1	1	1		Mary	Bill	John	Larry
BRENDA	1	0	1	1	Mar	0	1	0	1
CHARLO	0	0	1	1	y	1	0	0	1
FRANCES	0	0	1	0	Bill	0	1	0	0
ELEANOR	0	0	0	0	John	1	0	1	0
PEARL RUTH	0	0	0	0	Larry	2-way, 1-mode			
VERNE	0	0	0	0					
MYRNA	0	0	0	0					
	0	0	0	0					
2-way, 2-mode									

Proximity Matrices

- Proximity Matrices record "degree of proximity".
- Proximities are usually among a single set of actor (hence, they are 1-mode), but they are not limited to 1 s and $0 s$ in the data.
- What constitutes the proximity is user-defined.
- Driving distances are one form of proximities, other forms might be number of friends in common, time spent together, number of emails exchanged, or a measure of similarity in cognitive structures.

Proximity Matrices

- Proximity matrices can contain either similarity or distance (or dissimilarity) data.
- Similarity data, such as number of friends in common or correlations, means a larger number represents more similarity or greater proximity
- Distance (or dissimilarity data) such as physical distance means a larger number represents more dissimilarity or less proximity

Transposes

- The transpose M^{\prime} of a matrix M is the matrix flipped on its side.
- The rows become columns and the columns become rows
- So the transpose of an m by n matrix is an n by m matrix.

Transpose Example

M	Tennis	Football	Rugby	Golf
Mike	0	0	1	0
Ron	0	1	1	0
Pat	0	0	0	1
Bill	1	1	1	1
Joe	0	0	0	0
Rich	0	1	1	1
Peg	1	1	0	1

$\mathbf{M T}^{\mathbf{T}}$	Mike	Ron	Pat	Bill	Joe	Rich	Peg
Tennis	0	0	0	1	0	0	1
Football	0	1	0	1	0	1	1
Rugby	1	1	0	1	0	1	0
Golf	0	0	1	1	0	1	1

Dichotomizing

- X is a valued matrix, say 1 to 10 rating of strength of tie
- Construct a matrix Y of ones and zeros s.t. $y_{i j}=1$ if $x_{i j}>5$, and $y_{i j}=0$ otherwise

EVE LAU THE BRE CHA

EVELYN	8	6	7	6	3
LAURA	6	7	6	6	3
THERESA	7	6	8	6	4
BRENDA	6	6	6	7	4
CHARLOTTE 3	3	4	4	4	
EVE LAU THE BRE CHA					
EVELYN	1	1	1	1	0
LAURA	1	1	1	1	0
THERESA	1	1	1	1	0
BRENDA	1	1	1	1	0
CHARLOTTE 0	0	0	0	0	

Symmetrizing

- When matrix is not symmetric, i.e., $x_{i j} \neq x_{j i}$
- Symmetrize various ways. Set $y_{i j}$ and $y_{j i}$ to:
- Maximum(x_ij, x_ji): union rule;
- Minimum(x_ij, x_ji): intersection rule;
- Average (x_ij+x_ji)/2
- Lowerhalf: choose $x_{i j}$ when $i>j$ and $x_{j i}$ otherwise

Symmetrizing Example

What rule are we using here?

ROM BON AMB BER PET LOU

ROMUL_10	0	1	1	0	3	0
BONAVEN_5	0	0	1	0	3	2
AMBROSE_9	0	1	0	0	0	0
BERTH_6	0	1	2	0	3	0
PETER_4	0	3	0	1	0	2
LOUIS_11	0	2	0	0	0	0

ROM BON AMB BER PET LOU

ROMUL_10	0	1	1	0	3	0
BONAVEN_5	1	0	1	1	3	2
AMBROSE_9	1	1	0	2	0	0
BERTH_6	0	1	2	0	3	0
PETER_4	3	3	0	3	0	2
LOUIS_11	0	2	0	0	2	0

Matrix Multiplication

- Matrix products are not generally commutative (i.e., $A B$ does not usually equal $B A$)
- Notation: $C=A B$
- only possible when the number of columns in A equals number of rows in B; these are said to be comformable. It is calculated as:

$$
c_{i j}=\sum a_{i k} * b_{k j} \quad \forall k
$$

Matrix multiplication example i

$$
\left[\begin{array}{ccc}
1 & 0 & 2 \\
-1 & 3 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
3 & 1 \\
2 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
1 \times 3+0 \times 2+2 \times 1 & 1 \times 1+0 \times 1+2 \times 0 \\
-1 \times 3+3 \times 2+1 \times 1 & -1 \times 1+3 \times 1+1 \times 0
\end{array}\right]=\left[\begin{array}{ll}
5 & 1 \\
4 & 2
\end{array}\right]
$$

Matrix multiplication example ii

Skills	Math	Verbal	Analytic
Kev	1.00	.75	.80
Jeff	.80	.80	.90
Lisa	.75	.60	.75
Kim	.80	1.00	.85

Items	Q1	Q2	Q3	Q4
Math	.50	.75	0	.1
Verbal	.10	0	.9	.1
Analytic	.40	.25	.1	.8

- Given a Skills and Items matrix calculate the "affinity" that each person has for each question
- Kev for Question 1 is:

$$
\begin{aligned}
& =1.00 * .5+.75^{*} .1+.80^{*} \\
& .40 \\
& =.5+.075+.32=0.895
\end{aligned}
$$

- Lisa for Question 3 is:

$$
\begin{aligned}
& =.75^{*} .0+.60^{*} .90+.75^{*} .1 \\
& =.0+.54+.075=0.615
\end{aligned}
$$

Affin	Q1	Q2	Q3	Q4
Kev	0.895	0.95	0.755	0.815
Jeff	0.840	0.825	0.810	0.880
Lisa	0.735	0.75	0.615	0.735
Kim	0.840	0.813	0.985	0.860

Assessing node's environment

	X						A				XA			
	a	b	c	d	e	f		hrs	\$	lib		hrs	\$	lib
a	0	1	0	1	1	1	a	3	50	1	a	22	65	15
b	0	0	1	0	0	0	b	9	10	4	b	3	5	3
c	1	1	0	1	0	0	c	3	5	3	c	19	90	10
d	0	1	1	0	1	1	d	7	30	5	d	18	40	13
e	1	0	0	0	0		e	1	20	2	e	3	50	1
f	1	1	0	0	1	0	f	5	5	4	f	13	80	7

- Hrs and $\$$ columns of XA give social access to resources
- Lib column gives how liberal the person's social environment is

Boolean matrix multiplication

- Values can be 0 or 1 for all matrices
- Products are dichotomized

Would have been a 2 in
regular matrix multiplication

	Mary Bill John Larry			
Mary	0	1	0	1
Bill	1	0	1	0
John	0	0	0	1
Larry	0	0	0	0

A

	Mary Bill John Larry			
Mary	0	0	1	1
Bill	1	0	1	0
John	0	0	0	1
Larry	0	1	0	0

B

Mary Bill John Larry				
Mary	1	1	1	0
Bill	0	0	0	1
John	0	1	0	0
Larry	0	0	0	0

$A B$

Composition of relations

- We represent each social relation (e.g., $F=$ friend of, $B=$ boss of) as a matrix
- To create the compound relation friend of the boss of (FB), we just multiply the two matrices

	F					B							FB			
	a	b	C	d	x	a	a	a b c d			=	a	a	b	c d	
a	0	1	0	1			0	0	1	1			1	0	0	0
b	1	0	1	0		b	1	0	0	0		b	0	1	1	1
c	1	1	0	1		c	0	1	0	0		c	1	0	1	1
d	1	0	1	0		d	0	0	0	0		d	0	1	1	1

Composition of relations

F

	a	b	c	d
a	0	1	0	1
b	1	0	1	0
C	1	1	0	1
d	1	0	1	0

B

Everyone is friends with their boss

- $F B(c, a)=1$ (or $c F B a)$ means that person c is friend of someone (namely b) who is the boss of a. i.e., c is friends with a's boss
- $\mathrm{FB}(\mathrm{a}, \mathrm{a})=1$ (or aFBa) means person a is friends with someone (b again) who is a's boss. i.e., a is friends with her boss
- $F B(b, d)=1$, so person b is friends with someone (a) who is the boss of d

Converse of a relation

- In relational terms, the converse of a relation is the reciprocal role
- Converse of "boss of" is "subordinate of"
- In graph terms, we are just reversing the direction of arrows
- In matrix terms, we are transposing matrix
- Construct B' (reports to) from B (is the boss of)

"reports to"

	B					B'			
	a	b	C	d	a	a	b	C	d
a	0	0	1	1		0	1	0	0
b	1	0	0	0	b	0	0	1	0
C	0	1	0	0	C	1	0	0	0
d	0	0	0	0	d	1	0	0	0
Boss of					Reports to				

To transpose a matrix, write each row as a column

Composition of relations - with converse

- To create the compound relation friend of the subordinate of (FB'), we just post-multiply F by the transpose of B
- $F B^{\prime}(c, a)=1$ (or cFB'a) means that person c is friend of someone (namely d) who is a subordinate of a. i.e., c is friends with a^{\prime} s subordinate
- $F B^{\prime}(a, a)=1$ (or aFB'a) means person a is friends with someone (d) who is her subordinate. i.e., a is friends with one of her direct reports.

	F						B'						FB'			
	a	b	c	d			a	b	C	d			a	b	C	d
a	0	1	0	1		a	0	1	0	0		a	1	0	1	0
b	1	0	1	0	X	b	0	0	1	0	$=$	b	1	1	0	0
C	1	1	0	1		C	1	0	0	0		C	1	1	1	0
d	1	0	1	0		d	1	0	0	0		d	1	1	0	0

Everybody likes
a's subordinates

Transitivity

- L = "likes someone", uLLv means u likes someone who likes v

L

	a	b	c	d
a	0	1	0	1
b	0	0	1	0
C	0	1	0	0
d	1	0	1	0

L

	a	b	c	d
a	0	1	0	1
b	0	0	1	0
C	0	1	0	0
d	1	0	1	0

LL

	a	b	c	d
a	1	0	2	0
b	0	1	0	0
C	0	0	1	0
d	0	2	0	1

Note diagonal of LL is all 1 s , so everyone is lucky enough to like someone who likes them
$L L(d, b)=2$ indicates d likes 2 people who like b

- If a likes b and b likes c, does that mean a likes c ?
- If matrix $L=$ matrix $L L$, then L is a transitive relation, in keeping with balance theory

Products of matrices \& their transposes

- $\mathrm{XX} X^{\prime}=$ product of matrix X by its transpose

$$
\left(X X^{\prime}\right)_{i j}=\sum_{k} x_{i k} x_{j k}
$$

- Computes sums of products of each pair of rows (cross-products)
- Similarities among rows

	1	2	3	4
Mary	0	1	1	1
Bill	1	0	1	0
John	0	0	0	1
Larry	0	0	0	0
Tina	1	1	1	0

	Mary				Bill						
John	Larry	Tina									
Mary	3	1	1	0	1						
Bill	1	2	0	0	1						
John	1	0	1	0	0						
Larry	0	0	0	0	0						
Tina	2	2	0	0	2						
XX'											

Multiplying a matrix by its transpose

		1 E		E3	E4	E5	E6	E7	7	E8	E9	E10	E11	E12	E13	E14
EVELYN	1		1	1	1	1	1	0		1	1	0	0	0	0	0
LAURA	1		1	1	0	1	1	1		1	0	0	0	0	0	0
THERESA	0		1	1	1	1	1	1		1	1	0	0	0	0	0
BRENDA			0	1	1	1	1	1		1	0	0	0	0	0	0
Charlotte		-	0	1	1	1	0	1		0	0	0	0	0	0	0
FRANCES		,	0	1	0	1	1	0		1	0	0	0	0	0	0
ELEANOR		-	0	0	0	1	1	1		1	0	0	0	0	0	0
PEARL		0	0	0	0	0	1	0		1	1	0	0	0	0	0
RUTH		-	0	0	0	1	0	1		1	1	0	0	0	0	0
VERNE		-	0	0	0	0	0	1		1	1	0	0	1	0	0
MYRNA			0	0	0	0	0	0		1	1	1	0	1	0	0
KATHERINE	0		0	0	0	0	0	0		1	1	1	0	1	1	1
SYLVIA			0	0	0	0	0	1		1	1	1	0	1	1	1
NORA			0	0	0	0	1	1		0	1	1	1	1	1	1
HELEN			0	0	0	0	0	1		1	0	1	1	1	0	0
DOROTHY	0		0	0	0	0	0	0		1	1	0	0	0	0	0
OLIVIA	0		0	0	0	0	0	0		0	1	0	1	0	0	0
FLORA	0		0	0	0	0	0	0		0	1	0	1	0	0	0

	EV	LA	TH	BR	CH	FR	EL	PE	RU	VE	MY	KA	SY	NO	HE	DO	OL	FL
E1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E2	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E3	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
E4	1	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
E5	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0
E6	1	1	1	1	0	1	1	1	0	0	0	0	0	1	0	0	0	0
E7	0	1	1	1	1	0	1	0	1	1	0	0	1	1	1	0	0	0
E8	1	1	1	1	0	1	1	1	1	1	1	1	1	0	1	1	0	0
E9	1	0	1	0	0	0	0	1	1	1	1	1	1	1	0	1	1	1
E10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0
E111	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1
E12	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0
E13	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0
E14	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0

	EVE	LAU	THE	BRE	CHA	FRA	ELE	PEA	RUT	VER	MYR	KAT	SYL	NOR	HEL	DOR		FLO
EVELYN	8	6	7	6	3	4	3	3	3	2	2	2	2	2	1	2	1	1
LAURA	6	7	6	6	3	4	4	2	3	2	1	1	2	2	2	1	0	0
THERESA	7	6	8	6	4	4	4	3	4	3	2	2	3	3	2	2	1	1
BRENDA	6	6	6	7	4	4	4	2	3	2	1	1	2	2	2	1	0	0
CHARLOTTE	3	3	4	4	4	2	2	0	2	1	0	0	1	1	1	0	0	0
FRANCES	4	4	4	4	2	4	3	2	2	1	1	1	1	1	1	1	0	0
ELEANOR	3	4	4	4	2	3	4	2	3	2	1	1	2	2	2	1	0	0
PEARL	3	2	3	2	0	2	2	3	2	2	2	2	2	2	1	2	1	1
RUTH	3	3	4	3	2	2	3	2	4	3	2	2	3	2	2	2	1	1
VERNE	2	2	3	2	1	1	2	2	3	4	3	3	4	3	3	2	1	1
MYRNA	2	1	2	1	0	1	1	2	2	3	4	4	4	3	3	2	1	1
KATHERINE	2	1	2	1	0	1	1	2	2	3	4	6	6	5	3	2	1	1
SYLVIA	2	2	3	2	1	1	2	2	3	4	4	6	7	6	4	2	1	1
NORA	2	2	3	2	1	1	2	2	2	3	3	5	6	8	4	1	2	2
HELEN	1	2	2	2	1	1	2	1	2	3	3	3	4	4	5	1	1	1
DOROTHY	2	1	2	1	0	1	1	2	2	2	2	2	2	1	1	2	1	1
OLIVIA	1	0	1	0	0	0	0	1	1	1	1	1	1	2	1	1	2	2
FLORA	1	0	1	0	0	0	0	1	1	1	1	1	1	2	1	1	2	2

squaring an adjacency matrix

Graph Theoretic Concepts

Intro to graph terminology

- Nodes
- Aka vertices or points in more mathematical work
- Actors, agents, egos, alters, contacts in more sociological work
- Nodes can individuals or collective actors, such as countries
- In social network analysis, nodes typically have agency
- Ties
- Aka edges, arcs or lines in more technical work

- Links, bonds, direct connections etc in more sociological work
- Ties are typically binary: they link exactly two nodes

A graph

- $G(V, E)$ is ...
- A set of vertices V , together with ...
- A set of edges E
- The edges are binary, meaning they have exactly two endpoints
- They are 2-tuples
- If the edges are k-tuples (where $k>2$), they comprise a hyper-graph

Directed and undirected graphs

- Graphs can be directed or undirected*
- Undirected
- In an undirected graph, the ties don't have direction - two nodes u and v are connected by a tie, but it doesn't matter whether you say u has tie to v or v has tie to u.
- E.g., married, taking same class, siblings
- The ties are called edges

- Directed
- Ties (which are called arcs) have direction. If u has a tie to v, it may or may not be true that v has a tie to u
- Gives advice to; sends an email to; thinks well of
- Directed graphs often called digraphs
- An undirected graph is like a directed graph in which all arcs are reciprocated, but technically there is a difference
- In an undirected graph, non-reciprocity is impossible/insensible

Marriage ties between families

Business ties between families

Directed networks

- In directed graphs, ties have direction, and need not be reciprocated
- Adjacency matrix is not symmetric

	a	b	c	d	e	f
a	0	0	0	0	0	1
b	0	0	1	0	0	1
c	0	1	0	1	0	1
d	1	0	0	0	1	0
e	0	0	0	1	0	1
f	1	0	0	1	0	0

> Consider "likes" and "seeks advice from"

Transpose Adjacency matrix

- In directed graphs, interchanging rows/columns of adjacency matrix effectively reverses the direction \& meaning of ties

	Mary Bill John Larry			
Mary	0	1	0	1
Bill	1	0	0	1
John	0	1	0	0
Larry	1	0	1	0
Gives money to				

	Mary Bill John Larry				
Mary	0	1	0	1	
Bill	1	0	1	0	
John	0	0	0	1	
Larry	1	1	0	0	
	Gets money from				

How meaningful are arrows?

The 3 people you interacted with the most over the last week

Discuss reversing direction

- Converse of the graph

- Drawn without arrows, but is a directed relation
ase drawn from:
Krackhardt, D. 1992 "The Strength of Strong Ties: The Importance of Philos in Organizations." In N. Nohria \& R. Eccles (eds.), Networks and Organizations: Structure, Form, and Action: 216-239. Boston, MA: Harvard Business School Press.

Valued networks

- We can attach values to ties, representing quantitative properties of the relationship
- $G(V, E, F)$, where F is a function delivering real values
- Strength of relationship
- Information capacity of tie
- Rates of flow or traffic across tie
- Distances between nodes

- Probabilities of passing on information
- Frequency of interaction

Valued Adjacency Matrix

Dichotomized

	Jim Jill Jen			
Jim	-	1	0	1
Jill	1	-	1	0
	0	1	-	1
	0	1		
	1	0	1	-

Distances btw offices

	Jim Jill		ill Jen	Joe
Jim	-	3	9	2
Jill	3	-	1	15
Jen	9	1	-	3
Joe	2	15	3	

- The diagram below uses solid lines to represent the adjacency matrix, while the numbers along the solid line (and dotted lines where necessary) represent the proximity matrix.
- In this particular case, one can derive the adjacency matrix by dichotomizing the proximity matrix on a condition of $\mathrm{p}_{\mathrm{ij}}<=3$.

Reflexive graphs

- A reflexive tie is a tie from a node to itself
- Self-loops
- Reflexive graphs are ones in which ties from a node to itself is allowed
- Normally only used when nodes represent collective agents such as cities
- Number of phone calls between US cities

Some well-known graphs

- Line/path
- Circle/cycle

- Clique
- Star

Expressing the presence of a tie

- Suppose you have an undirected graph G(V,E)
- To express that u and v have a tie in this graph we can write (u, v) $\in E$ or, if there multiple graphs under discussion, $(u, v) \in E(G)$
- It is irrelevant whether we write $(u, v) \in E$ or $(v, u) \in E$
- If $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is directed, then
- $(u, v) \in E$ means u has a tie to v.
- If it also true that $(v, u) \in E$, we say the $u--v$ tie is reciprocated

Mathematical relations

- A graph can also be viewed as a mathematical relation

- Wikipedia:
- In mathematics, a binary relation over two sets A and B is a set of ordered pairs (a, b), consisting of elements a of A and elements b of B. That is, it is a subset of the Cartesian product $A \times B$. It encodes the information of relation: an element a is related to an element b, if and only if the pair (a, b) belongs to the set. Binary relation is the most studied form of relations among all n-ary relations.
- A graph is a special case where A and B are the same set
- Just a set of pairs of things. To say that u and v are tied by a given relation we can write, as before
- $(u, v) \in E(G)$
- But is also convenient to write $u E v$, which says u has the relation with v

Relational terminology

- Suppose B is the relation "is the brother of" and F is the relation "is the father of"
- uBv means u is the brother of v
- yFx means y is the father of x
- We can define a compound relation BF as "is the brother of someone who is the father of"
- $u B F x$ means u is the brother of the father of x
- So BF is the uncle relation
- $\mathrm{U}=\mathrm{BF}$
- $z U x$ means z is the uncle of x

Relational terminology - cont.

- The relation FF is the father of the father of
- uFFv means that u is the grandfather of v
- We use F^{\prime} to indicate the converse of a relation F
- If F means is the father of, then F^{\prime} means is the child of
- uFv if and only if $v F^{\prime} U$
- The compound relation F'F means 'the child of the father of'
- uF'Fv means that u is the child of someone who is the father of v.
- Who are u and v to each other? They are siblings
- The relation FF^{\prime} is the father of the child of
- uFF'v means that u is the father of someone who is the son of v
- In other words u and v are co-parents to each other - they have the same children

Node-related concepts

- Degree

- The number of ties incident upon a node
- In a digraph, we have indegree (number of arcs to a node) and outdegree (number of arcs from a node)
- Pendant
- A node connected to a component through only one edge or arc
- A node with degree 1
- Example:John
- Isolate
- A node which is a component on its own
- E.g., Evander

How do things move?

	Paths	Trails	Walks
Move	Snail mail	Used paperback	Dollar bill
Copy	Virus	Gossip	Emotion

- Path - can't revisit a node or a line
- Trail - can't revisit a line
- Walk - unrestricted
- Every path is a trail, every trail is a walk

Graph traversals

- Walk
- Any unrestricted traversing of vertices across edges (Russ-Steve-Bert-Lee-Steve)
- Trail
- A walk restricted by not repeating an edge or arc, although vertices can be revisited (Steve-Bert-Lee-Steve-Russ)
- Path
- A trail restricted by not revisiting any vertex (Steve-Lee-Bert-Russ)
- Geodesic Path
- The shortest path(s) between two vertices (Steve-Russ-John is shortest path from Steve to John)
- Cycle
- A cycle is in all ways just like a path except that it ends where it begins
- Aside from endpoints, cycles do not repeat nodes
- E.g. Brazey-Lee-Bert-Steve-Brazey

Path

- A path is of sequence of incident lines (together with the nodes they connect) in which no node occurs more than once
- Can't revisit a node
-3-4-1-6 is a path
-3-4-1-6-4 is not
- Length of a path is defined as the number of lines in it
- Path 2-3-4-1 is length 3
- The shortest path from u to v is called a geodesic

Trail

- Trail is a sequence of incident lines such that no line occurs more than once
- Nodes can be revisited, but lines can't
- 3-4-1-6-4-5-6 is a trail
- 3-4-1-6-4-5-6-4 is not

Walks

- Walks are unrestricted sequences of incident edges.
- Can revisit any node or line
- 2-3-2-6 is a walk
- 2-3-4-6 is not (must obey direction)
- Every path is a trail, every trail is a walk, every path is a walk
- All of these are ways that things can traverse a graph, can flow
 through the graph

Length \& Distance

- Length of a path (or any walk) is the number of links it has
- The Geodesic Distance (aka graph-theoretic distance) between two nodes is the length of the shortest path
- Distance from 5 to 8 is 2 , because the shortest path (5-1-8) has two links

Geodesic Distance Matrix

Path lengths

- We can think of $L L$ as L^{2}. If $L^{2}(a, c)>0$, it means there exists a path (technically, a walk) from a to c that is exactly 2 links long
- If we compute LLL or L^{3}, then $L^{3}(a, c)>0$ means there exists at least one walk from a to c that is exactly 3 links long
- More generally if $L^{k}(i, j)>0$, it means there is at least one walk from i to j that is exactly k links long
- $L^{\mathrm{k}}(\mathrm{i}, \mathrm{j})=7$ means there are 7 different walks from i to j that are of length k

Matrix powers example

Note that shortest path from 1 to 5 is three links, so $x_{1,5}=0$ until we get to X^{3}

	1					
	2	3	4	5	6	
1	1	0	1	0	0	0
2	0	2	0	1	1	0
3	1	0	3	1	1	1
4	0	1	1	2	1	1
5	0	1	1	1	3	0
6	0	0	1	1	0	1
X^{2}						

	1							2	3	4	5	6
1	0	2	0	1	1	0						
2	2	0	4	1	1	1						
3	0	4	2	4	5	1						
4	1	1	4	2	4	1						
5	1	1	5	4	2	3						
6	0	1	1	1	3	0						
X^{3}												

		2	3	4	5	6
1	2	0	4	1	1	1
2	0	6	2	5	6	1
	4	2	13	7	7	5
	1	5	7	8	7	4
5	1	6	7	7	12	2
	1	1	5	4	2	3

Subgraphs

- Set of nodes
- Is just a set of nodes
- A subgraph
- Is set of nodes together with ties among them

- An induced subgraph
- Subgraph defined by a set of nodes
- Like pulling the nodes and ties out of the original graph

Subgraph induced by considering the set $\{a, b, c, f, e\}$

Connected vs disconnected graphs

- A graph is connected if you can reach any node from any other - i.e., there exists a path from one to the other
- Directed graphs are often disconnected

Disconnected

Component

- Maximal sets of nodes in which every node can reach every other by some path (no matter how long)
- Coherent fragments of a graph
- A graph with a single component is called a connected graph
- Weak vs strong components
- A weak component is where we

Removing F-E tie would create a network with 2 components

It is relations (types of tie) that define different networks, not components. A network that has two components remains one (disconnected) network.

Components in Directed Graphs

- Strong component
- There is a directed path from each member of the component to every other
- Weak component
- There is an undirected path (a weak path) from every member of the component to every other
- Is like ignoring the direction of ties - driving the wrong way if you have to

A network with 4 weak components

Who you go to so that you can say 'I ran it by \qquad , and she says ...'
Recent acquisition
Older acquisitions
Original company

1 weak component, 4 strong components

Cutpoints and Bridges

- Cutpoint
- A node which, if deleted, would increase the number of components
- Bridge
- A tie that, if removed, would increase the number of

components

Cutpoints

- Nodes which, if deleted, would increase the number of components in the network
- Removing Biff would disconnect the network (create 2 components)

Bridge

- An edge which, if removed, would increase the number of components in the network

Local Bridge of Degree K

- An edge that connects nodes that would otherwise be a minimum of k steps apart
- The A-B tie is local bridge of degree 5
- Loss of relationship between A and B would effectively, though not actually, disconnect A from B

Local bridges of degree k

Getting the Data in UCINET

- Four options:
- DL Files
- Text files of various formats that can be created easily by geeks and nerds
- Excel Files/Grid format
- UCINET has a spreadsheet tool that easily interacts with Excel or can allow manual entry if network is not too large
- VNA Files
- Text files that allow for a single-file that contains both dyadic and nodal attribute data
- Import Text Via Spreadsheet tool
- A new tool in UCINET that lets you do DL file formats in a spreadsheet tool

DL Files

- These are the most versatile
- There are multiple formats:
- Full Matrix
- Nodelist
- Edgelist
- Each has its advantages

DL Data Formats

Dl $\mathrm{n}=5$	Dl $\mathrm{n}=5$	Dl $\mathrm{n}=5$
Format = edgelist	Format = nodelist	Format = edgelist2
Labels embedded	Labels embedded	Labels embedded
Data:	Data:	Data:
billy john 6	billy john	billy Essex 4
john billy 1	john billy jill	john Cambridge 2
john jill 2	jill mary	jill Oxford 3
jill mary	mary billy jil	mary Leeds 6
mary billy 5		This is the same as the
mary jill		edgelist format, except
mary jill		the nominating node (the
Best for data coming from a relational databases or if you have valued data.	This method is best for BINARY data	first column) is of a different MODE than the
Values are added if repeated	NOTE: This is a dichotomized version	nominated node (the second column).
and default to 1	of the others	There is also nodelist2

VNA Files

- These CAN combine in one file both:
- Nodal (attribute) data and
- e.g., Age, gender, Education Level
- Network/Relational/Dyadic data
- E.g., Communicates with, Trusts
- Can have textual data
- NetDraw will preserve the labels
- UCINET will transform them to numbers

Sample VNA File

```
*Node data
"ID", "Gender", "Role"
"HOLLY" "FEMALE" "STUDENT"
"STEVE" "MALE" "TEACHER"
"CAROL" "FEMALE" "STUDENT"
...
*Tie data
FROM TO "campnet"
"HOLLY" "PAM" 1
"HOLLY" "PAT" 1
"BRAZEY" "STEVE" }
"BRAZEY" "BERT" 1
"CAROL" "PAM" }
"PAM" "ANN" }
"PAT" "HOLLY" }
```


Excel/Data Grid

- Excel is the "Universal Translator"
- UCINET has a Data Grid tool that
- Looks like excel
- Reads excel files
- Works really well with Excel Cut\&Paste
- As long as you click in the right place for pasting your data

Some tricks

- If the network is small (not too many people)
- I use excel
- Create a comma-separated full-matrix-style file and cut and paste into the data grid
- Manually create attribute file in UCINET (\#s only)
- If the network is larger
- I create an edgelist DL file for the network only
- And a VNA file just with node data (attributes)
- Then I:
- Import the DL file into UCINET (creating \#\#h \& \#\#d files)
- Open the vna file as an attribute file
- If I want to do attribute-based analyses in UCINET, I export the Attributes as a UCINET dataset (will translate text to numbers automatically for me- but I can't control them)

Where to find the importing

- In UCINET
- Data | import | DL
- Data | Import | VNA
- Data | Spreadsheets | Matrix (Ctrl-S)
- Data | Import via Spreasheet | DL
- In NetDraw
- File | Open | Ucinet DL Text file
- File | Open | VNA text file
- NetDraw can work with the text files (no UCINET dataset). UCINET does not.

If you forget the format

- Just Export one of the Sample files
- For DL files
- From UCINET go to

Data | Export | DL

- For VNA files
- From NetDraw, load the data and go to File | Save Data as | VNA | Complete

UCINET File Menu

[10] UCINET 6 for Windows -- Version 6.465			回 X
File Data Transform Iools Network Visualize Options Help			
Change Default Eolder	Ctrl +F	\checkmark	
Create New Folder ...			
Copy Ucinet Dataset Rename Ucinet Dataset Delete Ucinet Dataset		2. Ucinet for Windows: Software for Social Network Analysis. Harvard, MA: Analytic Technologies. dle is available at h ttp://faculty.ucr.edu/ $/$ hanneman/nettext/ dy ox\|Bartels\All	
Print Setup ...			
Iext Editor ... View Previous Output ...	$\begin{gathered} \mathrm{Ctrl}+\mathrm{E} \\ \mathrm{Ctrl}+\mathrm{O} \end{gathered}$		
Exit	Alt+X		

UCINET Data Menu

UCINET Transform Menu

UCINET Tools Menu

［込UCINET 6 for Windows－－Version 6.465			－回 $\quad \times$
File Data Transform	ools Network Visualize Options Help		
1 \囲 事 入			
How to cite UCINET： Borgatti，S．P．，Everett M．G． A UCINET tutorial by Bob - This copy of UCINET is reg Current directory is C\Users	Consensus Analysis Cluster Analysis Scaling／Decomposition Correlate columns across datasets Similarities（e．g．，correlations） Dissimilarities \＆Distances Univariate statistics ＿Univariate Stats［old］ Erequencies Count combinations Testing Hypotheses Command Line／Matrix Algebra Ctrl＋G Scatterplot Dendrogram Iree Diagram	ial Network Analysis．Harvard，MA：Analytic Technologies． ＇hanneman／nettext／	

UCINET Network Menu

UCINET Options Menu

UCINET Help Menu

UCINET 6 for Windows -- Version 6.465					- $\mathrm{O}_{\text {\| }} \mathrm{X}$
		Register			
		Help Topics Identify help file Hanneman Iutorial Technical support About	F1	rvard, MA: Analytic Technologies.	

NetDraw

■c Size:

Save As New Relation
Options:
©AND O OR 1
\checkmark Self-Loops Dec:
\square Link wts -> 1

Big 4 or 5 centrality measures

Degree
Closeness
Betweenness
Eigenvector / beta centrality

networks are complex

Can we understand them better without a "ridiculogram"?

describing networks

what networks look like
questions:

- how are the edges organized?
- how do vertices differ?
- does network location matter?
- are there underlying patterns?
what we want to know
- what processes shape these networks?
- how can we tell?

describing networks

a first step : describe its features

$$
f: G \rightarrow\left\{x_{1}, \ldots, x_{k}\right\}
$$

- degree distributions
- short-loop density (triangles, etc.)
- shortest paths (diameter, etc.)
- vertex positions
- correlations between these

describing networks

a first step : describe its features

$$
f: \text { object } \rightarrow\left\{x_{1}, \ldots, x_{k}\right\}
$$

- physical dimensions
- material density, composition
- radius of gyration
- correlations between these
helpful for exploration, but not what we want...

describing networks

what we want : understand its structure

$$
f: \text { object } \rightarrow\left\{\theta_{1}, \ldots, \theta_{k}\right\}
$$

- what are the fundamental parts?
- how are these parts organized?
- where are the degrees of freedom $\vec{\theta}$?
- how can we define an abstract class?
- structure - dynamics - function?
what does local-level structure look like? what does large-scale structure look like? how does structure constrain function?

What is centrality?

- An aspect of a node's position in a network
- Structural prominence
- Contribution to network structure
- Structural reflection of importance
- Direction of a causality in any context is often unclear
- Does central position come from, node attribute (e.g., achievement), or does the node attribute (e.g., disease) come from central position?
- Measures or constructs?

describing networks

position = centrality: measure of positional "importance"

Degree centrality

- Barely a centrality measure, as you don't need to know the structure of the network to calculate it
- Number of ties a node has

- In most cases, this is also number of distinct nodes the node is adjacent to
- Interpreted as exposure and capacity to influence
- Depending on the tie
- E.g., negative ties work differently

describing networks

describing networks

degree sequence $\{1,2,2,2,3,4\}$
degree distribution $\operatorname{Pr}(k)=\left[\left(1, \frac{1}{6}\right),\left(2, \frac{3}{6}\right),\left(3, \frac{1}{6}\right),\left(4, \frac{1}{6}\right)\right]$

describing networks

Zachary karate club*

Centrality in social context

- Social capital
- The more ties I have, the more potential help I can get for some problem
- Also the greater the likelihood that some node close to me has a needed skill/resource
- Power - influencing others
- Imagine mutual trust ties
- The more ties, the more people you can influence directly
- Adoption - being influenced by others
- If you have many trust ties, lots of people have influence on you.
- What if your alters disagree with each other?
- Role strain/cognitive dissonance
- Reflection of status/visibility in another context

"That's an excellent suggestion, Miss Triggs. Perhaps one of the men here would like to suggest it." (Punch, 8 January, 1988)

Independent Variable: Task Interdependence Networks

DV

H1a: The higher the number of contacts that an actor depends on to develop his/her own work, the more likely he/she is to experience high cynicism and low professional efficacy

H1b: The higher the number of contacts that depend on an actor to develop their own work, the more likely he/she is to experience emotional exhaustion.

- Cynicism
- Professional Efficacy

Degree as row/col sums or averages

	a	b	c	d	e	f	Sum	Avg
a	0	1	0	0	0	0	1	. 2
b	1	0	1	1	0	0	3	. 6
c	0	1	0	1	0	0	2	. 4
d	0	1	1	0	1	0	3	. 6
e	0	0	0	1	0	1	2	. 4
f	0	0	0	0	1	0	1	2

Directed degree - cont.

- Outdegree and indegree correspond to the row and column sums of the adjacency matrix
- Outdegree = row sums
- Indegree = column sums

	A	B	C	D	E	F	Total
A	0	0	0	0	0	1	1
B	0	0	1	0	0	1	2
C	0	1	0	1	0	1	3
D	1	0	0	0	1	0	2
E	0	0	0	1	0	1	2
F	1	0	0	1	0	0	2
Total	2	1	1	3	1	4	12

Indegree and outdegree

- Here, indegree is useful but outdegree is not
- In a survey setting we tend to value indegree more

		braze	caro			Jenn	Pauli		MICH					HARR					
	HOLLY	Y	L	PAM	PAT	E	NE	ANN	aEL	BILL	LEE	DON	OnN	Y	GERY	STEVE	Bert	RUS	OUTDEG
HoLly	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	3
brazey	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	3
CAROL	0	0	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	3
PAM	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	3
PAT	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	3
Jennie	0	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	3
PAULINE	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	3
ANN	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	3
MICHAEL	1	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	3
BILL	0	0	0	0	0	0	0	0	1	0	0	1	0	1	0	0	0	0	3
LEE	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	3
DON	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	3
JOHN	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	1	3
HARRY	1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	3
GERY	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	3
Steve	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	3
bert	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	3
RUSS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	3
INDEG	4	1	2	5	4	3	4	2	4	0	3	4	0	3	2	5	4	4	54

Plot indegree vs outdegree

- Suppose the type of tie is "seeks advice from"
- Outdegree = how many people you seek help from
- Indegree = how many people seek advice from you
- Note that flow of information runs backwards: if A seeks advice from B, then B sends info to A

indegree

outdegree

Best measure if importance means:
\longrightarrow how popular you are
\longrightarrow how many people you know

It is a local measure!

Degree Centrality with Valued Data

| | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MT6 | MT6 | MT71 | MT72 | MT83 | MT93 | MT210 | MT215 | MT272 | |
| MT71 | 0 | 100 | 500 | 1600 | 1100 | 300 | 2450 | 1500 | 7550 |
| MT72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| MT83 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| MT93 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| MT210 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| MT215 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| MT272 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| INDEGREE | 0 | 100 | 500 | 1600 | 1100 | 300 | 2450 | 1500 | 0 |

NOTE: some software may binarize networks before calculating degree with valued data.

formula for degree (normalized)

$$
C^{D}(i)=\frac{k_{i}}{N-1}
$$

describing networks

spreading processes on networks

biological (diseases)

- SIS and SIR models
social (information)
susceptible-infected-susceptible

- SIS, SIR models
- threshold models

threshold

susceptible-infected-recovered

describing networks

R_{0} is the basic reproduction number: the number of infected people an infected person can reproduce.

cascade
 epidemic
 branching process
 spreading process

$R_{0}=$ net reproductive rate $=$ average degree $\langle k\rangle$

caveat:

ignores network structure, dynamics, etc.

describing networks

describing networks

describing networks

how could we halt the spread?

- break network into disconnected pieces

describing networks

what promotes spreading?

- high-degree vertices*
- centrally-located vertices
homogeneous in degree

heterogeneous in degree

Who's Important in this network?

DEGREE: When dealing with binary data, degree centrality is the number of nodes adjacent to a given node

Turbo-charging degree

- Degree is a count of the number of nodes you are connected to
- Treats all nodes equally
- What if you wanted to weight the nodes by how many nodes they were connected to?

$$
t d_{i}=\sum_{j} a_{i j} d_{j}
$$

Turbo-charging degree

- Degree is a count of the number of nodes you are connected to
- Treats all nodes equally
- What if you wanted to weight the nodes by how many nodes they were connected to?

$$
t d_{i}=\sum_{j} a_{i j} d_{j}
$$

- But why stop there? Can keep iterating ...

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	deg	deg
\mathbf{a}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	1	3
\mathbf{b}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	3	6
\mathbf{c}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	2	6
\mathbf{d}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	3	7
\mathbf{e}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	2	4
\mathbf{f}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	1	2

13

48

Iterated Degree

eigenvector centrality

position = centrality:

PageRank, Katz, eigenvector centrality
importance $=$ sum of importances* of nodes that point at you

$$
I_{i}=\sum_{j \rightarrow i} \frac{I_{j}}{k_{j}}
$$

or, the left eigenvector of

$$
\mathbf{A x}=\lambda \mathbf{x}
$$

Eigenvector

- Principal eigenvector of network adjacency matrix A

$$
\mathrm{A} \mathbf{v}=\lambda \mathbf{v} \quad v_{i}=\frac{1}{\lambda} \sum_{j} a_{i j} v_{j}
$$

\mathbf{v} is the eigenvector, λ is the associated eigenvalue (a proportionality constant)

- A node has high eigenvector score to the extent it is connected to many nodes who themselves have high scores
- Often interpreted as popularity or status - have ties not just to many others but many well-connected others
- A kind of turbo-charged degree centrality

Eigenvector

- Node \boldsymbol{d} has the highest eigenvector centrality in the land

Eigenvector can (usually) be computed as iterated degree*

	a	b	c	d	e	f	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
a	0	1	0	0	0	0	1	3	6	16	35	86	195	465	1071	2524
b	1	0	1	1	0	0	3	6	16	35	86	195	465	1071	2524	5854
c	0	1	0	1	0	0	2	6	13	32	73	173	401	940	2190	5117
d	0	1	1	0	1	0	3	7	16	38	87	206	475	1119	2593	6086
e	0	0	0	1	0	1	2	4	9	20	47	107	253	582	1372	3175
f	0	0	0	0	1	0	1	2	4	9	20	47	107	253	582	1372
							12	28	64	150	348	814	1896	4430	10332	24128

	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
A	8.3	10.7	9.4	10.7	10.1	10.6	10.3	10.5	10.4	10.5
B	25.0	21.4	25.0	23.3	24.7	24.0	24.5	24.2	24.4	24.3
C	16.7	21.4	20.3	21.3	21.0	21.3	21.1	21.2	21.2	21.2
D	25.0	25.0	25.0	25.3	25.0	25.3	25.1	25.3	25.1	25.2
E	16.7	14.3	14.1	13.3	13.5	13.1	13.3	13.1	13.3	13.2
F	8.3	7.1	6.3	6.0	5.7	5.8	5.6	5.7	5.6	5.7

Node	D10	Eigen
a	10.5	0.234
b	24.3	0.545
c	21.2	0.475
d	25.2	0.564
e	13.2	0.296
f	5.7	0.127

$$
r=0.999992
$$

*This is called the power method (Hotelling, 1930). Requires matrix to have unique dominant eigenvalue to converge.

Applications

- Playground status
- You may have many friends, but if they are themselves outcasts, it will not improve your status

- You could have just one friend, but if this is the most popular kid in the school, your status will be good
- Being connected to those in the know - could be valuable
- In principle, a better measure of exposure to what is flowing (cf r and s)
- Feeling well-grounded or anchored by circle of friends
- A measure of being in an in-crowd, a core, or dominant coalition

Issues with eigenvector

- Can't use with disconnected networks
- In clumpy networks, it favors the nodes in the larger cliques
- It can fail as a measure of risk/exposure because it doesn't take into account the fact that an alter's high degree might be because of ties with nodes that ego is already connected to
- So shouldn't give that alter any weight, because they are not adding to exposure
- Many issues with directed data

Directed Eigenvector

$$
l_{j}=\frac{1}{\lambda} \sum_{i} a_{i j} r_{i}
$$

- In principle, similar to degree:
- Out-eigenvector (known as right eigenvector) gives a high score to those who send to many people who themselves send to many people who ...
- If the relation is influences, then high score means you influence the influencers
- In-eigenvector (left eigenvector) gives high score to those who receive from people who receive from many people who receive from ...
- For the respects relation, a high score indicates you are respected by the well respected
- In practice, is often not calculable or gives wacky answers

$$
r_{i}=\frac{1}{\lambda} \sum_{j} a_{i j} r_{j}
$$

$$
l_{j}=\frac{1}{\lambda} \sum_{i} a_{i j} l_{i}
$$

Beta centrality (aka Bonacich power, Bonacich 1987)

- Defined as: $\boldsymbol{p}=(I-\beta R)^{-1} R 1$

$$
\begin{aligned}
& \mathrm{R} 1=\text { rowSums (degree) } \\
& (\mathrm{I}-\mathrm{BR})^{-1} \text { rewritten as } \mathrm{R}^{+} \\
& \text {iff condition met. }
\end{aligned}
$$

- R is the adjacency matrix; $(I-\beta R)^{-1}$ is a new matrix derived from R
- β is a parameter chosen by the user
- When $-1 / \lambda<\beta<1 / \lambda$, where λ is largest eigenvalue of R, p can be seen as the row sums of this sum of matrices:

$$
\begin{aligned}
& R^{+}=b^{0} R^{1}+b^{1} R^{2}+b^{2} R^{3}+b^{3} R^{4}+\ldots \\
& P=R^{+} 1 \quad\left(\text { (rowSums of } \mathrm{R}^{+}\right)
\end{aligned}
$$

R^{+}is no. of walks, wtd inversely by length, btw each pair of nodes
$R^{+} 1$ is a column vector giving the
sum of each row of R^{+}

- R2 gives the number of walks of exactly 2 steps between every pair of nodes
- R3 gives the number of walks length 3 between all pairs of nodes, etc.
- Beta centrality measures \# of walks of all lengths, weighted inversely by length, that emanate from a node

The β parameter in beta centrality

$$
R^{+}=b^{0} R^{1}+b^{1} R^{2}+b^{2} R^{3}+b^{3} R^{4}+\ldots
$$

- When β is 0 , beta centrality equals degree $\quad P=R^{+} 1$
- Only paths of length 1 (direct connections) matter
- As β increases from 0 , longer paths are given increasing weight
- When β is as close to $1 / \lambda$ as possible, beta centrality equals eigenvector centrality
- When β gets larger than $1 / \lambda$, beta centrality becomes uninterpretable

Degree	β centrality	
$\beta=0$	Eigenvector	
$\beta \approx 1 / \lambda$		

Issues with beta centrality

- Often highly related to degree
- How to choose beta?
- But ... it works great with directed graphs

Directed beta centrality

- Beta centrality is the solution to the directed eigenvector problem.
- When it is possible to compute eigenvector centrality, running beta centrality with β \approx 1/lambda gives same result
- When it is not possible to compute eigenvector centrality, beta centrality is fine (except for disconnected graphs)
- Out-beta centrality
- Score measures number of walks of all lengths emanating from a node, weighted inversely by length
- Also indicates extent to which that the node sends to many nodes who themselves send to many nodes ...
- In-beta centrality
- Measures \# of walks of all lengths that arrive at a node, weighted inversely by length
- Also indicates extent to which node receives from nodes who themselves are targets

Beta centrality on difficult graphs

- For network I, with beta $=0.8$, node 5 has the most power
- In net III (with beta $=0.8$), node a has most power followed by b, c, d and e in order.

Bonacich Power Centrality: examples

$$
\beta=.25
$$

$\beta=-.25$

Why does the middle node have lower centrality than its neighbors when β is negative?

Eigenvector: The extent to which a given node is connected to other well-connected nodes

Closeness

- Sum of distances from node to all others
- Inverse measure of centrality
- Often interpreted as index of time-until-arrival of stuff flowing through network
- In gossip network, persons strong in closeness centrality hear things early

describing networks

position = centrality:

harmonic, closeness

 centralityimportance $=$ being in "center" of the network

$$
\text { harmonic } \quad c_{i}=\frac{1}{n-1} \sum_{j \neq i} \frac{1}{d_{i j}}
$$

closeness centrality formula

$$
\tilde{C}^{C}(i)=\left[\sum_{j=1}^{N} d(i, j)\right]^{-1}
$$

Normalized

$$
C^{C}(i)=\frac{\tilde{C}^{C}(i)}{N-1}
$$

All other nodes in the network

What happens to isolates?

Closeness as marginals of distance matrix

ID	a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p	q	r	s	sum
a	0	1	2	1	2	1	2	2	3	4	5	5	5	4	5	4	6	3	7	62
b	1	0	2	1	1	2	1	2	3	4	5	5	5	4	5	4	6	3	7	61
c	2	2	0	1	2	2	2	1	2	3	4	4	4	3	4	3	5	2	6	52
d	1	1	1	0	1	1	1	2	3	4	5	5	5	4	5	4	6	3	7	59
e	2	1	2	1	0	2	1	2	3	4	5	5	5	4	5	4	6	3	7	62
f	1	2	2	1	2	0	1	1	2	3	4	4	4	3	4	3	5	2	6	50
g	2	1	2	1	1	1	0	1	2	3	4	4	4	3	4	3	5	2	6	49
h	2	2	1	2	2	1	1	0	1	2	3	3	3	2	3	2	4	1	5	40
i	3	3	2	3	3	2	2	1	0	1	2	2	2	1	2	1	3	2	4	39
j	4	4	3	4	4	3	3	2	1	0	1	1	1	1	1	1	2	3	3	42
k	5	5	4	5	5	4	4	3	2	1	0	1	2	2	2	1	3	4	4	57
l	5	5	4	5	5	4	4	3	2	1	1	0	1	2	2	2	2	4	3	55
m	5	5	4	5	5	4	4	3	2	1	2	1	0	2	2	2	1	4	2	54
n	4	4	3	4	4	3	3	2	1	1	2	2	2	0	1	2	3	3	4	48
o	5	5	4	5	5	4	4	3	2	1	2	2	2	1	0	2	3	4	4	58
p	4	4	3	4	4	3	3	2	1	1	1	2	2	2	2	0	3	3	4	48
q	6	6	5	6	6	5	5	4	3	2	3	2	1	3	3	3	0	5	1	69
r	3	3	2	3	3	2	2	1	2	3	4	4	4	3	4	3	5	0	6	57
s	7	7	6	7	7	6	6	5	4	3	4	3	2	4	4	4	1	6	0	86
sum	62	61	52	59	62	50	49	40	39	42	57	55	54	48	58	48	69	57	86	1048

Average distance would be more interpretable

Reciprocal Distance

```
    abc defghi j a b c d e f g h i j
a 0 1 1 1 2 3 4 5 4 5
b 10012123434
c 1 1 0 1 2 3 4 5 4 5
d 1 2 1 0 1 2 3 4 3 4
e 2 1 2 1 0 1 2 3 2 3
f 3 2 3 2 1 0 1 2 1 2
g4 3 4 3 2 1 0 1 2 1
h 5454 3 2 1 0 1 1
i 4 3 4 3 2 1 2 1 0 1
j 5454321110
\begin{tabular}{ccccccccccc} 
& a & b & c & d & e & f & g & h & i & j \\
a & 0.00 & 1.00 & 1.00 & 1.00 & 0.50 & 0.33 & 0.25 & 0.20 & 0.25 & 0.20 \\
b & 1.00 & 0.00 & 1.00 & 0.50 & 1.00 & 0.50 & 0.33 & 0.25 & 0.33 & 0.25 \\
c & 1.00 & 1.00 & 0.00 & 1.00 & 0.50 & 0.33 & 0.25 & 0.20 & 0.25 & 0.20 \\
d & 1.00 & 0.50 & 1.00 & 0.00 & 1.00 & 0.50 & 0.33 & 0.25 & 0.33 & 0.25 \\
e & 0.50 & 1.00 & 0.50 & 1.00 & 0.00 & 1.00 & 0.50 & 0.33 & 0.50 & 0.33 \\
f & 0.33 & 0.50 & 0.33 & 0.50 & 1.00 & 0.00 & 1.00 & 0.50 & 1.00 & 0.50 \\
g & 0.25 & 0.33 & 0.25 & 0.33 & 0.50 & 1.00 & 0.00 & 1.00 & 0.50 & 1.00 \\
h & 0.20 & 0.25 & 0.20 & 0.25 & 0.33 & 0.50 & 1.00 & 0.00 & 1.00 & 1.00 \\
i & 0.25 & 0.33 & 0.25 & 0.33 & 0.50 & 1.00 & 0.50 & 1.00 & 0.00 & 1.00 \\
j & 0.20 & 0.25 & 0.20 & 0.25 & 0.33 & 0.50 & 1.00 & 1.00 & 1.00 & 0.00
\end{tabular}
```

For undefined distances, we can define the reciprocal distance to be 0

closeness centrality example

$$
\begin{gathered}
\mathrm{A} \\
C_{c}^{\prime}(A)=\left[\frac{\sum_{j=1}^{N} d(A, j)}{N-1}\right]^{-1}=\left[\frac{1+2+3+4}{4}\right]^{-1}=\left[\frac{10}{4}\right]^{-1}=0.4
\end{gathered}
$$

Closeness in directed networks

- choose a direction
- in-closeness (e.g. prestige in citation networks)
- out-closeness
- usually consider only vertices from which the node i in question can be reached

Applications

- Any situation where the value of information (or the cost of infection) is a function of time
- Getting a disease before there is any treatment available
- Getting gossip before most people have already heard it
- Getting market information before other investors have heard it
- Nodes with the best closeness scores are often the ones to tap to learn what the network knows
- Picking a snitch/key informant/potential spy

Closeness

Closeness:

The extent to which a node is close from all other nodes

Issues \& variants of closeness

- Only looks at shortest paths
- When graphs are disconnected, distances between some nodes are undefined
- What to do?
- One approach is average reciprocal distance (ARD)
- Replace entries dij of distance matrix with $1 / \mathrm{dij}$, and set 1 /dij to zero when dij is undefined
- Take the average across all other nodes $\operatorname{ARD}(i)=j \sum \frac{1}{d_{i j}}$
- Another approach is k-reach: the proportion of other a node can reach within k steps

Geodesic distance matrix

- How to get row or col sums when you have undefined distances?

Do the reciprocal $(1 /$ infinity $=0)$ or add large value.

HOLLY	HOLLY BRAZEY CAROL PAM PAT JENNIE PAULINE ANN MICHAEL BILL LEE DON JOHN HARRY GERY STEVE BERT RUSS																	
	0		2	1	1	2	2	2	2			1		2				
BRAZEY	5	0	7	6	6	7	7	7	4		1	5		5	3	1	1	2
CAROL	2		0	1	1	2	1	2	4			3		4				
PAM	3		2	0	2	1	1	1	5			4		5				
PAT	1		1	2	0	1	2	2	3			2		3				
JENNIE	2		2	1	1	0	2	1	4			3		4				
PAULINE	2		1	1	1	2	0	2	4			3		4				
ANN	3		2	1	2	1	1	0	5			4		5				
MICHAEL	1		3	2	2	3	3	3	0			1		1				
BILL	2		4	3	3	4	4	4	1	0		1		1				
LEE	5	1	7	6	6	7	7	7	4		0	5		5	3	1	1	2
DON	1		3	2	2	3	3	3	1			0		1				
JOHN	3	4	2	2	2	3	1	3	2		3	3	0	3	1	2	2	1
HARRY	1		3	2	2	3	3	3	1			1		0				
GERY	2	3	4	3	3	4	4	4	1		2	2		2	0	1	2	1
STEVE	4	2	6	5	5	6	6	6	3		1	4		4	2	0	1	1
BERT	4	2	6	5	5	6	6	6	3		1	4		4	2	1	0	1
RUSS	3	3	5	4	4	5	5	5	2		2	3		3	1	1	1	0

	11	13	W1	W2	W3	W4	W5	W6	W7	W8	W9	S1	S2	S4
11		0	1	1	1	1	0.5	0.25	0.33	0.25	0.25	0.5	0	0.25
13	0		0	0	0	0	0	0	0	0	0	0	0	0
W1	1	0		1	1	1	1	0.33	0.5	0.33	0.33	1	0	0.33
W2	1	0	1		1	1	0.5	0.25	0.33	0.25	0.25	1	0	0.25
W3	1	0	1	1		1	1	0.33	0.5	0.33	0.33	1	0	0.33
W4	1	0	1	1	1		1	0.33	0.5	0.33	0.33	1	0	0.33
W5	0.5	0	1	0.5	1	1		0.5	1	0.5	0.5	1	0	0.5
W6	0.25	0	0.33	0.25	0.33	0.33	0.5		1	1	1	0.33	0	0.5
W7	0.33	0	0.5	0.33	0.5	0.5	1	1		1	1	0.5	0	1
W8	0.25	0	0.33	0.25	0.33	0.33	0.5	1	1		1	0.33	0	1
W9	0.25	0	0.33	0.25	0.33	0.33	0.5	1	1	1		0.33	0	1
S1	0.5	0	1	1	1	1	1	0.33	0.5	0.33	0.33		0	0.33
S2	0	0	0	0	0	0	0	0	0	0	0	0		0
S4	0.25	0	0.33	0.25	0.33	0.33	0.5	0.5	1	1	1	0.33	0	

K-Reach centrality

- Proportion of others that ego can reach by a path of k or less
- 1-reach is just normalized degree centrality
- Highly interpretable. Holly can reach 65\% of the network in 2 steps, so she is a good influencer

	1	2	3	4	5	6
	$d 1$	$d 2$	$d 3$	$d 4$	$d 5$	$d 6$
HOLLY	0.29	0.65	0.82	1.00	1.00	1.00
BRAZEY	0.18	0.29	0.41	0.71	0.94	1.00
CAROL	0.18	0.41	0.71	0.88	1.00	1.00
PAM	0.29	0.59	0.76	0.88	1.00	1.00
PAT	0.24	0.59	0.76	0.88	1.00	1.00
JENNIE	0.18	0.35	0.59	0.76	0.88	1.00
PAULINE	0.29	0.53	0.82	1.00	1.00	1.00
ANN	0.18	0.41	0.71	0.88	1.00	1.00
MICHAEL	0.29	0.59	1.00	1.00	1.00	1.00
BILL	0.18	0.29	0.59	1.00	1.00	1.00
LEE	0.18	0.29	0.41	0.71	0.94	1.00
DON	0.24	0.41	0.82	1.00	1.00	1.00
JOHN	0.18	0.59	1.00	1.00	1.00	1.00
HARRY	0.24	0.41	0.82	1.00	1.00	1.00
GERY	0.24	0.71	0.94	1.00	1.00	1.00
STEVE	0.29	0.41	0.71	0.94	1.00	1.00
BERT	0.24	0.35	0.47	0.94	1.00	1.00
RUSS	0.24	0.47	0.94	1.00	1.00	1.00

->tcamp = symmet(campnet)
Network|Centrality|Reach ~tcamp

Betweenness

- Loosely, the extent to which a node is along the shortest paths of between all pairs of nodes

$$
b_{k}=\sum_{i, j} \frac{g_{i k j}}{g_{i j}}
$$

gij is number of geodesic paths from i to j gikj is number of geodesics from i to j that pass through k

- More correctly, bk is the share of geodesics between pairs of
 nodes that pass through k
- Often interpreted as control over flows (gatekeeping), correlated with power
- Also seen as index of frequency something reaches node

formula

$$
\tilde{C}^{B}(i)=\sum_{j<k} \frac{d_{j k}(i)}{d_{j k}}
$$

$$
\begin{aligned}
& d_{j k} \text { \# of shortest paths between } j \text { and } k \\
& d_{j k}(i) \text { \# of shortest paths between } j \text { and } k \text { that go } \\
& \text { through } i
\end{aligned}
$$

Normalized

Number of pairs of vertices excluding i

For directed graphs: when normalizing, we have ($\mathrm{N}-1$)*($\mathrm{N}-2$) instead of ($\mathrm{N}-1)^{*}(\mathrm{~N}-2) / 2$, because we have twice as many ordered pairs as unordered pairs.

Betweenness

- Node h has the highest betweenness

Betweenness - cont.

- Often discussed in terms of identifying liaisons, gatekeepers, "secretary power"
- Global network cohesion is highly dependent on high betweenness nodes.
- (But) networks that contain high betweenness nodes are brittle
- Nodes with high betweenness and low degree are often overlooked by network members themselves
- Degree is highly visible, betweenness may not be

Betweenness

- With betweenness, there is no need for separate in and out versions
- A node is between two others if it is along a directed path from one to the other
F gets no points for being between E and B, because there is no directed path from E to B
- B has only outgoing arrows, so no way to get to B

Betweenness in directed networks

Betweenness in directed networks

- For example: for node 2 , the $(n-1)(n-2) / 2=5(5-1) / 2=10$ terms in the summation in the order of $13,14,15,16,34,35,36,45$, 46, 56 are

$$
\frac{1}{1}+\frac{0}{1}+\frac{0}{1}+\frac{0}{1}+\frac{0}{1}+\frac{1}{2}+\frac{0}{1}+\frac{0}{1}+\frac{0}{1}+\frac{0}{1}=1.5 .
$$

- Here the denominators are the number of shortest paths between pair of edges in the above order and the numerators are the number of shortest paths passing through edge 2 between pair of edges in the above order.

Applications

- Often associated with power (Brass, 1984)

- High betweenness nodes (if they know they are in that position) can extract rents for passing things along or introducing people
- Betweenness works best with hard-to-form ties, like roads or trust ties
- Otherwise nodes can bypass the high betweenness node by connecting directly with others
- At a crossroads in the network. Paths may not be short, but flows are fairly certain to pass through the node

[^0]```
Closen Betwee
```


## Duality of closeness \& betweenness

- Dependency matrix D , where $\mathrm{dij}=$ number of times* that i needs to go through $j$ to reach someone via a shortest path
- Column totals of $D$ equal betweenness times 2
- Row totals of $D$ equal closeness minus n-1

| 36.000 | 0.000 |
| ---: | ---: |
| 36.000 | 0.000 |
| 27.000 | 17.000 |
| 22.000 | 21.833 |
| 23.000 | 6.000 |
| 22.000 | 13.667 |
| 25.000 | 17.833 |
| 21.000 | 15.167 |
| 24.000 | 5.500 |
| 34.000 | 0.000 |
| 34.000 | 0.000 |


|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Clo |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0.00 | 9.00 | 7.00 | 1.50 | 2.00 | 2.00 | 3.50 | 1.00 | 0.00 | 0.00 | 26.00 |
| 2 | 0.00 |  | 9.00 | 7.00 | 1.50 | 2.00 | 2.00 | 3.50 | 1.00 | 0.00 | 0.00 | 26.00 |
| 3 | 0.00 | 0.00 |  | 7.00 | 1.50 | 2.00 | 2.00 | 3.50 | 1.00 | 0.00 | 0.00 | 17.00 |
| 4 | 0.00 | 0.00 | 2.00 |  | 1.50 | 2.00 | 2.00 | 3.50 | 1.00 | 0.00 | 0.00 | 12.00 |
| 5 | 0.00 | 0.00 | 2.00 | 3.83 |  | 4.17 | 2.33 | 0.67 | 0.00 | 0.00 | 0.00 | 13.00 |
| 6 | 0.00 | 0.00 | 2.00 | 3.00 | 2.00 |  | 2.50 | 2.50 | 0.00 | 0.00 | 0.00 | 12.00 |
| 7 | 0.00 | 0.00 | 2.00 | 3.00 | 1.33 | 4.17 |  | 2.67 | 1.83 | 0.00 | 0.00 | 15.00 |
| 8 | 0.00 | 0.00 | 2.00 | 3.50 | 0.00 | 2.00 | 2.00 |  | 1.50 | 0.00 | 0.00 | 11.00 |
| 9 | 0.00 | 0.00 | 2.00 | 3.33 | 0.00 | 0.67 | 2.83 | 5.17 |  | 0.00 | 0.00 | 14.00 |
| 10 | 0.00 | 0.00 | 2.00 | 3.00 | 1.33 | 4.17 | 9.00 | 2.67 | 1.83 | 0.00 | 24.00 |  |
| 11 | 0.00 | 0.00 | 2.00 | 3.00 | 1.33 | 4.17 | 9.00 | 2.67 | 1.83 | 0.00 | 24.00 |  |

Bet 0.000 .0034 .0043 .6712 .0027 .3335 .6730 .3311 .000 .000 .00194 .00

## Betweenness of edges



Centrality indices are answers to the question "What characterizes an important node?"
The word "importance" has a wide number of meanings, leading to many different definitions of centrality.


A Betweenness


C Eigenvector


Closeness


D Degree

## Measures and type of network

| Graph | Degree | Eigenvector | Beta Centrality | Closeness | Betweenness |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Undirected | Ok | Ok | Ok | Ok | Ok |
| Directed | Ok | Very problematic | Ok | Problematic $^{\text {a }}$ | Ok |
| Valued | Ok | Ok | Ok | No $^{\text {b }}$ | No $^{\text {c }}$ |
| Disconnected | Ok | No | No | No | Ok |

${ }^{\text {a }}$ only a problem because directed graphs are often disconnected -- have unreachable nodes
${ }^{\mathrm{b}}$ there are ways to do it in ucinet, but not commonly accepted
${ }^{\text {c }}$ not possible in Ucinet, but in principle can be done easily with values that represent costs or distances

## check your understanding

- generally different centrality metrics will be positively correlated
- when they are not, there is likely something interesting about the network
- suggest possible topologies and node positions to fit each square

|  | Low <br> Degree | Low <br> Closeness | Low <br> Betweenness |
| :--- | :--- | :--- | :--- |
| High Degree |  |  |  |
| High Closeness |  |  |  |
| High <br> Betweenness |  |  |  |

- generally different centrality metrics will be positively correlated
- when they are not, there is likely something interesting about the network
- suggest possible topologies and node positions to fit each square

|  | Low <br> Degree | Low <br> Closeness | Low <br> Betweenness |
| :--- | :--- | :--- | :--- |
| High Degree |  | Embedded in cluster <br> that is far from the <br> rest of the network | Ego's connections <br> are redundant - <br> communication <br> bypasses him/her |
| High Closeness | Key player tied to <br> important/active <br> players | Probably multiple <br> paths in the <br> network, ego is near <br> many people, but so <br> are many others |  |
| High |  |  |  |
| Betweenness | Ego's few ties are <br> crucial for network <br> flow | Very rare cell. <br> Would mean that <br> ego monopolizes <br> the ties from a small <br> number of people to <br> many others. |  |

"model in which opinion flows only from the media to influentials, and then only from influentials to the larger populace is deprecated"

## Influentials, Networks, and Public Opinion Formation

DUNCAN J. WATTS PETER SHERIDAN DODDS*


- classic information marketing
- message saturation
- degree is most important
broadcast influence
"large cascades of influence are driven not by influentials, but by a critical mass of easily influenced individuals."


## Influentials, Networks, and Public Opinion Formation

DUNCAN J. WATTS
PETER SHERIDAN DODDS*


- "network" (decentralized) marketing
- high-degree $=$ "opinion leader"
- high-degree alone = irrelevant
- a cascade requires a legion of susceptibles (a system-level property)
"influence is not really about the influencer as much about the susceptibles"




[^0]:    e.g., Mehra, A., Kilduff, M. and Brass, D.J., 2001. The social networks of high and low self-monitors: Implications for workplace performance. Administrative science quarterly, 46(1), pp.121-146.

